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ESTIMATION OF MEAN AREAL PRECIPITATION BY
PRINCIPAL AXIS METHOD

By Kiyoshi HosHr*

1. INTRODUCTION

Determination of the total amount of water
which falls on a watershed for a given time period
is basic to many hydrologic studies such as rain-
fall-runoff relationships in which the areal pre-
cipitation plays an important role as a watershed
system input. However, there is actually very
little information of sufficient detail and accuracy
on how much water falls onto a watershed, pri-
marily because the true shape of precipitation
distribution is never known. An approximation
must therefore be made of the mean areal pre-
cipitation from point precipitation values. The
density of rain gages varies greatly from region
to region, and the data so obtained represent only
a scattered sample of precipitation distribution
over an area. Thus, the degree of reliability of
estimates for mean areal precipitation by trans-
formation of point precipitation values depends
to a large extent on whether the data at sample
points represent sufficiently variations in precipi-
tation distribution over a watershed. Determin-
ing how many rain gages are needed for an ac-
curate estimate of mean areal precipitation is the
central problem of network design. It is clearly
evident that a network of rain gages should be
planned so as to give an accurate picture of the
areal distribution of precipitation, but whether
the network of rain gages is representative or
not can not be revealed by the study of estima-
tion of mean areal precipitation alone. In order
to have a full understanding of areal variability
of precipitation, data must be accumulated for
longer periods. And correlation analysis is a
useful technique to examine a regional consistency
in precipitation patterns for longer periods of
time. Space variations of precipitation have been
examined in terms of various time units for in-
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ferences as to a network design of rain gages.!”»
2,3 Some sophisticated techniques have been
also advocated for estimating mean areal precipi-
tation accurately.»%+% The major deficiency of
the traditional techniques, however, is due to the
fact that approaches for estimating mean areal
precipitation and space variations of precipitation
have been developed independently. For this
reason, such ‘analyses do not permit the evalu-
ation of the effect of areal variabilities on the
reliability of areal precipitation €stimates. In
order to have a better idea as to how far areal
variability of precipitation introduces uncertainty
in relation to the estimation of mean areal pre-
cipitation, an alternative mathematical schende
should be devised, which must contain a frame-
work that is sufficiently flexible to respond to all
needs with respect to the evaluation of the reli-
ability of estimates and a network design of rain
gages.

To clarify some problems involved in estimat-
ing mean areal precipitation, the mathematical
features of various models are examined. The
isohyetal method is the most accurate one for
computing mean areal precipitation for individual
precipitation events. However, this method is
extremely time consuming; it is not adapted to
objective computational routines; and a great
deal of personal judgement is left to the indi-
vidual who draws and interpolates isohyets, espe-
cially when the number of rain gages is small and
the shape of the isohyetal pattern is not definitely
known. Furthermore, the chief disadvantage is
that this method can not be employed to examine
the characteristics of space variations of precipi-
tation. For practical convenience, the Thiessen
method has been made use of almost exclusively
for estimating mean areal precipitation. To date,
emphasis has been placed only on its simplicity
and the uniqueness of the Thiessen polygon net-
work, and no consideration has been given to the
examination of areal variability of precipitation
before computing mean depths of precipitation
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over a watershed. The degree of reliability of
estimates can not be measured in the Thiessen
method, because the effective area assumed to
be represented by each rain gage is always con-
stant, independent of the choice of time unit and
the feature of space variations of precipitation.
The Thiessen method assumes that the precipi-
tation at any site can be applied halfway to the
next rain gage in any direction. In general, it
is quite well understood that if the areal distri-
bution of precipitation is uniform and the rain
gages are evenly distributed within a watershed,
this method will yield fairly accurate results, but
some techniques should be introduced to test the
Thiessen hypothesis, because the precipitation is
unevenly distributed both in time and in space.
The Thiessen method does not offer information
essential to the assessment of existing networks
of rain gages, unless some provision is introduced
to account for space variations of precipitation.
As shown in the above discussion, no approach
has been developed to an extent sufficient to
handle completely the actual problems involved
in the studies on the estimation of mean areal
precipitation and space variations of precipitation.
Correlation analysis indicates that within a given
watershed, the cross correlations among precipi-
tation data at different rain gages are unlikely
to be zero, and the degree of interdependences
among them has a varied seasonal pattern. As-
suming that the cross correlations among rain
gages are available information to account for
areal variability of precipitation, incorporation of
the cross correlations in the estimation of mean
areal precipitation makes it possible to establish
quantitative relationships between the areal vari-
ability of precipitation and the reliability of esti-
mates. As a result, the adequacy or otherwise
of a network of rain gages is to be assessed by
examination of the reliability obtained. The ob-
jective of this paper is to provide a standard
method for estimating mean areal precipitation
and to elucidate some of the factors which con-
tribute to prediction of the network design of
rain gages. The mean areal precipitation can be
approximated through the formulation of a linear
transformation of point precipitation values.
Under the assumption that the effective area
represented by the rain gage varies with areal
variability of precipitation according to the season
of the year, its area expressed as a percentage
of the whole area is determined by the principal
axis method. The use of the proposed method
for estimating mean areal precipitation allows
areal variabilities of precipitation to be followed

readily in various networks. And moreover, there
are considerable theoretical advantages to be
gained in the degree of reliability of estimates.
The measure of reliability by the model in de-
scribing mean depths of precipitation over a
watershed is given by the percentage contribution
of the obtained maximum variance to the total
variance. An alpha coefficient is introduced to
examine representativeness of the network of
rain gages in the estimation of mean areal pre-
cipitation. This parameter is easily calculated
from a two-way analysis of variance. An alpha
coefficient can be used to determine how many
rain gages are required to estimate mean areal
precipitation with the desired reliability. There-
fore, the derivation of a high alpha coefficient is
of prime importance in determining the adequacy
of rain gage networks. The proposed model can
be easily extended to situations where mean areal
precipitation has to be computed for the whole
watershed comprising a greater number of sub-
watershed systems.

