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THE LOCAL POTENTIAL APPROACH TO FINITE
ELEMENT METHOD IN UNSTEADY VISCOUS
INCOMPRESSIBLE FLUID FLOW

By Seizo Usukr* and Kenji Kupo**

1. INTRODUCTION

Applications of the finite element method to
problems of unsteady fluid flow was presented for
a restricted class of problems in potential flow
by Visser.?> This was suggested as a treatment
for general transient problems and was elaborated
by Zienkiewicz and Cheung.? Attempts to formu-
late a more general class of the problems have
recently been presented; for viscous incompres-
sible fluid flow®»~?; for general compressible
Newtonian fluid flow®~19, Applications of the
method to a general class of field equations was
recently presented from a view point of applied
mathematics!®.

The above papers may be classified into three
main procedures from a view point of methodology
of the finite element formulation; via the Ritz
method?»? which is used only when a classical
extremal principle exists; via a kind of virtual
work principle®»®; via the method of weighted
residuals, the Galerkin’s method®~1),  These
recent papers which especially come under the
last procedure demonstrate that the formulation
of the finite element can be based on the govern-
ing differential equations directly or on the global
form of the law of conservation of energy in-
directly via the method, when an appropriate
variational principle does not exist in the classical
sense.

On the other hand, new methods of formulating
variational principles based on the concept of the
local potential was originated by Glansdorff and
Prigogine!®». This technics has been applied in
various fields of hydrodynamics by Glansdorff and
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Prigogine!®,  Schechter and Himmelblau!¥,
Takagi!® and others.

An important application of the variational
principle is as a means of developing methods to
obtain approximate solutions. The extremal
principles based on the concept of the local
potential, of course, can be used as the basis for
developing approximation methods. One is the
finite-difference method!® and the other is the
direct methods. Schechter!® has suggested that
all of the direct methods, that is, the Ritz method,
solution by partial integration, eigenvalues and
eigenfunctions and others which are used for
classical extremal principles are applicable to the
local potential and pointed out that the direct
methods using the local potential involve the
Galerkin’s method with the added advantage of
treating the boundary conditions directly, though
they do not give clear upper or lower bounds of
the solution. However, these direct methods have
been applied to the local potential for the whole
region of interest. Therefore, it seems difficult
to apply the methods to the problems which in-
volve complex geometries and boundary condi-
tions. The finite element method is one procedure
to overcome such a difficulty.

Unfortunately, however, the concept of the local
potential has been considered!® to play no role in
finite element formulations by reason that the
concept falls outside of the range of validity ap-
plicable to the principle of minimum entropy
production in the classical sense.

Recently, formulation of a variational principle
for the flow of a viscous incompressible fluid
which includes the convective term and covers
both time-independent and time-dependent pheno-
mena was proposed by Lemieux et al.1®., This is
based on the concept of the local potential. It
is intended herein to discuss the formulation pro-
posed by them, to rewrite it in a modified form
and to apply it to a finite element formulation



80 S. UsUKI and K. KuDo

for the unsteady incompressible viscous fluid flow.
To test the validity of the proposed approach, a
numerical example for the transient flow through
a rectangular channel is presented and the approx-
imate solutions are compared with the theoretical
ones. Unfortunately, the numerical example does
not include the convective term and prescribes
the pressure gradient as a time dependent func-
tion. In principle, it is possible to apply the
procedure proposed here to a numerical analysis
of the wake flow.

2. VARIATIONAL PRINCIPLE FOR
UNSTEADY VISCOUS INCOM-
PRESSIBLE FLUID FLOW

2.1 Restricted Variational Principle

In advance of arguments on derivation of a
modified variational formulation, the technique
presented by Lemieux et al.'® will be summarized
and discussed.

