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FINITE ELEMENT ANALYSIS OF INTERFACE PROBLEM
IN GROUNDWATER FLOW

By Iichiro Kono*

ABSTRACT

This paper describes the application of finite
element method to the analysis of the interface
problem in coastal groundwater flow.

Firstly are introduced the principle of finite
element method in the analysis of groundwater
flow and its application to the two-dimensional
interface problem in steady groundwater flow,
especially on the shape of interface and the
position of seepage-out point.

Secondly are shown three exambples of the finite
element analysis. One of them is an interface
problem in coastal groundwater flow without
drain, then the numerical solution is compared
with the theoretical one for the purpose of con-
firming the accuracy of the numerical method.
The second one is the problem with a sink or a
source, which is well-known as an upconing
phenomenon. The last one is the intrusion of
salt water into a coastal unconfined aquifer.

1. INTRODUCTION

One of the well-known interface problems ap-
pears concerning the exploitation of petroleum
which is naturally stored on groundwater, and
the other is known as the intrusion of salt water
into a coastal aquifer.

The principles of the above phenomena are
quite the same, which belong to the problem of
the equilibrium between two liquids which have
different densities and different viscosities. The
free surface and the seepage surface of uncon-
fined groundwater can be dealt with similarly
because in that flow one liquid is groundwater
and the other is air, namely it being the special
case of the interface problem.

Hitherto the interface problems having been
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studied mainly with the complex variable theory,
i.e. the method by use of the hodograph and
conformal mapping, it is sometimes difficult to
apply these theoretical formulae to the practical
problems which have usually complicated bound-
ary conditions.

On the other hand, the numerical methods, as
finite element method in this paper, overcome
the above demerit and are more powerful prac-
tically.

In this paper are described on the interface
between salt- and fresh water in coastal ground-
water, the free surface and seepage surface of
unconfined groundwater. The practical problem
of the intrusion of salt water into fresh ground-
water is more complicated than the other inter-
face problems because it includes the problem of
diffusion of salt in the groundwater, namely
should be considered the transition zone where
the concentration of salt is variable strictly. But
the description in this paper assumes, as usually
done, that both the zones are separated abruptly
at the interface without the transition zone. The
above assumption does not make the generality
of the problem missed.

2. CHARACTERISTICS OF INTERFACE

The interface between salt- and fresh water in
coastal groundwater is considered (see Fig. 1).

The total head ¢ of groundwater is expressed
as following,

Fresh water
reservoir [ -

Fig. 1 Domain and boundaries of interface
flow.



110 I. KoNo

P
¢=z+_7'— ....................................... (1)

where z is the height above the reference datum,
P is the water pressure and y is the specific
weight.

Provided that the subscriptions f and s mean
fresh- and salt groundwater respectively, one ob-
tains the following equation (2),

§0f=2f+'?’ : in fresh groundwater
I
Ps= Zs —I—% : in salt water

s

On the interface (EF in Fig. 1) both the pres-
sures of fresh- and salt groundwater have to be
equal, then the equation (3) is formed,

PrmPgecereesssinninsiiniiii. (3)
Substituting Eq. (2) into Eq. (3) gives,
Is Ir—7s
“lomeo{)

= 1s
or U seseeeens ( 4 )

ze= Tsos—1rer )

Ts—7r

where z is the height of the interface above the
reference datum.

In steady state it can be considered that only
the fresh groundwater flows and the salt one is
at rest, i.e. ¢s is constant in the domain of salt
water. Then Eq. (4) is rewritten as the follow-
ing form (5) with constant numbers Ci, G,

or=Ciz+C
[ T 5
C= Tl g T (5)
rr 77

Eq. (5) means that the total head of fresh ground-
water at the interface is expressed as a linear
function of z, i.e. of the elevation head.

The free surface of unconfined groundwater
can be considered now by reference of Eq. (5).
The free surface corresponds to the interface,
then 7; must be interpreted to be the specific
weight of air because the free surface is the
interface between groundwater and air instead
of the salt water in Eq. (5).