2. PROBLEMS INVOLVED IN THE
ESTIMATION OF MEAN AREAL
PRECIPITATION

A mathematical model should be devised to
give a closer approximation to the total volume
of precipitation falling on a watershed, because
the true shape of precipitation distribution is
never known. If the areal precipitation can be
represented by a linear transformation of precipi-
tation values at a number of sample points in a
watershed, approximating the unknown areal
precipitation corresponds to the problem of how
to evaluate the effective area which each rain
gage is assumed to represent. If the area ex-
pressed as a percentage of the total area of a
watershed is determined in an objective manner,
the mean depth of precipitation over a watershed
is the sum of point precipitation amounts, each
multiplied by its assigned percentage of area. A
linear model is expressed as follows:

n
Rj= .thgixij (j=1,2,3, -+, N) oeeee (1)
i=

where R;, mean areal precipitation in the jth
period; B:, effective area expressed as a percen-
tage of the total area at the ith gage; x:;, ob-
served precipitation depth by the ith gage in the
jth period; #», number of rain gages; N, number
of observations. The weighting factors at the
rain gages must fulfill the following conditions;

ié}ﬂizl .......................................... (2)
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and
B:>0

Some criterion is needed to evaluate the gage
weightings to satisfy the required conditions
of Egs. (2) and (3). The Thiessen method as-
sumes that the precipitation at any site is best
represented by the gage nearest to it, and ac-
cordingly the effective area assumed to be con-
trolled by each rain gage is determined only from
the configuration of rain gages. Correlation-dis-
tance relationships™® indicate that the Thiessen
hypothesis is not necessarily valid, and an alter-
native approach is required to provide a more
accurate weighting method. It is well known
that the variability of precipitation decreases with
increase in the time unit being considered, and
there is a marked seasonal variation in precipi-
tation types. In the Thiessen method, however,
the size of the effective area at the rain gage is
independent of the choice of time unit and the
feature of space variations of precipitation. Al-
though a fundamental requirement of mean areal
precipitation is a knowledge of the reliability of
estimates, quantitative assessments of the results
by the Thiessen method have been very limited.
The inability to evaluate the degree of reliability
of estimates is attributed to the fact that factors
to account for areal variability of precipitation
are not introduced to determine the area assumed
to be represented by the rain gage in the Thies-
sen method. The Thiessen method may be a
reasonable assumption in some areas where a
uniform distribution of precipitation prevails, but
this may not always be correct. Something more
than a mere qualitative assessment as to the
reliability of estimates is therefore desirable.

(i=1,2,8, cee, B) oreeeemsensnanes (3)

This paper suggests improvements in the pre-
sent techniques for estimating mean areal precipi-
tation by combining correlation analysis. As a
distinguished feature of precipitation data, precipi-
tation values at the rain gages in a watershed
are more or less correlated with each other, and
the degree of associations among the rain gages
varies widely from season to season. The use
of correlation analysis for estimating mean areal
precipitation will make it more flexible than the
Thiessen method to evaluate the effect of areal
variability of precipitation on the reliability of
estimates. As a result, this measure of reliability
can be used to examine unrepresentativeness of
the network of rain gages. An underlying as-
sumption in this paper is that the effective area
assumed to be controlled by the rain gage de-
pends on the feature of space variations of pre-

cipitation. A method of determining weighting
factors in Eq. (1) is developed through the use
of a variance-covariance matrix of precipitation,
which is available information to account for
space variations of precipitation. In areas where
there is a marked seasonal variation in precipi-
tation patterns, better results can be obtained by
using seasonal values rather than the Thiessen
method. Equation (1) is of the same form as the
Thiessen model, so that the proposed model can
be used to test the validity of the Thiessen hy-
pothesis. If the difference of estimates between
the proposed and Thiessen methods is reasonably
small, a measure of reliability given by the pro-
posed method can be used as that by the Thies-
sen method.

An approach to the estimation of mean areal
precipitation and its reliability through the prin-
cipal axis method demonstrates that the desired
solution with regard to the weighting factors,
which must meet the required conditions of Egs.
(2) and (3), is given by an eigenvector correspond-
ing to the largest eigenvalue of a variance-
covariance matrix of precipitation among the rain
gages.

3. MODEL EQUATION

This paper examines the possibility of a tech-
nique for computing mean areal precipitation as
an alternative to the commonly used technique.
The technique is analogous to the principal axis
method of multivariate analysis. Obviously, some
form of modification is needed to give estimates
for mean areal precipitation. Assume there are
»n rain gages within a watershed, each of which
has an N-.year record of precipitation depths.
Let x;; denote the jth observation on the 7th
gage. Geometrically viewed, N points can be
plotted in the n-dimensional hyperspace by taking
X1, Xy, +++, Ty as co-ordinate axes. The principal
axis method involves the rotation of co-ordinate
axes to a new frame of reference so that this
new rotated axis might be preferable for the
purpose of interpreting the basic dimension of
the domain measured by N observations. The
objective solution in terms of finding the new
reference axis is obtained by projecting all points
perpendicularly on the principal axis along which
the sum of squares of distances becomes mini-
mum. Fig. 1 clarifies the meaning of the prin-
cipal axis method.