The fundamental equations of an incompressible
viscous fluid are the equation of continuity and the
Navier-Stokes equation;
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where p=the fluid density; #;=a velocity com-
ponent; {=time; x;=the coordinate system; ;5=
the shear stress tensor; p=the pressure; X;=the
body force per unit mass. In the authors paper,
the body force X; is replaced by the gradient of
potential, that is, by —d¢/dx:. Outlines of deri-
vation of the functional, the local potential pre-
sented by them are in the following; Multiply
Eq. (2) by a small velocity variation —du; and
integrate over the volume V. Next, use the
Gauss theorem for the volume integrals, replace
u; by #:°40u; and neglect terms of higher order.
Thus they derived the following variational
formulation:
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In Eq. (3), it is noted that the term duj/dx; dis-
appears as the equation of continuity is used.
The superscript zero refers to quantities evaluated

at the stationary (actual) state and these quan-
tities are not subjected to variations. Only
quantities without that superscript are subjected
to variations. Let 4f be a small time interval,
then the inequality

a Suidu; _l ) )
——Sﬂ EY Svp 5 dth—ZSVpﬁuzﬁude

:S SErdEZ0 crevverereeaneeairneea e (4)
4t

is given. Therefore, the local potential F; takes
a minimum when §F;=0 with the subsidiary
condition #:"=w#;. The derivation of Eq. (3) and
the certification of Eq. (4) were given by the
authors. Eq. (3) was applied to the Stoke’s first
problem in which the fluid obeys non-Newtonian
model.

Now, for the sake of another development we
will discuss on the variational formulation, Eq. (3).

Firstly, it is noted that the extremal
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does not inversely give the Navier-Stokes equa-
tion, Eq. (2) in which the body force X; is replaced
by —ad¢/dx;, much less give the equation of
continuity, Eq.(1). Thisis clear from the fact that
the eguation of continuity is already used in the
process of deriving Eq. (3). In other words, the
equation of continuity is satisfied implicitly.
Generally, it seems difficult to find the velocity
distribution #; which satisfies the equation of
continuity over the whole region V of interest.
Moreover, it is worth recalling that a variational
formulation can be shown to be correct by insur-
ing that the Euler-Lagrange equations are identical
with the appropriate forms of the balance equ-
ations (the Navier-Stokes equation and the equ-
ation of continuity in this case). In this meaning,
Eq. (3) seems to be a restricted form.
Secondly, the surface integral in the right hand
side of Eq. (3) is rewrited as
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and &;; is the Kronecker delta. ¢;;° is the stress
tensor including the effect of prescribed potential
¢. Eq. (6) reveals that the momentum flux
(oulu—o:%n; or the velocity u; should be
specified on the boundary surface. It is noted
that the momentum flux is expressed as a total
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flow including both the convective and the
diffusive part. For the problems in which the
stress or the velocity is specified on the boundary
surface, however, the surface integral of Eq. (6)
will not be a convenient form. For instance, a
laminar flow in a duct which is filled with an
incompressible viscous fluid corresponds to such a
problem, if a prescribed pressure gradient deter-
mines the velocity distributions on the cross
sectional areas perpendicular to flow. In the
following, let us restrict ourselves to problems
with the boundary surface on which the stress or
the velocity is specified, as the numerous problems
in which the boundary condition is expressed as
Eq. (6) are not yet treated in this paper.

2.2 Modified Variational Principle

In this article, developing the technique pre-
sented by Lemieux et al. a modified variational
formulation will be presented.

Multiplying Eq. (1) by a small variation —§p and
Eq. (2) by a small variation —du;, adding the
resultant expression and integrating over the
region V of interest, this gives
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By using the Gauss theorem, the second and the
third term in the right hand side of Eq. (8) are
rewritten as
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Substitute Eq. (9) and (10) into Eq. (8), write u;=
u®+0u; and p=p°+ép and neglect terms of
higher order, then this gives
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In the derivation of Eq. (11), it is noted that the
equation of continuity, Eq. (1) is not yet used.
Moreover, by using the variational equation
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Eq. (11) is rewriten as
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The left hand side of Eq. (11) or (13) is the same
as that of Eq. (3). Therefore the inequality, Eq.
(4) is still held by replacing Fr by Fiz.

If we inversely use the Gauss theorem, Eq. (9)
and (10), it is easily shown that the extremal

0Fu
Suy
gives Eq. (2) and the extremal
0Fr
dp
gives Eq. (1) with the subsidiary conditions #%=u;

and p®=p. By using Eq. (7), the surface integral
of Eq. (13) is rewritten as
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Eq. (16) reveals that the stress or the velocity
should be specified on the boundary surface (in
this case the stress does not include the potential
#).

