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EXTENDED MONTE CARLO METHOD
IN STRUCTURAL RELIABILITY

By Masaru HosHIvA*

INTRODUCTION

In the reliability theory of structural design,
probability of structural failure Pr may be very
small with order 10-% to 10~% in reality. This
probability of failure Pr is defined as

Pr=P(S>R)=10"% to 10~% order -------- (1)
where P( ) reads “probability that”. R is the
overall resistance of structure and S is the load
applied upon structure.

In the case of normal distributions of both S
and R, the theoretical solution of Py may be
evaluated as??

P,=1—¢{

KR KS
vogi+og® } (2)

where pr and ps are respectively the means of
R and S. oz and og are the standard deviations
of R and S respectively. @( ) is the probability
distribution function of normalized Gaussian
variables.

In general, R is given as a function of many
structural elements which may be random vari-
ables. Therefore, the distribution of R is not
necessarily normal nor a well known pattern of
a probability model. The similar argument may
ascertain that S may not be described with typical
distribution laws.

For example, consider the reliability of an
axially loaded reinforced concrete member. The
ultimate strength of the column is given by

R=kfc' Aot fsyAs  (ACI code)
If kfo’ (concrete strength), fsy (yield strength of
steel) and A, (concrete area) are considered to be
random variables, the ultimate strength (or we
may call it the resistance R) also become random
variables. In this case, even the probability
distribution functions of kf./, fsy and A; are
given by well known distributions such as normal
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distribution functions, it is very difficult to obtain
the theoretical distribution of R and consequently
the evaluation of eq.(1) is very hard to be at-
tained.

Another example is given by the analysis of a
tainter gate problem (4). The resistance R of
the gate is given by the following complicated
function of random variables;

n?El
12
/ (o +as® + a® +(a?+ az*+ as?) %

1(a1s+ a4 \/_2_(“28-}— asHt-s+ \/—ﬁ—;(a% + ada)l'sj

where aif, a;® (=1, 2,3) are random variables.
Again the evaluation of the probability distribu-
tion of R is not feasible.

In a case where the distribution pattern of
overall resistance R is numerically given as an
experimental study, these values are stored in
computer for the use of the extended Monte Carlo
method described in the next section.

In any one of the above cases, it is very dif-
ficult if not impossible to obtain the theoretical
solution of Py as in eq(2). Monte Carlo approach
then becomes a very powerful means to evaluate
the numerical value of Pr. However, it is noted
that for the order 10-3 to 10-% of Pr, at least
more than 10® to 10® repeated trials are required
and the computer time becomes a criteria to
employ a Monte Carlo method.

In this paper, an extended Monte Carlo method
is developed to evaluate Py of order 10-% to 10-%
with far less than 10% to 10% repeated trials. A
simple conditional probability law is the basic
concept in this approach.

EXTENDED MONTE CARLO METHOD

Equation (1) can be described as a Venn diagram
shown in Fig. 1. The hatched area is the event
of structural failure. A Monte Carlo method
based upon eq. (1) is for the éth trial, first to
generate random variables @; and #; independ-
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Fig. 1 Pr=P(S>R)

ently from a uniform probability distribution with
the range of zero to one as shown in Fig. 1.
Then sample realizations s; and 7; may be obta-
ined from the relations s;=Fg%Ya@:) and 7i=
Fr=1(b;) respectively. Fgs(s) and Fgr(r) are the
probability distribution functions of S and R re-
spectively. If s;<#;, the structure is safe and
the next trial is to be proceeded. Whenever
si>7;, keep the tally of the structural failure.
After sufficient trials, the probability of failure
Pr in eq. (1) can be approximated by the following
estimator

where » is the number of failure and N is the
total number of independent trials. As can be
seen in the above description, the method is very
simple except for the many repetitions of trials
which are not realistic because of the computer
time.

To avoid this technical difficulty, this paper
developes an extension of the Monte Carlo method
in the following paragraphs.

Consider now the probability of an event of
(S>RNS>SeNR<Ry) where Sy and Ry are de-
terministic such that S,<Rp.