An equation of the principal axis passing
through an arbitrarily fixed point A: (by, b3, +--,
bn) and with the direction cosines of (wi, ws, «--,
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wy) is expressed as follows:

f: 21—by _ Lo—be —.. =xn—bn (1)

wy W Wy

where b; and w; are unknown parameters.

A plane perpendicular to the line expressed by
Eq. (4), passing through a given point C: (xyj,
L2j, ¢+ +, Tny) is given by

or

It is of interest to note that Eq. (6) is of similar
form as shown in Eq. (1). If a set of positive
direction cosines for the rain gage is available,
these coefficients can be transformed to yield the
gage weightings with their sum equal to unity
as follows:

ﬁi=wz'/i}§.“wz~ .................................... (7)

The mean depth of precipitation over a water-
shed is the sum of the individual gage amounts,
each multiplied by its weighting factor of Eq. (7).

For convenience, p; expressed by Eq. (6) is
referred to as areal precipitation, and the major
effort herein is devoted to the problem of how
to evaluate the parameter, w; in a linear model.
The direction cosine, w; is determined in such a
way that when N points are projected perpen-
dicularly onto the particular line of Eq. (4), the
sum of squares of distances is minimum. As an
index measuring how much the observed record
x;j deviates from the principal axis in the jth
period, the distance, D; as shown in Fig. 1 is
calculated. This distance is calculated by ele-
mentary geometry as follows:

Fig. 1 Geometrical Interpretation of Model
Equation.

Dj2=§62=E2_A'_BZ
n n 2

The sum of squares of perpendiculars over N
periods, which is denoted by D2, is given by

N N n
Di= 5 D= 7, X (215—bi)?
J=1 J=11di=1

N n 2
”‘j; Lg]wi(xij—bi):] —— Mini--+(9)

Since the parameter w; of Eq. (4) gives the direc-
tion cosine for the » variates, the required con-
dition with respect to the plane expressed by
Eq. (6) is given by

M

wi2= 1

And in order to determine the physically reali-
zable gage weightings for estimating mean areal
precipitation, the following condition must be
fulfilled:

wi>0  (1=1,2,3, oo, 7) corererinninnnnn a1

The mean and variance of areal precipitation
expressed by Eq. (6) over N periods are given by

n

Mmp= 'leiﬁi .................................... (12)
N

o= T (ps=ms)IN

_ N [%wi(xij*ii):lz/N ......... (13)

F=1Li=1
n n
= D D WG g <er e erreraereenrnaen (14)
i=1 k=1
where
i N
Fi= .lezj/N ................................. (15)
i=

myp and ¢yp?, mean and variance of areal precipi-
tation over N periods, respectively; Z:; and o042,
mean and variance of precipitation depths at the
ith rain gage, respectively; o, covariance of
precipitation depths at gages 7 and k.

It is now required to determine the parameters
of b; and w;. The minimum of the quantity, D?
with respect to b; and w; is determined by solv-
ing the following simultaneous equations:

aD%ab;=0 and 9Dow;=0-----(17), (18)

From Eq. (9), Eq. (17) can be expanded in the
following way

N N n
D (2ij=bi)= 2 wi L wi®i5—b;)-+++-++(19)
j=1 Jj=1 t=1

and by using Egs. (12) and (15), the resulting



Estimation of Mean Aveal Precipitation by Principal Axis Method 73

equation is
n
N(Fi—b)=wiN <mp— ’Zx wm) ......... (20)
i=

Without loss of generality, both sides of Eq. (20)
are equal to zero in the case of b; being equal
to %; with help of Eq. (12). In other words, the
desired parameter of b; is equal to the mean of
precipitation depths at the ith rain gage. When
the parameter of b; is replaced by the mean value
of %; in Eq: (9), the quantity of D? can be ex-
pressed as follows:

D2N= % 032 —0p? —> Mini--orereerereene (21)
i=1

In the right-hand side of Eq. (22) the first term
represents the effect of point variations of pre-
cipitation at the individual gages, while the second
term accounts for areal variabilities of precipi-
tation among the rain gages. Therefore, the
smaller the differences between point and areal
variations of precipitation, the smaller is the sum
of squares of distances when all points are pro-
jected perpendicularly onto the principal axis.
And the resulting plane expressed by Eq. (6) will
produce a high degree of reliability of estimates
for areal precipitation. Since the quantity of the
first term in the right-hand side of Eq. (21) is
constant with data available at n gages in N
periods, there is no need to proceed to the
scheme of Eq. (18). Instead, the parameter of
w; has to be chosen in such a way as to make
the quantity, g, a maximum.

For the numerical elaboration of a maximiza-
tion scheme, Egs. (6), (10), and (14) are written
in matrix notation:

Q=[X—X'l] [X——XI]T/N .................. (26)

P, row vector with N elements; W, row vector
with # elements; X, matrix of observed data
with » rows and N columns; X, column vector
of mean values at the gages with # elements; 1,
row vector of unities with N elements; @, vari-
ance-covariance matrix of observed data between
the gages with » rows and »# columns; 7, trans-
pose of matrix as a superscript.