In Eq. (18), it is clear that other arrangements
of the terms are possible; if we apply the Gauss
theorem to the convective term in the right hand
side Eq. (8), the surface integral represented of
Eq. (6) may be yielded and the convective term in
the volum integral of Eq. (13) becomes a more
complex form. Thus, no claim of uniqueness or
superiority can be laid for Eq. (13). Eq. (13) simply
represents a convenient stopping point in the
analysis, for we restricted ourselves to the pro-
blems having the boundary surface on which the
stress or the velocity should be specified.
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3. MATRIX EXPRESSION OF THE
LOCAL POTENTIAL

To acknowledge similarities and differences be-
tween fluid dynamics and solid dynamics and to
carry out computations systematically, it is con-
venient to express the local potential presented
in the previous article in a matrix form.

Let us use the next vectors

{u} =< u:

{X}={ Xz

m

{n) ={ ns ] .................................... (19)
Ta2
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Ti2

T23

Tat
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B dus/oxs ] ess
fe) = Ou1/dwa+ous /oy | | e
6u2/8x3+au3/6x2 €23
Qtts/0%1+ 0uy /023 €31
where {#}= the fluid velocity vector; {X)}=the
body force vector; {#}= the unit vector normal
to boundary; {r}= the shear stress vector; {e}
= the total strain rate vector.

Expanding each term of the local potential Fis
of Eg. (13) to a summed form and rearranging
(see APPENDIX I.), the following
expression is obtained:

Fu={ [otwyr i) +otar( £ 70 1)
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in which the next matrices are introduced:
[Ii]=[1 0 0]
[L1=[0 1 0] b errevevrrmmmrireeinnnne (23a)

[L]1=[0 0 1]

(J1={1 1 1 0 0 0}T -veerrremnnnnes (23b)
ne 0 0 ny 0 ms
0 ng 0 ny n3 O } ~~~~~ (236)
0 0 3 0 ny N1
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4. APPLICATION TO THE FINITE
ELEMENT METHOD

The purpose of this article is to demonstrate
the applicability of the local potential to finite
element formulations. The method discussed here
is, of course, not perfect as the numerical ap-
plications which simultaneously include both the
local and the convective term of acceleration are
yet unsolved.

4.1 Generality

General ideas of the finite element method in
fluid dynamics are given by Oden?®, The some
basic points are in the following; The whole
region of interest is separated by imaginary lines
or surfaces into a finite number of subregions,
elements as shown in Fig. 1. The elements are
fixed in space and interconnected at a discrete
number of nodal points suituated on their bounda-
ry surface. Fig. 2 shows a typical element with

X

0 X

Fig. 1 A whole region divided into finite
elements.

Fig. 2 Triangular element with six
nodal points.
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six nodes on the boundary surface. Generally,
the fluid velocity and the pressure or their deriva-
tive values of these nodal points will be unknown
parameters of the problem. The velocity and the
pressure distribution within the element are ap-
proximated by different polynomial expansions,
respectively. The order of approximation for the
velocity and for the pressure uniquely corresponds
to the number of nodes L. for the velocity and
M, for the pressure, respectively. In Fig. 2, for
instance, L. may be six (1,2, ...,6) and M, may
be three (1,3,5). The coefficients of each term
of the expansions are defined by the coordinates
of nodes and the unknown parameters. Thus the
velocity and the pressure within the element are
represented as

ui=</’L(xl , &2, xa). ull(t) .................. (24)
and

20=§0M(-76'1 , L3, xa).pM(D .................. (25)

Here the repeated indices L and M are summed
from 1 to L, and from 1 to M, respectively.
¢r(xy, 22, 23) 1s interpolation function for the velo-
city and ¢u(21, X2, 3) is that for the pressure. u:L
denotes the unknown velocity in the direction of
x; axis at node L and p¥ denotes the unknown
pressure at node M. For the sake of simplicity,
the derivative values of these unknown para-
meters are not considered.

