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ANALYTICAL SOLUTION OF HYDRODYNAMIC PRESSURE
WITH REFLECTIVE CONDITION AT RESERVOIR
BOTTOM DURING EARTHQUAKES

By Tomoyasu NAkAGAwA* and Tadashi HATANOY*

1. INTRODUCTION

For the study of fundamental characteristics of
hydrodynamic pressure due to earthquakes, one
of the authors has once presented a solution of
hydrodynamic pressure generated by harmonic
motion of an upright rigid wall at one end of
reservoir?, The governing equation employed
there was the two-dimensional wave equation
(1.1) for the wvelocity potential f subject to
boundary condition (1.2).
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Here, x denotes the horizontal direction upstream
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along the free surface of reservoir at rest, and ¥
the vertical direction upward along the wall at
rest with the depth % of water. The wall is
assumed to be rigid and in harmonic motion of

%g—sin wt. The constants ke, kw’, jo, fm,» and ju/

are determined as follows: ko is the unique real
number satisfying ko tanh koh=w?g, ko>0; kn'
{(m=1, 2, -.-) are those real numbers satisfying
kw' tan kn'h=—w?lg, 0<lki/ <k <ks<.++; 7 is
the largest integer of indices m such that ¢2> /2,
jot=c+ko?; jm*=c*—kw'*; and jm*=km'—c?,
where = Wyw?/gK in which W, is the ugit
weight of water and K the bulk modulus of
water.

The solution was claimed to be an improve-
ment of the result by Westergaard® in some re-
spects, who first pointed out the existence of
hydrodynamic pressure during earthquakes. How-
ever, it seemed to be not enough satisfactory
because of a strong resonance inherent to it
caused by the elasticity of water. Later, one of
the authors observed that in vibration experi-
ments of real dams and in laboratory experiments
the pressure at resonance frequencies did not
rise significantly®. Furthermore, these experi-
ments even revealed no resonance at all in those
cases when the reservoir bottom was covered by
pressure-absorbing materials such as fine sand.
These results suggested that the boundary con-
dition (i) of (1.2) was not adequate since it caused
a complete reflection of hydrodynamic pressure
at the reservoir bottom.

In order to overcome this difficulty, the follow-
ing condition taken from the theory of acoustics
was proposed to replace (i) of (1.2):

Wo ﬂ =%COBQI‘ ......... 1.9)
g Ot |ly=—n @ Y |y=n
in which the parameter 8=( Wici/g)}( Woco/g) is the
ratio of acoustic impedances of the bottom ma-
terial to water where W, and ¢; are the unit
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weight and the sound velocity of the bottom
material, respectively, and ¢, the sound velocity
of water.? From the point of view of (1.4), the
condition (i) of (1.2) is a special case of it in that
B is set to infinity. The parameter 8 assumes
around 5.0 if the bottom material is rock, or
effectively 1.0 if the bottom is covered by sedi-
mental materials such as sand or silt; in the
latter case the sound pressure passes through the
sedimental layer and no reflection occurs*.

By the above investigation, we concluded that
the hydrodynamic pressure would be best ap-
proximated by the wave equation subject to the
following boundary conditions:

i) Degree of reflection at the reservoir bottom
must be determined in terms of acoustic
impedances.

ii) At the contact of water and wall surface,
the normal component of velocity of water
particle to the wall surface is set equal to
the velocity of wall in the same direction.

ili) Water surface is free.

We have already incorporated the above
boundary conditions in a proposed numerical
method for the coupled vibration of arch dam
with reservoir water®>. The numerical result has
shown that these conditions were reasonable.
However, the analytic solution of hydrodynamic
pressure in the case of incomplete reflection would
be still necessary for the purpose of theoretical
study of its phenomenon. In the following, we
shall present the solution, and give discussion
on it.

2. ANALYTICAL SOLUTION OF
HYDRODYNAMIC PRESSURE

Suppose that
Sz, y, H)=e"*X(§) Y()

satisfies (1.1). By the separation of variables with
the separation parameter 12,