Then putting 7s=0 in Eq. (5) gives

QFTRZ crerreererestieti e (6)
where the specific weight of air is so small that
it can be neglected. Eq. (6) is the well-known
equation on the free surface of unconfined ground-
water.

From the above consideration it is concluded
that the groundwater flow with free surface is

a special case of the interface flow.

3. FINITE ELEMENT METHOD IN
GROUNDWATER FLOW PROBLEM

(1) Finite Element Method

Finite element method is a kind of matrix
method which has been used mainly in structural
analysis, according to the variational principle.
This numerical method becomes to be used not
only in the original field of structural analysis
but for the problems of soil mechanics and see-
page?’, so on, because it has a lot of usefulness
in its application.

One of the most beneficial advantages is that
one can choose arbitrary shapes of triangles or
of quadrangles in the procedure of dividing the
domain into a large number of elements, then
it is possible to make the boundary condition
more satisfactory than the other numerical
method, namely the finite difference method.
The above advantage of the method makes it
more powerful in the analysis of practical prob-
lems which have usually complicated boundary
conditions.

(2) Analytical Method According to
Variational Principle
The two-dimensional domain D of groundwater
flow and the boundary S are shown in Fig. 2,
where the boundary consists of S, and S;.

Fig. 2 Domain and boundaries.

(1) On the boundary S;, the total head f is
prescribed,

§0=f : on Sl ................................. ( 7 )
(2) On S, the specific discharge » is prescribed,
0
k%:v + on Sz ........................... ( 8)

where d/an is the derivative perpendicular to the
boundary, the outward direction being taken as
positive.

In the interior of the domain D, the well-known
quasi-harmonic equation (9) is formed,
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90, 9\ 3 §£> 20 ceeeeen
ax<’“’ax>+ay<k”ay +4=0 (9)

where ¢ is the amount of water which is stored
in unit area per unit time.
Consider the functions U, V, W defined as fol-

lowing,
1 99\t g (99N
=3 SSD{"’”(M) +k”<ay> 2‘”’}‘”“
............................. (10)
W:S vspds .................................... (11)
S
D TS / S 12)

With the aid of the variational principle, the
problem to solve Eq. (9) is reduced to the one
of making U the minimum in the condition of
Eg. (7). Hence,

OU I veveeirernaieieeriiiteiiiiriieiiiiiaeions (]_3)

The approximate solution of Eq. (9) is con-
structed as the following form with the n-para-
meters (o1, @2, *++, ¢n) which are as yet unspeci-
fied.

gp:ga(x’ Y, 01, 02, ...,Son) ........................ (14)
After substitution of Eq. (14) into Eq. (10), elabo-

ration with Eqgs. (11), (12), (13) leads to the fol-
lowing expression,

no U
500 ceerrerrerieretreeerees e 15
1,§l asoi Pi ( )
for all the combinations of dp;. Hence,
~ﬂ:o (G=1,2, voey 7)) coevreeeennes (16)
0p;

From the #n-equations of (16), the parameters
(@1, @2, *++, pn) being determined, substituting
them into Eq. (14) gives the approximate solution
of the problem.

(3) Expression with Finite Element

In finite element method the domain D is
divided into a large number (#) of sub-domains
D¢ which are called finite elements or simply
elements. Each element has the contribution U¢
to U in Eq. (12) as well as V¢, Weto V, W re-
spectively.

The shape of element is usually chosen as a
triangle or a quadrangle and in this paper tri-
angle elements are used.