Above basic ideas are applicable to the local
potential approach, but the subsequent process
to construct finite element formulations is cosi-
derably different from that developed by Oden
using the Galerkin’s method.

4.2 Ritz method for Local Potential

Eq. (24) and (25) are rewritten in a general form
as

{u}:[N] [D)0 e (26)
p:[c] {p}e ....................................... (27)

The components of [N] and of [C] consist of
known interpolation functions. ({v}¢ and {p}¢
consist of unknown nodal parameters. The strain
rate vector {e¢} in Eq. (22) is represented as

() = [B]{D}6 +verrveemesenreenicnieec 28)
in which [B] is derived from [N] using the de-
finition of Eq. (21). Let us consider an incom-
pressible Newtonian fluid. The constitutive
equation is expressed as

(2} =[D]{e}=[D] [B] {p}e--rrreereerecrun (29)
in which
2, 0
[D]=p [ 2 . ] ............ (30)
0 1

and px= the shear viscosity. Let us use the self-

consistent approximations
{u®}=[N] [}
{a’}=[N]{o°]°
{e}=[B]{s"}*
{c°}=[D]11B] {v*}*

For the sake of simplicity, superscript e is ab-

breviated hereafter. Substitution of Eq. (26), (27),
(28), (29) and (31) into Eq. (22) yields
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In Eq. (32), it is noted that Fy; now means the
local potential which is contributed to the local
potential for the whole region of interest by an
element. V and A are its small integration volume
and boundary surface respectively. Let

oF

o{v}
and impose the subsidiary conditions {¢v°}={v}
and {p°}={p}, then this gives the following
ordinary differential equation of motion:
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and impose the same subsidiary conditions, then
this gives

SV [C]T{]}T[B]dV{v}={0} ............... (36)

Eq. (36) expresses the equation of continuity in
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integrated form. Eq. (34) and (36) are basic finite
element equations to determine an incompressible
Newtonian fluid flow. In the left hand side of
Eq. (34), the first and the second term are the
mass matrix and the convective mass matrix res-
pectively. The third term is the compressibility
matrix, but Eq. (36) explicitly assures the incom-
pressibility of the fluid (the continuity equation)
in an average sense within the domain of finite
element. Therefore the unknown nodal pressure
{p} may be interpreted as a Lagrangian multi-
plier. The fourth term is the viscous damping
matrix. The terms in parenthesis and the third
term in the right hand side of Eq. (34) compose
the internal nodal force vector by the stress on
the boundary surface of the element and by the
prescrived body force acting within the element.
Thus, in the finite element formulations, the
Ritz method is not applied to the local potential
for the whole region of interest, but applied to
that for each subdivided region, element. The
fundamental equations, Eq. (34) and (36)established
for all elements are assembled and interconnected,
and the interconnected equations system is simul-
taneously solved for the unknown parameters.
In the case of a wake flow analysis, it is con-
venient to use nondimensional quantities as

Xi=x;D
{v)={v}U
pzp,pUz cens
{T} = {Tl}PUz ....................... (37)
t=t'DJU
R,=UD/v

where D=diameter of obstacle; U=fluid velocity
at infinite distance place; v=Kkinematic viscosity;
R.=Reynolds number. Assuming the prescribed
body force {X}=zero, Eq. (34) and (36) are repre-
sented in nondimensional form, respectively:
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where a dash as superscript means the nondi-
mensional quantities.

It is again noted that Eq. (34) and (36) or Egq.
(38) and (39) are applicable to an incompressible
Newtonian fluid flow through a fixed control
volume in space. For an incompressible non-
Newtonian fluid flow, the constitutive equation
(Eq. 29) has to be changed appropriately.

5. TRANSIENT FLOW THROUGH A
RECTANGULAR CHANNEL

In order to compare approximate solutions ob-
tained by the finite element method with theoreti-
cal ones, let us consider a transient flow through
a rectangular channel as shown in Fig. 3. This
problem was treated by Oden?V for a steady flow.
The pressure gradient in the direction of x; axis
is now prescribed as a time-dependet function.
Let us consider Newtonian fluid and assume the

T X
2D ) 7
1L 7

o —

Fig. 3 Square channel with imposed coordi-
nate system.