=z/h
r§=<zu/+h)/n

X+ E+2)X(E)=0, £>0} ...... 2.2)
where 2= Wywh2/gK

and
Y”()y)—XZY(v)=0, 0y ererennnnennnas (2.3)

are obtained. The parameter 12 is required to

* Since no reflection occurs at the reservoir bot-
tom in this case, it was supposed in 3) that
the pressure level on the wall surface could be
given by solving the Laplace equation which is
derived by letting ¢, (the sound velocity of
water) to be infinity.
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due to the fact that (2.1) with Y(5)=Cietr4-Cee,
the general solution to (2.3), is subject to (iii) of
(1.2), and (1.4). It will be shown in Section 3
that (2.4) has a root 2=0 and infinite pairs of
complex roots +=2 in the second and the fourth
quadrants of the complex plane. Let 2q, 41, 22,
.-+ denote those roots which lie in the second
quadrant in ascending order of their imaginary

parts. These are the set of eigenvalues for our
problem.
The eigenfunctions belonging to im are
Yaulp)=cosh z,,m+-;"— Sinh Agy -veveeee- (2.5)
m

and X(€) corresponding to Yu{y) are given as
Xmf€)==exp (—pmE) , pm= Vi
(Re fim>>0)-ceveormemmemmmecncnnens (2.6)
(The term exp(+umé) must be discarded from
Xm{€) since otherwise Xm(£) is not bounded as
&—00.)

Since fm=exp ({0f)Xm(8)Yuly) with &=x/h and
n=(y+h)/h is a solution to (1.1), so is the linear
combination of {fw) with arbitrary coefficients
{am} such that

f(x, y, t)y=etet 3, ame‘#m5<cosh Ay
m=90

+-L sinh x,,m> e (20
Am 7=Cy+Rd/h
Suppose that (2.7) further satisfy
ﬂ ag twb
37 o™ @ ¢ (2.8)

with an appropriate choice of {@m}. Then, the
real part of it is what is sought for: the velocity
potential of our problem. Substitution of (2.7)
for the left-hand side of (2.8) results in

© h
mzzoamﬂmym(nhi%, 0<p<l +oenr(2.9)

provided that the termwise differentiation is per-
1

missible. By virtue of the fact that Soy’”(”) Yaln)dy

=0 if m=*n, an are determined as

1
Yo(n)dy
= agh S‘i ............ (2.10)
,umgo{ym(ﬂ)}zdﬂ

The hydrodynamic pressure is given as the time
derivative of the velocity potential multiplied by
Whalg. Hence it is represented formally as
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ogp=—aWoh x Im{ei‘”‘ S_.‘; a.m,'e-#m5<cosh A

m=0
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where am'= (; (m=1,2,..-)
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3. DISTRIBUTION OF EIGENVALUES

2n, AND THE CONVERGENCE OF
THE EXPANSION SERIES

Eigenvalues Am are zero-points of the tran-
scendental integral function in the left-hand side
of (2.4). It is known in the theory of tran-
scendental integral function that such functions
have generally infinite zero-points in the complex
plane, and that the point oo is the only accumu-
lating point of them. Clearly, A=0 is a root of
(2.4). But it is discarded since the coefficients a
and & in the corresponding general solution Y{7)
=an+b vanish due to the boundary condition.
Hence only roots 1#0 could become the eigen-
values. Suppose 2=y satisfies (2.4), then 1=—21n
also satisfies (2.4). Therefore, eigenvalues are
located symmetrically with respect to the origin
A=0in the A-plane. Let Am==um+ivm. The follow-
ing identity is easily shown.

1
q

2 —_— .
SolYm(n)l dy= for all m

Since the left-hand side is nonnegative, #nmvwm must
be negative, which implies that all of As are
located in the second and the fourth quadrants.
Clearly Yum(y) is an even function in Am. Con-
sequently those roots which lie in the second
quadrant are sufficient to do with. Furthermore,
it may be shown that 1, satisfy the following
properties. These properties are useful in de-
termining numerical values of them.

i) Am are simple roots if s>g+2.

il) Domain Dp={2|0<ImAi<(m—1/2)7i} in the -
plane co’ntaihs exactly m eigenvalues Ao, +--,
Am—1, if m is sufficiently large.

iii) lim #mvm=—q¢, and lim vn tan vp=—-s.

m—0 M~~>00
iv) Zo=—s if s>q.

Next, let us study the convergence of the ex-
pansion series of (2.7). The functions Yu(y) are
eigenfunctions of the ordinary differential quation
(2.3) subject to homogeneous boundary conditions
with complex coefficients. (In our particular case,
one of the coefficients is pure imaginary and the
others are real.)

Suppose that a function w(y) is given where
w(y) is integrable on 0<»<1. Define the Fourier
expansion series of it with Yu(y) by

w(ﬂ)zmgocmym(ﬂ) , 0<n<1

1
| 100) Yot
where cp=-"T—""—"— (m=0,1,2,+-.)
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On the other hand, it is known that the Fourier
cosine series of the same function is

win)=~ f o’ cosmmy, 0<5n<1
m=0

1
where ¢’= &Ow(rj)dr; 3.2)

1
cm’=28 w(y) cos maydy ,
0

(m:l’ 2, ...)