Following the maximum variance criterion as
described, main attention is directed to the system

in which the quantity expressed by Eq. (25) must
be maximized under the condition of Eq. (24).
Subject to a restriction that is introduced by use
of a Lagrange multiplier, the resulting equation
is written as

[Q=ATIWT=0 oorevveeerereniceainniiceennes (27)

where I, identity matrix; 0, null vector; 1, Lag-
range multiplier.

Premultiplying Eq. (27) by W and using Eqgs. (24)
and (25) give

A=WQWT =g,

Equation (27) indicates that 2 and W are equal
to an eigenvalue and corresponding eigenvector
of a variance-covariance matrix, respectively.
Equation (28) means that an eigenvalue, 1, is
precisely the variance of areal precipitation as
expressed by Eq. (25), which is to be maximized.
A necessary and sufficient condition for the non-
trivial solution of Eq. (27) is given by

det (@—RT)=0 «rooerrrrennrairniniiaiiinns 29)

For a known matrix of @, a characteristic equa-
tion of Eq. (29) gives, in general, »# roots in 2.
According to the maximum variance criterion,
the desired root in the characteristic equation is
the largest one, which gives the maximum vari-
ance of the particular linear combination of pre-
cipitation depths at the gages. And the eigen-
vector corresponding to the largest eigenvalue
provides the solution for the parameter of w;.

However, there is some question of whether a
set of positive values with regard to w; can be
obtained. The following theorem concerning the
fundamental properties of a square matrix is
useful to answer the above question:

Theorem; “If a real symmetric matrix is non-

negative definite, an eigenvalue is positive and
the elements of the eigenvector corresponding to
the largest eigenvalue are all positive.”
As for a variance-covariance matrix of precipi-
tation values among the rain gages, all elements
of this matrix are positive in most cases. There-
fore, it follows from the above discussion that a
linear combination of point precipitation depths
for estimating areal precipitation is determined
in such a way that the desired maximum vari-
ance is equal to the largest root of the character-
istic equation and the gage weightings are as-
sociated with the eigenvector corresponding to
the largest eigenvalue of a variance-covariance
matrix.

Correlation coefficients between estimates of
areal precipitation and precipitation depths at
different gages are expressed by use of Eqs. (27)
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and (28) as follows:
A=[oy (P—mp)I[E-(X—X 1IN ---(30)
; VAmag WE™L coeeeiiiieniini e (31)

where A, row vector of correlation coefficients
between areal precipitation depths and precipita-
tion depths at the gages with # elements; E,
diagonal matrix of standard deviations of precipi-
tation at the gages with # rows and # columns;
Amax , largest eigenvalue of Eq. (29); E—!, inverse
matrix of E.

Correlation coefficients can be used to measure
the relative contributions of point precipitation
to the prediction of areal precipitation as a check
on the representativeness of various networks of
rain gages.

It is required to measure the degree of reli-
ability of estimates for areal precipitation, which
is related with the magnitude of the maximum
variance obtained. From a property with respect
to n eigenvalues of Eq. (29), the following ex-
pressions are derived:

K
DT AT 2L G2 ceeereereenein i (32)
=1 i=1
7
G = 3, G2 —Amax™= 2, G2—Gpt sreeeerenen (33)
i=1 i=1

n
Praz=100 Amax / % 0
£

where 1;, eigenvalues of Eg. (29); ¢.%, sum of
remaining variances except the maximum vari-
ance; Pmax, percentage contribution of the maxi-
mum variance obtained.

Equation (32) indicates that the sum of » eigen-
values is equal to the total variance of precipi-
tation depths at » gages. Thus, the remaining
variations unexplained by the maximum variance
are given by the quantity, ¢,* as shown in Eq.
(33). Equation (34) states that the percentage
contribution of the maximum variance to the
total variance can be used as a measure of the
reliability of estimates. In other words, the sum
of remaining variances is regarded as uncertainty
about the feature of areal variability of precipi-
tation. From Eq. (33), Eq. (21) is reduced to

Dz/N=07-2 ....................................... (35)

Equation (35) can be used as the standard error
of estimates for areal precipitation. In order to
clarify the foregoing ideas, consider the special
case of g.2=¢;3;=¢?% in a variance-covariance ma-
trix (4, 7=1,2, ---, #). As a solution for this case,
Eq. (29) gives Amax=n0?% and ;=0 (1=2,3, «--, n).
From Eq. (27), the elements of an eigenvector,
w; are all equal to 1/v#%. As a result, the

maximum variance is equal to the total variance.
Presumably such a situation would not arise in
hydrologic practice, but this example suggests
that the less areal variability of precipitation,
the larger is the percentage contribution of the
maximum variance and accordingly a degree of
the reliability of estimates is larger.

The degree of reliability of estimates for areal
precipitation by transformation of precipitation
depths at the rain gages depends largely on whe-
ther the selected gages represent sufficiently vari-
ations in precipitation distribution over a water-
shed. The derivation of a useful index is, there-
fore, of prime importance in determining the
adequacy of the network of rain gages. If the
weighting factors of w; to satisfy the required
conditions are derived, the weighted elements of
point precipitation depth are represented as fol-
lows:

Wik  Wiliz WiLig c - WITiN

Walgr  Wel2z  Wales * <+ Wekon
Y = Creereaaaas Cereeernriaenens

WnZn1 Wnlnz WnIns *** Wnlny

The areal precipitation depth for the particular
period is equal to the sum of elements in each
column of the above matrix. It is shown in the
analysis of variance that the linear model by Eq.
(6) corresponds to a partitioning of the total sum
of squares of deviations from the mean involved
in the weighted elements of Y into three parts,
two of which are ascribed to differences among
the gage means and to differences among the
period means, respectively, while the third meas-
ures the variations of the residuals. This parti-
tioning is represented in a two-way analysis of
variance as illustrated in Table 1.