X3
Q /WALL .
/ 3
P L m
Olx 2—')(2
X

e— 20 ———]

Fig. 4 Cross section of square channel.
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fluid velocity to be purely axial everywhere, that
is, assume the laminar flow. Then, the convec-
tive term of Eq. (34) disappers and the equation of
contiunity (Eq. 1 or 36) is automatically satisfied.
For this two dimensional flow, Eq. (34) is reduced
to the following:

SVp[NmN]dV- ) +SV[BJT[D][B]dV- )

=—SAp[N[Tn1dA+SA [NJ'[S]{c}dA (40)

where
1 0
[D]:#[ o 1 ] ........................... (41a)
[ST=[ #2 #g ] wveererervemmeesvemnnnnnns (41b)
T21
{T}:{ o } ................................. (41c)

In Eq. (40), it is noted the unknown parameters
are only nodal velocity {v} as the pressure gradi-
ent is prescribed. The triangular element with
three nodes in which the fluid velocity varies
linearly is used. The whole region (2D x 2D x unit
length) is subdivided to 32 element per a quater
of the region as shown in Fig.4. The unknown
nodal velocity vector {r} and the interpolation
function [N] in Eq. (40) are in the following:

12
(W={ 05§ e (42)
. Vm
ai+bixetcixs T
[N]zﬂ aj_!_bsztcjx?: ............ (43)
am+bmdz+Cms

where v;, vj and v, are the unknown velocities
in the direction of x; axis at three nodes (i, 7, m)
and denoting the coordinate x, of node ¢ by xu:,
Qi =X2jX3m— LamX3j
by=235— Tsm
Ci=Xom—Lzj ELC. +rrrereeremrceinniiiiins, (44)
d=area of a triangular element (¢, 7, m)

The matrix [B] is derived from [N] using the
definition of Eq. (21). Substitution of Eq. (43) into
Eq. (40) yields

(M5} 1K@} = [P} -ovoverresereninennns (45)
where
y 2 1 1
(a1 = ,,[N]T[N]dv=£_[ 2 1 ]
1y 12
SYM. 2
.............................. (462)

[K]=SV (B)[D][BldV

b2+c® bibjtcicy bibm+cicm
——4% [ b4cs? bjbm'l-Cij:,
SYM. b+ Cra?
............................. (46b)
1
{P}=_§£(-Q 104, (46¢)

0z 3
1

Eq. (45) is in agreement with the equation anal-
ogue, governed by a quasiharmonic differential
equation. This is obvious because for this two-
dimensional flow the Navier-Stokes equation is
reduced to the quasiharmonic differential equa-
tion.

Let us consider the case in which the pressure
gradient in the z; direction suddenly occurs as
shown in Fig. 5. The pressure gradient of Eq.
(46c) is expressed as

IpE) _ op AP

3—1‘;_8(1[) dxy
where S(f)=unit step function. Eq. (45) may be
computed by the finite-difference method with
respect to time. Herein, the step by step method
developed by Wilson and Clough?? was used.
Table 1, 2 and 3 show a comparison between the
approximate solutions obtained by the method
and the theoretical ones derived using separation
of variables, assuming the ratio v/D?=0.2504
(sec™?). The time increment 4¢ in the method
was 0.001 (sec) and the computed values converg-
ed into significant five figures. Hence, the per-
centage of error in these Tables does not include
influences brought about by the time increment
dt. In these Tables points O, P and @ are shown
in Fig. 4 as typical points.

The errors of fluid velocity (Table 1) and of
shear stress (Table 2) are generally larger than
those of discharge G obtained by integrating the
fluid velocity over the area (2Dx2D) and those
of viscous drag force R obtained by integrating
the viscous shear stress acting on the wall, res-
pectively. This arises from the fact that the

2P
X
1

0 Time
Fig. 5 Pressure variation with time.
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Table 1 Fluid velocity variation with time at point O and P in a square

S. UsUKI and K. Kubpo

channel (v/D?=0.2504 sec)