Let Su(y) denote the sum of the first # terms
in the right-hand side of (3.1), and let Sx'(y) de-
note the sum of the first # terms in the right-
hand side of (3.2). Then the following holds®.

lim {Sn(7)—Sa’(y)} =0 uniformly on 0<5<1.
N—r00

In our problem (2.9), w(y) is essentially a constant
one (1). Clearly the coefficients of its Fourier
cosine series are c¢’=1, ¢&/=¢’=-..=0. Con-
sequently, the identity (2.9) with coefficients anm
given by (2.10) is valid in the sense that the left-
hand side is uniformly convergent to the right-
hand side on the closed interval 0<»<1.

Since tge series given by (2.9) has this property,
exp (iwt) Zoa”"‘“"‘ exp (—pmé) V() has also the
same prg;—)erty. Therefore, the termwise integra-
tion with respect to & is possible, and the re-
sultant series is again uniformly convergent on
0<7»<1. This implies that the uniform con-
vergence of the right-hand side of (2.7) on 0<y
<1.

The rate of convergence may be estimated by
the decreasing order of am as m—oo. A simple
calculation shows that am=0m%). This means
that if the series is truncated by the N-th term,
the discrepancy of the original series and the
truncated one is of O(N—2). N=10~15 seems to
be sufficient for practical purposes; in Section 5,
N=20 will be taken.

4. RELATION TO HATANO’S SOLUTION

By letting 8—oo, the boundary condition (1.4)
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Fig. 1 Distribution of gm (m=1, 2, --.) in the case of f=co.
(The gravity wave term uo=~ vh/g 2ri/ T is not shown in this figure.)

is reduced to (i) of (1.2). Therefore, it may be
supposed that as S-oco ¢4, which is the solution
to (1.1) under boundary condition (ii) and (iii) of
(1.2), and (1.4), coincides with ¢ in (1.3). This
is found to be true by looking at the eigenvalues
Am in the complex plane as functions of 8 as in
the following.

When § tends to infinity, the characteristic
equation (2.4) is reduced to

Atanh i=s
Equation (4.1) has a pair of real roots ko, and
infinite pairs of pure imaginary roots -+ikn's (m
=1, 2, ---). By taking the sign into considera-
tion, eigenvalues are ly=—koh, and An=tikw'h
(m=1, 2, +++). From this fact, the first term in
¢ coincides with the first term in o, and the
succeeding terms in g5 and ¢ coincide each other
when f=o0. By the continuity in 8, it is easily
seen that for any finite value of 8 each term of
o corresponds to each term of o.

Next, let us investigate the resonance inherent
to (1.3) from the viewpoint of location of pm
= V=027 in the p-plane. Let the first term
o be set aside since it represents the gravity
wave. When =00, In (m=1, 2, ---) are pure
imaginary. Hence, pm are either real or pure
imaginary. In particular, if the frequency F=w/
2x is sufficiently small, all g, lie on the real axis
as shown in Fig. 1(a). When the frequency in-
creases, pum move toward the origin along the
real axis. The frequency at which g reaches
the origin (i.e., 1/ui=oc0) is what is called the

first resonance frequency. (See, TFig. 1(b).)
Beyond this frequency, g is transferred to the
imaginary axis. (See, Fig. 1(c).) Gradually g
moves on it, and pg. approaches the origin
Generally, the frequency at which g, reaches the
origin is the 7-th resonance frequency, and around
this frequency g is transferred from the real
axis to the imaginary axis. The formula ¢ of
(1.3) represents the case where p, pgo, +++, pr are
on the imaginary axis, and py+1, fre2, *++ are on
the real axis.

Now, let us study the case when § is finite.
In this case, pm (m=1, 2, -..) are always located
strictly inside the first quadrant of the complex
plane, but never reach the origin. Therefore, g
contains no sharp resonance in the sense of 1/um
=oo in contrast to 6=0p-,.. However, it is ex-
pected that around those frequencies at which
each of um passes by the vicinity of the origina

® (F = 1.0Hz
© LF = 1/0.278Hz

imaginary axis X {F= 5.0Hz

o B #e s o
» XOm XO
g 271 * 3 208 ar real axis
Fig. 2 Distribution of pm (m=1, 2, +-:) in

the case of 8=5.0.
(The gravity wave term = vhjg
2z T is not shown in this figure.)
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Fig. 3(a)

Computed hydrodynamic pressure oz on the wall surface in
the case of §=1, ~A=100m.