The head in the interior of an element is ap-
proximated by a linear function of (x, y¥) as fol-
lowing,

¢=ll+12x+lsy ................................ (17)

where 2y, 12, A3 are parameters.
In the triangular element 4(k,!/, m) as shown

Fig. 3 Finite elements.

in Fig. 3, the subscriptions (k, /, m) are used for
the nodes which are the corner points of the
triangle. Then one obtains
L= (CIcQDIc +aprt+ CmSOm)IZA
12=(ak§l9k+al§01.+am§0m)/24
A3=(brpr+ bipi+ bmpm){24
where

1
=Y~ Ym A:—z-laerc+azxz+amxm|
bk:xm——xz
Ck=T1Ym— TmY1

Substituting Eq. (18) into Eq. (10) gives

1
Vem=-(kaolot+ kyls?) S S dx dy
2 e

+¢e SSD6(11+lzx+}.3y)dx dy ----(19)

for the element, where ¢° is the value of ¢ in
that element, which is assumed to be constant.

Moreover substituting Eq. (18) into Eq. (19)
and elaborating give

1 . ¢4
Ve=— L § Pipipit—5 Zoi

1 ..
P?:H{k;didj—{—kybibj} 7=k, 1, m)

where 3, is the summation according to (k, [, m),
then P¢ is two-dimensional (3x3) array with the
coefficient P5.

Substituting Eq. (20) into the following equation
(21) and elaborating give Eq. (22),

V= Z | (2]_)
e=1
1 2 n n
V=.2_ ) Z PijSDiSDj—‘ Z QiSDi ............ (22)
i=1 j=1 i=1

where Q; is the discharge at i-node, which is
calculated by multiplying ¢ by the corresponding
area.
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W in Eq. (11) is considered.

The specific discharge v along the segment be-
tween r—s in Fig. 3 is prescribed, namely the
segment is the boundary S: in Eq. (8). The verti-
cal compornent of v is denoted by ¢, which enables
rainfall and evaporation to be introduced.

If z-axis of (x, y) plane is chosen to horizontal
direction, the following expression is derived,

VAS=Q AL eveereeerierrriieein (23)

Hence from Eq. (11) one obtains

S xs
W:S v ds:S
T .tr
where x», s (xs>2xr) are the x-coordinates of
7, s respectively.
Assuming that ¢ varies linearly along the
boundary 7—s in the same way as ¢, one obtains®

g Xs— X &r— Xy
6=
i er [( xs—$r>¢r+< xs—xr>¢s]

(222 (22

Xs— Xy Xs—Xp

1
=’6— (s— )20+ 95)pr +(295+ 9r)es]
The summation of We in Eq. (25) for all the
elements can be expressed as

W= % Q¥ +vvereereen e (26)

where the one-dimensional array @;* is composed
of the following terms,

Q1*=‘é— (22— x1)(291+92)

1 1
Q2*=€(xz—x,)(zgz+gl)+3(xa—x2)(292+ 9s)

1
QF =€(5¢p—1 —~&p=2)(20p-1+Gp—2)

1
+E‘(xp"xp~1)(29p—1 +9p)

1
Qp*=“6‘(xp—xrl)(2gp+gr!)

namely Q;* is the concentrated discharge at i-
node along the S;-boundary, which is introduced
instead of g;.

Substituting Egs. (22), (26) into Egs. (12), (16)
gives

n
j}:_.'lPijgoj—!-QH—Qz*:O (=12,:-+,n)

4. TECHNIQUE OF FINITE ELEMENT
ANALYSIS

(1) The Way of Dividing to Elements

The way of making the network for finite ele-
ment analysis is explained with reference to Fig.
4, where DE is the interface between salt- and
fresh water, AC is the free surface on which the
precipitation R exists, AD is an impermeable
boundary, CO, OFE are the seepage surfaces on
which C, E are the seepage-out points, whereas
OF faces to sea water.

Fresh water

© Salt water. °

1By By, B,

Fig. 4 Coastal groundwater flow.

The upper boundary AC (the position is as-
sumed at first) is divided into (p—1) segments
by p-nodes denoted as T3, 7%, +++, Tp, and the
lower boundary DE is similarly done as B, B,
<o, Bp.

Then the corresponding nodes T3, B; are con-
nected by a straight line as (71— By), (12— By),
«++,(Tp—Tp) and on each line the same number
of nodes are located. The combination between
the nodes on the adjoining lines enables to make
the triangular or rectangular elements, as shown
in Fig. 4, where the division is done according
to the program of a digital computer.