Following a conditional probability law, we
have

P(S>RNS>SiNR<Ry)
=P(S>R)P(S>SoNRCR[S>R) +vvvveeee (4)
or
P(S>RNS>SiNR<Ry)
=P(S>SiNR<R)P(S>RIS>SeN R< Ry)

Consequently from egs.(4) and (5)
Pr=PS>R)
__P(5>SeN R<Re)P(S>R|S>Se N R< Ry)
- P(S>SNR<R/S>R)

HosHiva

For the improvement (shortening) of computer
time, we will consider the use of the right hand
side of eq.(6) to evaluatet he probability of failure

Pr.
Let
P1=P(S>SoﬂR<Ro) ........................ (7)
Pl/f=P(S>SoﬂR<Ro/S>R) ............... (8)
Pf/1=P(S>R/S>SoﬂR<R0) ............... (9)
Then eq.(6) can be expressed as
Pro=PiPyji[Pijy ovveeeeveeemmeeemmnieeenninien, (10)

P, is the probability that $>Sy and R<R, sim-

altaneously. If the events (S>S;) and (R<Rp)
are independent, then
Pi=Piy Pis=P(S>S)P(R<Ry) veeveerenes eh))

In the Monte Carlo evaluation of P, it is obvious
that the number of trials can be greatly reduced
if appropriate values S; and R, are assigned.

Pi;r is the probability that sample realization
S is greater than S, and at the same time R is
less than Ry under the condition of S>R When
the failure occurs, it may be highly expected
that the load is great (S>»S;) and the resistance
R is small (R€R;). Therefore, in the Monte
Carlo simulation, the number of trials can be
also reduced for the stable estimation of Pyy.

On the contrary to Py, Py is the probability
that the structure fails under the condition of
of S>S; and R<R,. The number of trials is also
expected to be small.

Consequently, once Pi, Prn, and Py are ev-
aluated with reasonable number of trials, the
probability of failure Py can be determined from
eq.(10). In other words, with much less than 103
to 108 trials, the probability of failure of the order
103 to 10~% can be estimated.

It is noted that if S, is chosen to be very small
and R, very large, eq.(10) becomes trivial, since
in this case

Pi=P(S>0NR<»)=1.0,
Pir=PS>0NR<0/S>R)=1.0
and
Prpn=P(S>R/S>0NR<0)=P(S>R).

Thus, both sides of eq.(10) is of identical form;
P(S>R)=P(S>R).

Thus, the reduction of trials can not be retained.
If on the other hand, Sy and R, are chosen such
that Sy>Ry, the condition S>S¢NR<K, auto-
matically means S>R. Therefore we have

P(S>R/S>S:NR<Ry)=1.0

and
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P(S>S:NR<R/S>R)

=P(§S>SeN R Ry)/P(S>R)
since

(S>SoﬂR<Ro)C(S>R).
Thus, eq. (10) reduces again that P(S>R)=P(S>R)
which is trivial. Therefore, the optimum S, and
Ry may be determined through the parametric
analysis.

For the evaluation of P, in eq.(11), the sample
realization s; is to be filtered out through Fi(s)
into which random number «; in the range of
zero to one is supplied. Repeating the trials and
keeping the tally whenever we have s;>S,, Piu=
P(S>Sp) can be obtained by an estimator;

BlumngNi cooveoreeeiieieeiiiiae e (12)

where #; is the number of the event (s:>So)
occuring in N independent trials. Similarly
Pi=P(R<Ry) can be obtained by
PiommafNy coooveeormeeeiiriiiee i (13)

where #: is the number of the event (7:1<Ry) in
N, trials.

In what follows, the evaluation of Py and
Py is discussed.