Table 1 Analysis of Variance for Data from
n Gages and N Periods.

Degrees of
Sum of Squares Freedom
n N N
Total Se= 2 wi? X ®i2———mp? Nn—1
P=i Ry =11 ”
2 . N
Gages Sa=N _Zl (Wix‘i)z““;‘sz n—1
=
N
Periods Szv=‘1“ 2 ( % Mliaci.i)z‘ﬁmp2 N-1
#n f=1\i=1 n
Residual | Sy=S:~Sn—Sy (N—=D{n—1)

From this table, an index for measuring homo-
geneity of the selected gages in estimating mean
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depths of precipitation over a watershed is given®
by

“=1‘[(N—1f(rn—1)/ y ]

_n <1~M> ........................ (37

-1 nSyx

where « is an alpha coefficient.

An alpha coefficient can be used to examine the
adequacy of a network of rain gages. If require-
ments for mean depths of precipitation over a
watershed can be expressed in terms of the al-
lowable level of an alpha coefficient, network
density and configuration of rain gages can be
efficiently designed to meet these requirements by
this parameter.

A technique for estimating precipitation depth
over a single watershed is developed in the above
discussion. This theory can be extended to prac-
tical situations where mean depths of precipitation
have to be estimated for a larger watershed con-
sisting of a greater number of subwatersheds.
If precipitation depths for each subwatershed are
independently estimated, determination of the
parameters in a. restricted linear model leads
naturally to the equation for the solution of the
maximum variance and corresponding eigenvector
of a variance-covariance matrix of areal precipi-
tation depths among the subwatersheds. Interest
is now confined to different subwatersheds k and
m for which several quantities are presented.
Estimates of precipitation for each subwatershed
are given by

Pim WX oooooeervmsnnrreneeneesannannninenee (38)

where P;, row vector of estimates of precipita-
tion for subwatershed i with N elements; W;,
row vector of direction cosines at the »; gages
with #; elements; X;, matrix of observed data
at the gages within a subwatershed with #; rows
and N columns; #;, number of gages in sub-
watershed ¢; N, number of observations.

The covariance of areal precipitation depths be-
tween subwatersheds k and m is given by

Gim=[Pr—mil][Pn—mnllT N
=WiXeXEWIIN—WiXpXIWZL --(39)

where
Qom=[Xie— Xil] [Xpe— Xl T[N cooovveos (41)

owm, covariance of areal precipitation depths be-
tween subwatersheds k& and m; my, mean value
of areal precipitation depths is subwatershed k;
Xk, column vector of mean values in precipita-
tion at the gages in subwatershed % with

elements; Qwm, covariance matrix of observations
among gages in subwatersheds k& and m.

As shown in Eq. (39), the relevant information
from observed data among the gages can be used
to estimate precipitation depths for the combined
subwatersheds. Therefore, the removal and ad-
dition of the rain gages for estimates of areal
precipitation provide only minor changes in a
variance-covariance matrix of precipitation depths
at the gages. When the required sub-matrices
for the various networks of gages are arbitrarily
chosen from the entire matrix, areal precipitation
can be estimated and its reliability can be evalu-
ated for the chosen network. A correlation coef-
ficient of areal precipitation depths between the
subwatersheds is given by

akng'km/o'ko'm ................................. (42)

where agm, correlation coefficient of estimates of
areal precipitation between subwatersheds & and

m; ok, standard deviation of areal precipitation
depths in subwatershed k.

4. CASE STUDY

In order to test the validity of the model equa-
tion developed in the preceding section, the Ishi-
kari River Watershed in Hokkaido was chogen
for investigation. This watershed covers an area
of 12700 km2 Fig. 2 shows the location of the
selected watershed and twenty-nine rain gages
with the station numbers assigned. The station

T XAMIKAWA

3
4 ASARIKAWA
S NISHIKAGURA

11 NISBITAFFU
2 YAMABE
13 FURAND
14 ASHIBETSU
15 SUNAGAWA
B
17 TSUKIGATA
18 YUBARY

19 [WAMIZANA
20 KURISAWA

Pacific Ocean

Fig. 2 Location Map of the ISHIKARI RIVER
WATERSHED and the Selected Rain-
gage Stations.
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numbers in this figure correspond to those in the
subsequent results shown in several figures and
tables. Data were collected from the rain gages
of the Meteorological Observatory at Sapporo in
Hokkaido. The areal variability of precipitation
varies itself according to the time interval taken,
the variability on an annual basis being much
less than on a monthly or daily basis. Since the
study is mainly concerned with the provision of
natural water supplies in the water-resource de-
velopment planning, the time unit taken is the
month. The data of monthly total precipitation
for the period of 21 years from 1951 to 1972 were
used for the present study, as the network was
completely in operation. A water year is the
period from November to October, because pre-
cipitation occurs as a form of snow in winter
months in Hokkaido.