Time Velocity #o Error Velocity #p Error
2 2
sec X"Djfi ;ﬁ 1 #p exact % XDT‘ ‘fx/;l ‘ Up exact %
0.04 0.1007 % 10-1 0.1001x10-1 0.60 0.9985x10-2 0.1000x10-1 0.15
0.16 0.4007x10-1 0.4005x10-1 0.05 0.4090x10-1 0.3915x 10-1 4.47
0.36 0.9133x10-% 0.8876x10-1 2.90 0.8348x10-1 0.8050x10-1 3.70
0.64 0.1526 0.1465 4.16 0.1273 0.1240 2.66
1.00 0.2074 0.1993 4.06 0.1649 0.1618 1.92
1.21 0.2297 0.2210 3.94 0.1800 0.1772 1.58
1.44 0.2482 0.2393 3.72 0.1925 0.1901 1.26
1.69 0.2630 0.2540 3.54 0.2025 0.2006 0.95
1.96 0.2745 0.2655 3.39 0.2103 0.2087 0.77
2.25 0.2832 0.2743 3.24 0.2162 0.2149 0.60
oo 0.3028 0.2947 2.75 0.2295 0.2293 0.09
(0.2949) Cr ) (0.07) (0.2289) Cr) €0.17)
Table 2 Viscous shear stress variation with time at point P and @ in
square channel (v/D?=0.2504 sec)
Viscous Viscous
Time stress 7p Error stress rq Error
sec <D dp 7p exact % xDl dap Tq exact 2%
dxy dxi
0.04 0.3778x10-4 0.1459x 10-4 158.94 0.1099 0.1125 2.31
0.16 0.1067 x10-1 0.8790x10-2 21.39 0.2104 0.2255 6.70
0.36 0.5880x10-1 0.4922x10~1 19.46 0.3164 0.3369 6.08
0.64 0.1227 0.1091 12.47 0.4156 0.4396 5.46
1.00 0.1813 0.1669 8.62 0.4984 0.5248 5.03
1.21 0.2052 0.1910 7.43 0.5318 0.5592 4.90
1.44 0.2250 0.2112 6.53 0.559%4 0.5878 4.83
1.69 0.2410 0.2275 5.93 0.5817 0.6110 4.80
1.96 0.2533 0.2404 5.37 0.598% 0.6291 4.80
2.25 0.2627 0.2501 5.04 0.6119 0.6429 4,82
oo 0.2837 0.2727 4.03 0.6411 0.6749 5.01
(0.2744) [QEAD) (0.62) (0.6719> Cr ) (0.44)

Table 3 Viscous drag force and discharge variation with time in a square

channel (v/D?*=0.2504 sec)

Time Vlsf%or"c‘:se %ee 2 . Error Di;;harie G c . Error
exac 73 exac

0.04 0.9181 0.8514 7.83 0.3249x10-! 0.3428x10-? 5.22
0.16 1.605 1.602 0.19 0.1125 0.1161 3.10
0.36 2.234 2.250 0.71 0.2134 0.2184 2.29
0.64 2.774 2.796 0.79 0.3141 0.3203 1.94
1.00 3.212 3.234 0.68 0.3997 0.4075 1.91
1.21 ©3.387 3.409 0.65 0.4342 0.4429 1.96
1.44 3.533 3.555 0.62 0.4628 0.4724 2.03
1.69 3.649 3.673 0.65 0.4858 0.4963 2.12
1.96 3.740 3.766 0.69 0.5036 0.5150 2.21
2.25 3.808 3.836 0.47 0.5170 0.5293 2.32
o 3.962 3.999 0.93 0.5472 0.5623 2.69
(3.933) Cr) €0.15) (0.5622) 7)) 0.02)
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integrating processes result in an averaging of
the fluid velocity within the integration area and
of the viscous shear stress on the integration
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Fig. 9 Discharge variation with time in a
square channel (v/D?=0.2504 sec)

surface, the wall of the channel. In these Tables,
the values in parentheses at #==co are another
approximate solutions presented by Sparrow and
Siegel?® for the steady flow. It is noted these
values were obtained by approximating the velo-
city distribution within the entier region (2D x 2D)
with an eighth order polynomial expansion. Fig.
6, 7, 8 and 9 show the results of these Tables in
illustration form.