Consider the Monte Carlo evaluation of B)/f.
The event (S>SoNR<R/S>R) is illustrated in
Fig. 2. First generate a; from a uniform dis-
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Fig. 2 Pyr=P(S>SiNR<Ry/S>R)

tribution between zero to one. The sample re-
alization s; can be obtained from s;=Fs(a;).
Since the condition S>R is required in this case,
b; is to be generated from a uniform distribution
between zero to Fgr(s;). This means first to
generate ¢; from a uniform distribution from zero
to one and then to obtain &; such that b;=c;Fr(s:).
The sample realization 7; is now filtered out from

ri=Fgr~1(b;) so that the condition s;>#; is satis-
fied. For the sample set (si, #¢), examine if the
event (s;>SoN7i<Ro) occcurs. If it does, keep
the tally and go to the next trial. After many
repetition one may have the probability of event
(§>SiNR<Re[S>R) by the following estimator.

Prir =g/ N eeveeerrcemmmmncennaniini, (14)

where #3 is the number of the event occuring in
N; trials.

It is noted that the range of distribution of ;
is variable since the upper bound Fg(s;) is de-
pendent upon the sample realization s;. It is also
observed that if s; is less than Sy, the event A
indicated in Fig. 2 occurs against any realization
of 7;. Thus the interesting event can not be
possible. If Sy<<s;< Ry, the event B occurs against
any 7;. Thus the interesting event always occurs.
Therefore it is not necessary to generate 7; in
these cases except for the recording the event in
the tally.

Next, let us discuss of Pr;. The event (S>
RIS>Si;NnR<KR,) is shown in Fig. 3. Since the

Failure

e SUCCESS

By=d PLh)

Fig. 3 Prn=P(S>R/S>SeNR<Ro)

conditions S>S; and R<R, are required, a; is to
be generated from a uniform distribution between
Fs(So) to unity, whereas b; is generated from a
uniform distribution between zero to Fr(f). Next
generate s; and #; such that s;=Fga;) and
ri=Fr~Yb;). Keep the tally whenever the sample
realization of s; and »; satisfies s;>7;. After
sufficient trials, the conditional probability of
failure Ps;; can be estimated in the similar
manner;

Brptm g Ny cveeeonereeniineiniieniiiniene, (15)

where #; is the number of the event (S>R/S>
SoNR<Ry) in N, trials. As described above,
eq.(10) attains a reasonable Monte Carlo evalua-
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tion of the probability of structural failure.

Suppose the external load S is considered to
be deterministic as S=a and only the the re-
sistance R is probabilistic. Then, the extended
Monte Carlo method can be reduced to the fol-
lowing way;

Pla>RNR<Ro)=P(a>R)P(R<Ry/a>R)

or

From egs.(16) and (17),

P(R<Ry)P(a>R/R<Ro)
PR<Ro/a>R)

=Pla>R)=

If Ry is chosen such that a <Ry, then
R<RyDa>R
Hence
P(R<Ry/a>R)=1.0
Therefore eq. (18) becomes
=P(a>R)=P(R<RyP(a>R|/R<Ryv)

It is clear that use of the right hand side of
eq.(19) reduces the number of trials in the Monte
Carlo approach.

ERROR STATISTICS

For the evaluation of true probability of failure
Py, estimators By, P, 13,71 and P1/f are employed
in the extended Monte Carlo method. In other
words, the true probability of failure from egs. (10)
and (11)

Pr=PyPpPrp|Piyp-eeeoeeeereeerreessennnnnas (20)
are estimated either by the direct approach
Pr=n|N oo, @n

or by the extended Monte Carlo approach

131’=1311P12pf/x/p1/f
=(n1/N1)(92/ Ne)(#3/ Ng)[(4f Ng) -+ -+ -+ (22)

Although it was discussed that use of eq.(22)
can save considerable amount of computer time,
the accuracy of Pf’ of eq.(22) must be examined
in the comparison with the accuracy of Pr of
eq.(21).

The estimators Pf, Py, Py, ... are all random
variables since they are given as the fraction of
number of interesting events occuring in the in-
dependent trials and in fact they are binomially
distributed® as, for example;

. ND
P(Br=niNzt)= 3 (N )1 prypw-n

.............................. (23)
with the mean

E(IN)=Py cccevverieaiiiiiniiiiiiii e (24)
and the variance

R[N=Pr(l—Pp)[N oeooevriiineiicnen. (25)

(1) Cenfidence Interval of P; based on eq.(21)

Desplte of the binomial distribution of Py=
n|N, P]‘ can be assumed to be approximately
normally distributed due to the central limit
theorem, when N is large number although Py
is very small value.