Taking into account the stochastic nature of
the precipitation event, the estimation of mean
areal precipitation will be affected by two factors:
(1) the number of rain gages. (2) the length
of available data. In estimating mean areal pre-
cipitation the question arises as to the required
density of rain gage networks or representative-
ness of the selected gages. It has been always
acknowledged that it is necessary to establish a
greater network density in mountainous areas for
the same accuracy of estimation of mean areal
precipitation than in flat ones. Mountains not
only affect the quantity and distribution of pre-
cipitation, but also the areal variability. Quan-
titative assessments of the effects of topography
and meteorology on the areal variability have
been very limited,!® because these effects can
not be revealed by a study of precipitation re-
cords alone. The establishment of too dense a
network will be avoided in view of the economics
of operating a network. A less dense network
of rain gages gives only rough information about
the actual precipitation falling on a watershed.
Thus, a decision as to the optimum density of a
network depends on scientific and practical con-
siderations. Another difficulty encountered in
setting up hydrologic investigations is the pro-
blem of whether the data for a long-term period
are available. When relating the gage weightings
to the estimation of mean areal precipitation, the
parameter stability must be taken into consider-
ation. A time series analysis indicates that the
predominant periodicity of a year is clearly dis-
cerned in a correlogram of monthly precipitation
values. This fact suggests that if the seasonal
variations of precipitation do not widely vary
from year to year, it is possible to get stable

values of the gage weighting even from a small
number of records. In the present study an ex-
amination is made concerning two cases which
meet the above-mentioned requirements.

As a check on the representativeness of various
networks of rain gages in calculating monthly
total precipitation over the Ishikari River Water-
shed, the total watershed area was divided into
four subwatersheds according to the natural
watershed areas. Table 2 shows the station
numbers in the entire network and a less dense
network within these four subwatersheds. Over
the total watershed area the entire network con-
sists of 29 gages, while 18 gages are selected in
the subnetwork. The subnetwork of 18 gages as
shown in Table 2 remained unchanged to com-
pute the mean depth of precipitation over the
Ishikari River Watershed in every month.

Table 2 Four Divisions of the ISHIKARI
RIVER WATERSHED and the
Selected Raingage Networks.

SheaNeT | RamE edwanc T ™ e | TRRE W nework
1 1,2,3,4,5,6, 7,8 9 2,4,6,8 9
11 10, 11, 12, 13, 14, 15, 16, 17 | 11, 13, 14, 15, 16
11 18, 19, 20, 21, 22, 23, 24,25 | 19, 20, 22, 23, 25
v 26, 27, 28, 29 27, 28, 29

The total sample size of 21 years gave positive
values for the direction cosine in the model equa-
tion in both cases of the entire networks and
subnetworks for these four subwatersheds in
every month, so that the equation parameters
could be transformed to yield the gage weight-
ings by use of Eq. (7). The sum of the gage
weighting multiplied by the precipitation depth
at each gage gives the mean depth of monthly
precipitation over each subwatershed. The mean
depth of monthly precipitation over the entire
Ishikari River Watershed was calculated by a
linear combination of mean depths of precipitation
over four subwatersheds, subject to some restric-
tions to be satisfied.

For subwatershed I a few examples of monthly
variations in the statistical quantities are pre-
sented. Figs. 3 and 4 show the percentage con-
tribution of the maximum variance and an alpha
coefficient in the entire network of 9 gages and
two subnetworks of 5 gages, respectively. In
these figures, subnetwork A consists of stations
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(1,4,6,7,9), while subnetwork B consists of the
stations indicated in Table 2. The maximum
variance accounts for more than 70% of the total
variance for the entire network except in Novem-
ber and December. As stated before, the magni-
tude of the maximum variance depends on the
elements of a variance-covariance matrix. The
less areal variability of precipitation, the larger
is the percentage contribution of the maximum
variance. A visual inspection of correlation coef-
ficients matrices among the rain gages shows that
off-diagonal elements have small values in winter
months, compared with larger values in summer
months, This suggests that there are consider-
able local variations within a watershed due to
the nature of topography during the winter. In

contrast, meteorologic factors predominate over
topographic features during the summer, produc-
ing uniform precipitation over an area. The
small value of the percentage contribution in
November and December is attributed to the
large areal variability of precipitation. A greater
number of rain gages are required to give esti-
mates of mean areal precipitation with a high
reliability in winter months. Alpha coefficients
are small during the winter, while they have
larger values during the summer. Fig. 4 also
shows that the magnitudes of an alpha coefficient
are largely affected by the selected rain gages.
Careful consideration has to be given to the
selection of gages for estimating areal precipi-
tation with a smaller number of the gages in
winter months. Fig. 5 gives correlation coef-
ficients between estimates of mean areal precipi-
tation and point precipitation depths for the
entire network of 9 gages in subwatershed I. If
the isohyets cover a fairly large area, homogene-
ous situations would occur in most cases and
accordingly pairs of gages would have about the
same magnitude in the correlation coefficients.
Fig. 5 makes it clear that there are large differ-
ences in the monthly variations of correlation
coefficients. Correlation coefficients are distti-
buted in a wide range in December, resulting in
the percentage contribution and an alpha coef-
ficient having small values in Fig. 3 and Fig. 4,
respectively. The marked decrease of an alpha
coefficient for subnetwork A in December is
mainly due to the large difference of correlation
coefficients between gages 1 and 7. Correlation
coefficients are large and become rather uniform

Table 3 Correlation Coefficient of Mean
Areal Precipitation Depths between
Four Subwatersheds.