6. SUMMARY AND CONCLUSIONS

Developing the technique presented by Lemieux
et al.,!” a modified variational formulation is
proposed. The variational formulation can be
shown to be correct by insuring that the Euler-
Lagrangian equations are identical with the bal-
ance equations, that is, the Navier-Stokes equa-
tion and the contuinity equation and may be
applied to the problems in which the stress or
the fluid velocity is specified on the boundary
surface.

To acknowledge similalities and differences be-
tween fluid dynamics and solid dynamics and to
carry out computations systematically, the local
potential is expressed in a matrix form.

In the finite element method, the entire region
of interest is subdivided into a finite number of
subregions, that is, elements. The fluid velocity
or its derivative values of the nodal points of the
elements is the unknown parameter of the pro-
blem. If the pressure is not prescribed except
for a part of the boundary surface of the whole
region, the pressure or its derivative value will
be also the unknown parameter of the problem.
Generally, the fluid velocity and the pressure
within an element are approximated by different
polynomial expansions, respectively and the para-
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meters of these expansions are uniquely deter-
mined by the coordinates of nodes of the element
and the unknown nodal parameters. The finite
element equations are derived by minimizing the
local potential with respect to the unknown nodal
parameters. In other words, the Ritz method is
applied to the local potential for the element.
The equations of motion and the continuity equa-
tions obtained for all elements are assembled and
interconnected, and the interconnected entire
equations system is solved for the unknown para-
meters.

Applications of the Ritz method to the local
potential are, of course, not new as a direct ap-
proximation method. By its nature, the conven-
tional Ritz process is limited to relatively simple
geometrical shapes of the whole region. On the
contrary, in the finite element method, the whole
region is regarded as the assembly of simple
element shapes. The local potential for the whole
region is also regarded as the sum of the contri-
butions of each element and the Ritz method is
applied to the local potentials for each element.
Thus, the finite element method functions best
in the problems involving complex geometrical
shapes of the whole region.

In order to compare the approximate solution
obtained by using the finite element method with
the theoretical one, the problem of the deter-
mination of the fluid velocity and the shear stress
distribution associated with the transient flow of
a Newtonian fluid through a square channel was
studied. In this problem, only the velocities of
nodes of elements were unknown parameters as
the pressure gradient was prescrived as the time-
dependent function, that is, the unit step function.
This brief study indicated the remarkable ac-
curacy of the approximate solutions. It can not
be concluded whether the approximate solutions
presented are more accurate than those which
could be obtained by using other approximation
methods or not. However, at least, it can be
said that the finite element method opens a new
applicability of the Ritz method to the variational
principle based on the concept of the local
potential. Applications to the problems which
include the convective term and in which the
nodal pressures are also unknown parameters are
now in progress.

The finite element equations presented in this
paper were not compared with those given by
Oden'® and others using the Galerkin’s method.
As set forth by Schechter!® generally, also in the
finite element method, it could be shown that the
equations presented are equivalent to those given

by the Galerkin’s method. The local potential
approach has, however, the additional advantage
of deriving the equations systematically by using
the extremal conditions on the unknown para-
meters.

The writer would like to express appreciation
to T. Kishi, Professor in the Department of Civil
Engineering, University of Hokkaido, for his
valuable comments and suggestions and to M.
Irobe, Professor in the Department of Civil
Engineering, University of Akita, for his en-
couragement throughout the work.

APPENDIX 1. MATRIX EXPRESSION
OF LOCAL POTENTIAL

In Eq. (22), the convective term in the volume
integral is especially explained in the following.
The convective term of Eq. (13) is expanded as

ud aui"u'
puj Ery i

0 0
=<M1 dus +-uz2 dus +M3 )

dxy dxy
+{u au1° + auz +u >
( Yoze Y o, 3
ou,® dus® )
+<u1 3 +us 9 +Ma

Using the velocity vector {#} and the matrix []
deffined by Eq. (17) and (23a) respectively, this

O L
2

o (5

L T I T )

Eq. (48) is in agreement with the second term of
Eq. (22). Another expressions of the term is pos-
sible, but Eq. (48) is the most simple expression.
Other terms of Eq. (22) are analogously derived.
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