(2) Determination of Interface

The procedure of the determination of interface
in the finite element analysis is as following (see
Fig. 4).

(1) Assume the shape and the position of inter-
face DE.

(2) Make the nodes By, Bs, -+, By on DE, of
which y-coordinates are Zi(Bi), Z(Bz), «--,
Z(Bp) respectively.

(3) Calculate ¢ in the interior of the domain
ACED by use of Eq. (28), where the bound-
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ary DE has to be dealt with as an imperme-
able boundary, because the specific dis-
charge through DE is zero.

(the boundaries AC, CE are described in
4.(3), 4.(4) respectively)

(4) By substituting the above solutions ¢(Bs),
o(Bs), +++, ¢(Byp) into Eq. (29), one obtains
the Z-values which are denoted as Z/(B),
Z'(Bs), +++, Z'(Bp), whereas the seepage-out
point B, is found out by the way described
in 3. (4).

g1 TSTUIOr (29)
Ts—7r
(5) Calculate the mean value of the initially
assumed (Z) and the calculated one (Z’) as
following

[Z(B)+Z/(Bo))/2, [Z(Beo)+ Z'(Bs))/2,
eo o, [Z(Bp)+Z/(Bp)l[2 -eeveeneeres (30)

which are the y-coordinates of B; (i=2,
.-+, p) in the next step of the calculation.

(6) The node B; on the interface in the next
step are shifted along the straight line
(T:—B;) and are located at the point which
has the revised y-coordinate gotten by the
above procedure (5).

The procedure (1)-(6) is repeated until the solu-
tion reaches to the convergent value.

(3) Determination of Free Surface

As described in 2., the free surface of ground-
water is considered to be a special type of inter-
face. Then instead of Eq. (29), one can use Eq.
(6). Hence the following equation (31) is derived
for the procedure of determination of free sur-
face, instead of Eq. (30),

[Z(T2)+ o T2, LZ(To)+ o T6))/2,

oy [Z(To)F (T} 2evemeereesnnvenens (31)
The seepage-out point 7} is described in 4. (4).

(4) Determination of Seepage-out Point

A) Seepage-out point of free surface

It is convenient to be considered two types of
seepage-out points. One of them is that the
gradient 8 of the slope on which the seepage-out
point appears is smaller than 90° (0£90°), as
shown in Fig. 5(a), whereas the other is that
(6>90°), as Fig. 5(b).

The conditions to be satisfied in the former
type (a): the seepage-out point is on the free
surface, moreover the tangent to the free surface
at the seepage-out point is equal to the gradient
of the downstream slope AB.

Then the following approximate way is pro-

(v 8> 90°

Fig. 5 Seepage-out point of free surface.

posed in the analysis. After the mean value 0p
of the gradients of (73— 73) and of the slope AB
being calculated, the straight line of which the
gradient is 0p, and goes through the node T3 is
drawn, as in Fig. 5(a). The intersection C of
the above straight line with the downstream slope
AB is determined to be the seepage-out point.
When the seepage-out point determined by the
above way becomes under the lebel of the down-
stream reservoir, i.e. sea, the point is relocated
at the sea level because the seepage-out point
practically should not be under the sea lebel.

On the other hand the necessary conditions of
the later type (b) in Fig. 5: the tangent to the
free surface at the seepage-out point is vertical.
Then after the mean value 05 of the gradients
of (T3—7T:) and of the vertical direction being
calculated, the other treatment and interpretation
are the same as the former.

B) Seepage-out point of interface

For the general interface problem, the approxi-
mate way how to determine the seepage-out point
described in the above section A) is possible to
be used similarly.

For the interface between salt- and fresh
groundwater the procedure of determining the
seepage-out point is shown in Fig. 6.