Entire Network of Subnetwork of
29 Raingages 18 Raingages
November November
1.00 .876 .580 .715 1.00 .855 .606 .729 I
1 1.00 1.00
1.00 .695 .792 1.00 .705 .769 1I
I .762 1.00 771 1.00 -
1.00 .863 1.00 .837 1II
I .512 .770 1.00 .560 .617 1.00
1.00 1.00 1V
IV 506 .595 .648 1.00 .524 .513 .665 1.00
February February
May May
1.00 .865 .365 .583 1.00 .858 .529 .572 I
1 1.00 1.00
1.00 .579 .759 1.00 .608 .613 II
I .876 1.00 .875 1.00
N 1.00 .847 1.00 .917 IiI
11T .762 .928 1.00 744 .881 1.00
1.00 1.00 IV
IV .800 .948 .930 1.00 812 .942 .906 1.00
August August
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Table 4 Changes of Subwatershed Weighting due to Different Density of Raingage Networks
in the Entire ISHIKARI RIVER WATERSHED.

Month February May August
Subwatershed No. | Entire Network| Subnetwork |Entire Network| Subnetwork |Entire Network Subnet‘;vork
1 0.136 0.120 0.184 0.216 0.266 0.268
11 6.121 0.105 0.209 0.225 0.262 0.252
11 0.189 0.173 0.353 0.271 0.249 0.250
v 0.555 0.602 0.254 0.288 0.223 0.231

in summer months. Correlation coefficients at
stations 1 and 7 are small in September, causing
an alpha coefficient to become small for subnet-
work A in Fig. 4. Correlation coefficients between
estimates .of mean areal precipitation and point
precipitation depths can be used to check the
representativeness of rain gage networks. Judg-
ing from Figs. 3 and 4; subnetwork B is con-
sidered more representative of the network of
the gages, compared with subnetwork A in sub-
watershed I.

Table 3 shows a few examples of correlation
coefficients of estimates for mean areal precipi-
tation among four subwatersheds in the entire
network and a subnetwork as indicated in Table
2. There are no significant differences in the
correlation coefficients between the entire network
and the subnetwork. The mean depths of precipi-
tation over four subwatersheds were combined to
yield the mean depth of precipitation over the
entire Ishikari River Watershed. Table 4 gives
the weighting factors for each subwatershed to
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Fig. 5 Correlation Coefficient between Mean
Watershed Precipitation and Point
Precipitation Depths in the Water-
shed I.

calculate the mean depth of precipitation over
the total area in the entire network and the sub-
network. Due to large areal variabilities of pre-
cipitation caused by topographic features within
each subwatershed, there are slight differences
of the weighting factor between the entire net-
work and the subnetwork for four subwatersheds
in winter months. On the other hand, during
the summer, no significant differences of the
weighting factor would be recognized between
two networks due to the predominance of meteoro-
logic factors in the production of rainfall. Fig. 6
shows the mean and the standard deviation of
estimates of monthly precipitation over the entire
Ishikari River Watershed in the entire network
of 29 gages and the subnetwork of 18 gages.
Since point precipitation depths are smoothed

O 3 Mean
& ; Standard Deviation
—— ; Entire Network of
29 Raingages

-+ 3 Subnetwork of
18 Raingages
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Fig. 6 Changes of Mean and Standard Devi-
ation due to Different Density of
Raingage Networks in the Entire
ISHIKARI RIVER WATERSHED.
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out with the watershed area being larger, these
statistical quantities are not largely affected by
the selected rain gages. Fig. 7 gives the absolute
difference of estimates between the entire network
and subnetwork over the total area for the period
of 21 years. The maximum difference of about
65 mm is discerned in September. The larger
differences of the statistical quantities in Fig. 6
and mean depths in Fig. 7 in September may be
due to the fact that there were considerable dif-
ferences in several quantities between the entire
network of 8 gages and the subnetwork of 5 gages
in subwatershed III. Table 5 shows the difference
of the statistical quantities between two networks
for subwatershed III in September. As a result,
these large differences are reflected in Figs. 6 and
7. It is noted in Table 5, however, that the less
dense network gives larger values than the entire

60 | Difference between Entire Network
r of 29 Gages and Subnetwork of 18
. Gages
=2

50

40

30

20

0 T LN R St SO S M S S |

- T T
1952 57 62

67 Year — 2

Fig. 7 Absolute Difference of Estimates due
to Different Density of Raingage Net-
works in the Entire ISHIKARI RIVER
WATERSHED.

Table 5 Changes of Statistical Quantities due
to Different Density of Raingage
Networks in the Watershed IIl.

(September)
Number of Gages
8 Gages 5 Gages
Parameter
amax/ ) RERCO) 7832 | 93.54
=

Alpha Coefficient 0.777 0.959
Mean of Areal Pre. 191.5 154.8
Standard Deviation of Areal Pre. 101.6 84.0

network in terms of the percentage contribution
and an alpha coefficient and accordingly the sub-
network will give more accurate results in esti-
mating mean depths of monthly precipitation
over subwatershed III in September.