Thus, we put

P,:N(P,, Jﬁl}\;@) ..................... (26)

where N(a, b)) means normal distribution with
mean @ and standard deviation 5. Therefore
(1—a) % confidence interval can be obtained as
follows.

P(
Solving this for Pr and after some approxima-
tion,

By—p;
mﬁ[{a =1—
\/ PA-Pp = ’2) *

N

Or the confidence interval is

| Pr= Pyl S K B 28)

For example, 95% confidence interval is given
by

IPf—pf|§1.96\/%J}; ........................... (29)

(2) Confidence Interval of P, based on eq.(22)

Estimators Py, Pys, . .. are similarly assumed
to be normally distributed. For example,

P11=N<Pu, Jf%ﬁ&l) ................. (30)

Expand into Taylor series® the multivariate func-
tion of Py’ given by eq.(22). Then we can ap-
proximate

Py PPrpy -

E(Py)= Puy
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Table 1 Comparison of 95% Confidence Interval

For Example ?’/=10‘4, ﬁu=1512=]?‘f/1=}§1//=10-2

N 95% Confidence , Equivalent  95% Confidence ,
Interval of |Pr—FPyl to Interval of |Pr—Ps'|
104 1.96%10-4 Ny=102 3.96%10-4
105 0.63*10-4 Ni=108 1.22%10-4
108 0.20%10-4 Ni=104 0.39*10-4
107 0.06*10~4 N;=105 0.12%10-4
108 0.02*10~4 Ni=106 0.04%10-4
i=1,2,3,4
ois |:{ PioPrp }2 2. +{ PuPrp }202A tion of the true probability of failure by both the
¥r=1 Py ru Py F12 direct approach and extended Monte Carlo ap-
+ PuPy)? + PuPiPyj za“ pro?ch. For example, th.e probability of fau‘lure
Py Prn Py Piyr Pr is supposed to be estimated as Py=10-* by
............................. (32) the direct approach eq.(21) after N=107 trials. On
R the other hand, Ni=N;=N;=N,=10° trials are
o {&g&&’ﬂ.} {1/ PN+ 1/(PiaNe) supposed to be needed to estimate Pyy=Pia=Frn=
v P,/r=10"2 respectively. Then from the table 1,
+1/(PrpnNe)+1/(PrgNe)} -ooeeeeeeeee (33) it can be seen that the first approach gives 0.06x
Thus, 10~* of the 959 confidence interval of |Pr—Py|,
hereas the second approach gives 0.12x10-*
G738 B PrE2  eeeeie e w
5,=Prtf (34) although this approach needs all together 4x10°
where trials at most. If the computer program is ef-
B2=1/(PiiN1)+1/(PN2) fectively coded to include some of the four trials
i i f trials becomes
TPt AN FY(PrygNe) vvovererennens (35) in a single loop, the number of tri

Sipce Py is approximated as a linear function
oAf Plj, Pyy ete. by the Taylor series and since
Py, P1; etc. can be nearly normally distributed,
Pf’ is also normally distributed. Thus,

Py =NPy, PrB)

The (1—-a)% confidence interval is now obtained
as follows.

P55 ine
Therefore,
|Py'—~ Pyl SKoj2BPr
For example, the 95% confidence interval is
| 5"~ Py|<1.968 Py

It is noted that since Py and 8 are unknown,
the evaluation of eq.(38) is impossible in the strict
sense. However, for the purpose of comparison
of the accuracy of Py and Py, the right hand
side of eq.(38) is replaced by

1.968P;~1.96P;
i 1 1 1
SO/ S O S
PuN,  PuN: PruNs PyrNa

Based on egs.(29) and (39), the comparison are
made in Table 1.
Table 1 shows the confidence intervals of estima-

much less than 4x105%. Thus, it is clear that
use of Py’ sacrifies the degree of prediction ac-
curacy of Pr. However, it is noted that at least
the order estimation of Py can be attained only
by Py unless otherwise the lengthy computer
time is not permitted.