It is also possible to determine the seepage-out
point by assuming that the shape of the interface
is a parabola in the vicinity of the seepage-out
point. For example one considers the case that
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the sea bottom is horizontal or there is a hori-
zontal drainage as shown in Fig. 7. If the shape
of the interface is parabola, the following equa-
tion (32) is formulated,

(a) 6% %0°

®) e>90°

Fig. 6 Seepage-out point of interface between
salt- and fresh water.

T; (7‘3. }3)

SO

Ja (X2, 1)

Fresh watéy )/

By (23, 7’3)

Salt water

(t) Interface

Fig. 7 Seepage-out to horizontal drainage.

_ Z2Ys— TsYe

Ys— Y2
where (x;, ys) is the coordinate of B; or T; (i=
1,2,3).

L1

.............................. (32)

5. EXAMPLES

(1) Comparison with Theoretical Solution

The interface problem in coastal groundwater
as shown in Fig. 8 was solved theoretically by
use of the method of conformal mapping and
the hodograph®. In order to compare the nu-
merical solution by finite element analysis with
the theoretical one, the calculation by use of
finite element method is executed.

g

Fresh water

Salt water
C
Fig. 8 Boundary condition of problem.

In Fig. 8, AOB is the ground surface where
AO is the bottom of the fresh water reservoir
and OB is the sea bottom, EO is the impermea-
ble wall (the point O is the singular point) and
CD is the interface between salt- and fresh water.
The depth of the fresh water reservoir is Hy and
the one of sea is Hs, and the origin of (x, ¥)
coordinate is chosen at the point O.

Provided that the ground is homogeneous and
isotropic, the position of the interface is given
as following by theoretical formula (33),®

I (L
T alrs—rn) 4 )
= erAH
T alys—7r)

where 1 is a parameter, 4H=(Hy— H;).

Now 4H=5m, 7s=1.03, 7r=1.00 being pre-
scribed, the result gotten by the finite element
analysis is shown in Fig. 9 and the theoretical
solution by Eq. (33) is drawn by a dotted line.

One can understand that the both of the results
agree satisfactorily, namely the numerical solution

tan-1 (1)
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Numerical solution

————— Theoretical solution

v Fresh water reservoir (HF=10m)

A B
A
L
cp—
Fig. 9 Example 1, shape of interface without drain.
it} m

fresh water reservoir (HF=10) . lo Sea (H;S)
i}

Q«————Sin or source
Q=t
k=1

10 m/hour/m
0 m/hour

— without drain

—-®—== ywith sink (Qy0)
————~ with source (QL0}

0 100 200™
— 2

Fig. 10 Example 2, shapes of interfaces.

by finite element analysis is well-approximated.

(2) Upconing

When a drain is operating in the fresh ground-
water zone, the phenomenon of raising the inter-
face, which is called “upconing”, appears in
coastal groundwater.

Provided that the coefficient of permeability:
k=1.0 m/hour, the discharge of a well: @p=+10
m3/hour/m, the coordinate of the well: (xp, yp)=
(—450 m, —50 m) so on the other boundary con-
ditions are prescribed as equal to the ones in (1).
The result gotten by the finite element analysis

is shown in Fig. 10.

(3) Intrusion of Salt Water into Aquifer

Fig. 11 shows an example of the intrusion of
salt water into an unconfined aquifer with bed
rock at the depth of —200 m under the ground
surface, which is gotten by the finite element
analysis.

The way of finding out the point P, which is
the end point of the interface, is succeeded by
checking whether the position of the interface is
above the bed rock.
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Bed rock
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- -

A TRTR 7 7S NTATXK 7]

Fig. 11 Intrusion of salt water into a coastal unconfined aquifer.

6. CONCLUSION

This paper described the application of finite
element method to the interface flow problem in
coastal groundwater and some examples. Con-
sequently it is confirmed that the finite element
analysis is useful and powerful to solve these
interface problems numerically.

The author would like to appreciate Dr. Ver-
ruijt, who gave useful advices and beneficial
support to the author, on making this report in
Delft Technological University.
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