From the above results on the representative-
ness of the network for estimation of mean areal
precipitation, the entire network does not neces-
sarily provide accurate results even within a small
watershed area, because the areal variability of
precipitation is largely affected by the meteoro-
logic and topographic characteristics. If the re-
quirements for estimating mean areal precipita-
tion can be expressed in terms of percentage
contributions and alpha coefficients, it is desirable
to arrange the network density so as to make
these quantities larger. If a large number of rain
gages are available, they can be stratified into
homogeneous groups in which the variation
among the gages within a group is much less
than that among the groups by examining the
magnitudes of the parameters presented in this
study.
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A further check of a sample size on the reli-
ability of estimates for monthly total precipitation
over a watershed was made through split-record
tests. The total sample size of 21 years was
divided into two segments, that is, the first-half
records of 10 years and the second-half records
of 11 years. A typical split-record comparison of
the coefficient of variation in monthly precipi-
tation at two gages is illustrated in Fig. 8. Nei-
ther the means nor variances of these sets of
records differ significantly at the 5% levels, and
the records could be homogeneous without seri-
ously affecting the analysis. This also corresponds
to the fact that a correlogram of monthly pre-
cipitation values produces the predominant perio-
dicity of a year. Although the seasonal variation
of precipitation at each gage did not widely vary
from year to year, the large areal variability was
revealed when the lengths of data were varied.
This led to practical difficulties for the evaluation
of model parameters, because a set of positive
direction cosines could not be obtained during
the winter in the entire network for each sub-
watershed as shown in Table 2. Such cases are:
(1) for subwatershed I, the first half of Decem-
ber. (2) for subwatershed II, the first half of
December and January. (3) for subwatershed III,
the second half of December and two halves of
January. (4) for subwatershed IV, the second
half of November and the first half of January.
As a result, approximating mean areal precipi-
tation is of limited success and applicability in
winter months. A few examples of the results
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Fig. 9 Changes of the Maximum Eigenvalue
due to Varying Length of Records in
the Watershed II.

for subwatershed II are shown in Figs. 9~12.
Figs. 9 and 10 give monthly variations of the
percentage contribution and an alpha coefficient
with the lengths of data varied, respectively. In
these figures, the quantities are omitted in De-
cember and January, because a set of positive
gage weightings was unavailable for the first-half
records of 10 years in these months. Both the
percentage contribution and an alpha coefficient
have large values in summer months for three
cases. This suggests that the areal variability of
rainfall would not be considerably affected by the
lengths of available data during the summer.
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Therefore, it is possible to estimate mean areal
rainfall with a high precision, even when a large
number of records are unavailable. Fig. 11 gives
the changes of the gage weightings. In February,
there are considerable differences in gage weight-
ings between the total and the first-half records
in stations (12, 16, 17), which may result in a
decrease of an alpha coefficient in Fig. 10. In
May, the larger differences in stations (11, 12, 15)
between the total and the second-ealf records
may cause the quantities to have small values in
Figs. 9 and 10. In July, no significant differences
are revealed between the three cases of a split-
record test. Fig. 12 shows absolute differences
of estimates between the total record and two
halves of records. The larger differences of esti-
mates are discerned between the total and the
first-half records in February, and the second-
half records in May. These results correspond
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Fig. 12 Absolute Difference of Estimates due

to Varying Length of Records in the
Watershed II.
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Fig. 13 Absolute Difference of Estimates be-
tween Proposed Method and Thies-
sen Method in the Watershed 1.

to the differences of the statistical quantities in
Figs. 9 and 10.

As a final check of the validity of the model
equation, the absolute difference of estimates be-
tween the proposed and the Thiessen methods
is presented in Fig. 13. The difference of estimates
between two models is larger in winter months
than in summer months corresponding to the
magnitude of the percentage contribution and an
alpha coefficient as shown in Figs. 3 and 4. The
maximum variance can be used as a measure of
reliability of estimates given by the Thiessen
method, as the difference of estimates between
two methods is not much larger during the
summer.

The numerical analysis of this study was car-
ried on the FACOM 230-60 system at the Com-
puting center of Hokkaido University.

5. CONCLUSIONS

(1) The mathematical features of traditional
techniques for estimating mean areal precipitation
do not contain a framework that is sufficiently
flexible to respond to all needs with regard to the
evaluation of the reliability of estimates and a
current network of rain gages. The present study
assumes that the mean areal precipitation can be
represented by a linear combipation of precipi-
tation depths at the rain gages, and the size of
the effective area controlled by the rain gage will
depend on the choice of time unit and the feature
of space variations of precipitation. In order to
elaborate the estimating technique so as to yield
better estimates of mean areal precipitation, the
cross correlations among the rain gages are used
to determine weighting factors at the rain gages.
(2) An approach to the estimation of mean
areal precipitation and its reliability through the
principal axis method demonstrates that only an
eigenvector corresponding to the largest eigen-
value has to be selected in a variance-covariance
matrix of precipitation depths at the rain gages.
Modification of this solution gives the effective
area expressed as a percentage of the whole area
of a watershed. The advantage of the present
study lies in the fact that if the rain gages are
added or removed from service, only some minor
changes are required in the data preparation.

(3) The proposed technique not only allows a
measure of reliability to be evaluated but also
permits the design of networks to give better
estimates within specified limits. Two parameters
are required to express the reliability of esti-
mates: percentage contribution of the maximum
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variance; a measure of the degree of reliability,
and alpha coefficient; a measure of representa-
tiveness of various networks.

(4) A magnitude of the largest eigenvalue de-
pends on the elements of a variance-covariance
matrix. The less the areal variability of precipi-
tation, the larger is the percentage contribution
of the maximum variance to the total variance.
Differences of estimates between the proposed
and Thiessen models correspond to the magnitude
of the maximum variance, that is, differences
are small during the summer season, while they
are greater in the winter months. If the differ-
ence of estimates between two methods is regard-
ed small, the maximum variance can be used as
a measure of reliability of estimates given by the
Thiessen method.
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