NUMERICAL EXAMPLE

For the demonstration purpose, both structural
resistance R and load S are assumed to be norm-
ally distributed with the reason that prior to the
Monte Carlo evaluation, the true probability of
structural failure Pr can be obtained by eq.(2).
Therefore, the accuracy of Pf can be examined.
It is noted, however, that even for any distribu-
tion of R and S, the extended Monte Carlo method
can be applied.

Assume R=N(10.0, 1.0) and S=N(6.0, 1.0). The
first and second arguments are mean and stand-
ard deviation respectively. The dimensions are
not specified herein because of the demonstration.
From eq.(2), then the true Py is calculated as
Pr=0.233%10-2.

For several conbinations of So and Re, Pr values
were estimated by eq.(22). For a few sets of So
and R, values, the results are summarized in
Table 2 together with the confidence interval.
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Table 2 Results of Numerical Example

A ” A a ~ 95%
So Ro N; Py Py Py Prn Py’ Confidence

Interval
6.0 8.0 1000 0.539 0.280*10-1 0.519 0.781*%10~1 0.227*10-2 0.104¥10-2
2000 0.549 0.285%10-1 0.518 0.815%10-! 0.245%10-2 0.073*10-2
6.0 9.0 1000 0.539 0.186 0.531 0.290%10-! 0.548*10-2 0.095%10-2
2000 0.549 0.187 0.532 0.293*10-! 0.562%10-2 0.067%10-2
6.0 10.0 1000 0.539 0.454 0.531 0.501*10-2 0.231*¥10-2 0.207*10-2
2000 0.549 0.454 0.532 0.501*%10-2 0.234*10-2 0.146%10-2
6.0 11.0 1000 0.539 0.785 0.531 0.200%10-2 0.159%10-2 0.325%10-2
2000 0.549 0.783 0.532 0.250%10-2 0.202*10-2 0.206*10-2
6.0 12.0 1000 0.539 0.965 0.531 0.400%10-2 0.392*%10-2 0.231%10-2
2000 0.549 0.962 0.532 0.250%10~2 0.248*10-2 0.205*10-2
7.0 10.0 1000 0.212 0.454 0.224 0.140*10~1 0.602%10-2 0.131*10-2
2000 0.217 0.454 0.227 0.175*10-! 0.758*10-2 0.084*10-2
7.0 11.0 1000 0.212 0.785 0.224 0.501%10-2 0.372*10-2 0.209*10-2
2000 0.217 0.783 0.227 0.816%10-2 0.611*10-2 0.118%10-2

For example, choose S;=6.0 and R,=10.0. If
Ny=N;=N;=N;=1000 trials are made, the esti-
mator P/=0.231x10~2 can be obtained with
0.207 x 102 of 95% confidence interval.

In the case of Ni=Ne=N;=N,=2000 trials,
Pr’=0.234 x 102 with 0.146 x 10~2 of 95% confidence
interval.

Since only a small computer was available at
hand, optimum values of Sy and R, were not dis-
cussed herein. However, it is obvious that if
Sy and Ry are close to their mean values with
the condition Sp<R,, the reduction of computer
time can be expected.

It is observed that the order estimation is at
least successfully obtained within less repititions
of trials than by the direct approach. Note that
the confidence interval in Table 2 is purely of
statistical nature and does not consider the error
of computer calculation.

CONCLUSIONS

An extended Monte Carlo method is developed
by applying a simple conditional probability theory
for the evaluation of very low probability of
structural failure. Numerical examples are given
for the purpose of demonstration.

As the summary, the following conclusions are
made;

True Probability Pr=0.233%10-2

(1) An extended Monte Carlo method makes it
feasible to technically obtain a very low
probability of structural failure within re-
asonable computer time.

(2) The accuracy of prediction of true probabi-
lity of failure by this approach is discussed
and an order estimation of Pr is assured
through the discussion of error statistics.

Appreciation is forwarded to Mr. Ishii, graduate

student of civil engineering, Musashi Institute of

Technology for his help in the computer calcula-

tions.
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