Values shown are ¢g/da Wik at the time point when the wall
reaches the most downstream position.

The vibration periods are:

T=1.0, 0.5, 0.278, 0.2, 0.1, 0.07, and 0.05 seconds.

weak resonance could appear. Fig. 2 shows the
train of um which change the position on the
complex plane according to increasing frequency
in the case of 8=5.

5. DISCUSSION BY NUMERICAL
VALUES

In this section, we investigate the formula o

s}

T=0 L]
.00

~h/2

h=100

pe

-h

0.2
Fig. 83(b) Computed hydrodynamic pressure
o on the wall surface in the case
of =1, h=100m.
Values shown are gz/4a Woh at the
time point when the wall reaches
the neutral position.
The vibration periods are:
T=1.0, 0.5, 0.278, 0.2, 0.1, 0.07,
and 0.05 seconds.

of (2.11) numerically. Suppose that the rigid
wall has a height of =100 m. Fig. 3 shows the
distribution of g5 on the wall surface in the case
of =1, at two time points when the wall reaches
the most downstream position (a); and then the
neutral position (b). Fig. 4 is the case of f=5.

The curves given in Fig. 5 show the absolute
maximum of o¢p over the wall surface and over
one entire vibration period T, plotted as a func-
tion of T.

From these figures it turns out that if the
vibration period is suitably larger than 77;=0.278
sec (7T, is the period equivalent to the first
resonance frequency, or the so-called cut-off
frequency, associated with (1.3)), both the magni-
tude and the vertical distribution of ¢z with finite
B are by no means different from those of 6=0 =,
or even from the solution of the Laplace equation
subject to (1.2). At the first resonance period 73,
|o] becomes infinitely large. However, |op=s] at
the same period is only twice as large as |opos|
at longer vibration period. This result agrees
with the experiments made by one of the
authors®. Further, the numerical computation
indicates that the maximal pressure appears after
the wall passes by the most downstream position
by approximately 37/10 in terms of phase angle.
This amount of phase difference also agrees with
the above experiments. In the case of =5, the
reflection ratio is 4/6, hence the existence of the
phase difference may be interpreted as what is
one of inherent nature of a damping oscillation.
The second resonance peak is much smaller than
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Fig. 4(a) Computed hydrodynamic pressure ¢ on the wall surface in the case
of =5, ~=100m.
Values shown are ¢/4a Wok at the time point when the wall reaches
the most downstream position.
The vibration periods are:
T=1.0, 0.5, 0.278, 0.2, 0.1, 0.07, and 0.05 seconds.
0
Fig. 4(b) Computed hydrodynamic
pressure ¢ on the wall
surface in the case of 8=5,
® /=100 m.
‘ 9 I Values shown are ap/
W 4aWsh at the time point
when the wall reaches the
neutral position.
o/ 2 s The vibration periods are:
£=s. 1y 4 & o b= 100™ T=1.0, 0.5, 0.278, 0.2,
A Ly = 0.1, 0.07, and 0.05
= seconds.
03 0.2 0.1 "
: os the first one, and the pressure is diminishing as
h the vibration period tends to zero.
/\ o3 In the solution (1.3), the non-decaying plane
waves represented by the second term } dominate
ge5 the entire phenomenon except at regarxlance fre-
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Fig. 5 Maximal pressure on the wall surface
as a function of vibration period T.
Values shown are the maximum of
|ogl/Aa Wohk over 0<¢t<T and —h<y
<0 at =0, in the cases of =1 and
5, k=100 m.

quencies. This implies that the vibration energy
distributes over a wider area of reservoir at
higher frequencies, which results in a decreasing
pressure on the wall surface as the frequency
rises. A similar interpretation may be applied to
(2.11), this time for all vibration periods includ-
ing resonance points as well. In the case of
g1, the reflection vanishes at the reservoir
bottom. Hence it is a natural consequence that
ds-1 has no resonance peaks. Excluding the
resonance peaks of ops, 0 and oz.s have
similar asymptotic characteristics with respect to
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vibration period 7, that is, both approach the
solution of the Laplace equation when 7 is larger
than 73, and both vanish as 7—0.

To summarize the above discussions, the pro-
posed analytical solution explains in a greater
detail those fundamental characteristics of hydro-
dynamic pressure due to earthquakes which are
observed in experiments. The numerical method
for the seismic analysis of arch dam coupled with
reservoir water, which has been proposed by the
authors, may also be justified through this solution.
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