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A STUDY ON THE ANALYSIS AND SIMULATION OF
PRECIPITATION BY THE MULTIVARIATE
STATISTICAL MODEL

By Kiyoshi Hosar*

1. INTRODUCTION

The explosive population growth along with
an accelerating shift from agricultural land use
to urban and industrial land use has encouraged
rapid technological developments in water re-
sources. Among possible technological advances
are the possibilities of conserving or augmenting
natural water supplies. These supplies are, how-
ever, poorly distributed, and some regions are
already short of water, and other areas will be
in short supply in a relatively short time. One
obvious alternative is to limit the development of
such areas to that which can be accommodated
within the available water supplies where tech-
niques should be included for increasing the utility
of available supplies by conservation or regula-
tion which permits greater use. For many reasons
this alternative may be undesirable, and a second
alternative is to import water from some nearby
regions of surplus via extensive aqueduct systems.
From this point of view, there is a need for a
wider range of regional evaluation of the quanti-
ties of available water in place of local control,
and it is necessary to provide more accurate pre-
dictions of regional interrelationships of precipita-
tion which is the major important source to the
surface runoff phase in order to meet rapidly in-
creasing future demands for water.

In recent years the literature has abounded
with papers devoted to synthesis of various time
series?. Many of these papers have concentrated
upon generating sequences with autocorrelation
functions, and subsequently proposed Markov
chain models of various orders on a monthly or
an annual basis. A decrease in the time unit
of a hydrologic time series usually leads to in-
creased problems in fitting of data generating
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models where extensions of Markov chain models
have met with limited success mainly due to the
high variance of a time series.

The analysis of the autocorrelation function
indicates that after deseasonalising, a precipita-
tion time series contains no statistically significant
persistence at a single location?»®. Therefore,
there is a limitation on the adaptability of a
Markov model when a stationary time series of
precipitation is considered to be a pure random
process from the correlogram. And moreover,
the defect in hydrologic data such as missing
data, in particular, during the winter season is
a principal obstacle to the effectiveness of the
recursion relation of a Markov model in the
simulation process.

With increasing complexity of water resources
systems the problems arising in their projection
and control involve substantially the large-scale
water supply systems on a region-by-region basis
where an adequate description of regional dif-
ferences of precipitation pattern over a large area
is required, and an adequate synthesis requires
precipitation data to be simulated simultane-
ously at several stations, their series being
related to each other in an appropriate man-
ner?.

For the purposes of the study which motivates
this work, the ability to generate a synthetic
sequence at a single station is not of great value.
This approach to region problems and solutions
seeks to develop a guide to future developments
for the optimum use, or combination of water
resources to meet foreseeable long-term needs in
terms of chosen objectives. The study described
in this paper concerns itself with the formation
of spatial relationships of precipitation over a
wider area from the viewpoint of mathematical
statistics, and demonstrates that the multivariate
statistical analysis and simulation®,6," will en-
able investigators to produce satisfactorily ac-
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curate results with a minimum of time and effort
expended.

2. CHARACTERISTICS OF MULTI-
VARIATE ANALYSIS

Current water resources development requires
the best engineering procedures for the evalua-
tion, prediction, and control of water resources.
Lack of adequate data, in part, hampers fulfill-
ment of these objectives. As a solution to this
problem, operational hydrology plays an im-
portant role in water resources systems engineer-
ing because it helps to achieve efficient and eco-
nomic designs of water resources systems through
the use of analytical or simulation models. Based
on the statistics of historical records, synthetic
hydrologic sequences are simulated which pre-
serve the significant statistical properties of his-
torical records. These sequences will be used as
inputs to subsequent assessment of the response
of water resources systems design and manage-
ment.

In the simplest stochastic model, a station with
the longest observed record is selected as a key
station, and the concurrent hydrologic sequences
at all other satellite stations are developed only
from the key station after least-squares coefficients
are calculated for overlapping records between a
key station and a satellite station. It is impos-
sible to utilize relevant information among the
satellite stations in this linear-regression model
for generating synthetic sequences at their sta-
tions. The author proposed a technique of simul-
taneous generation of monthly precipitation at
several satellite stations from a key station where
use was made of interrelationships among all the
satellite stations with the consequent reduction
in the random components®,

To establish relations among a set of variables,
multiple regression techniques have been made
use of almost exclusively. Although the vari-
ables seldom satisfy all the underlying assump-
tions, the techniques have proved useful where
the relations are used for predictive purposes.
Prediction is the primary purpose of a regression
relation. However, the inability to interpret a
regression relation in terms of cause-and-effect is
often attributed to the lack of independence a-
mong the variables. Moreover, a multiple regres-
sion approach is not probably preferable in the
analysis of regional distribution of precipitation
in which it is impossible to distinguish the de-
pendent variable from the independent variables.

Analysis on the modern water resources pro-
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blems should encompass relationships between
regions in the long-run time periods in the practi-
cal hydrologic engineering. When regional inter-
relationships of precipitation are ignored, it is
not sufficient to make a fuller assessment of
water resources projects and a more rational use
of water to meet future demands for the surface
runoff.

The optimum use of an existing water supply
depends on an accurate quantitative assessment
of the possible techniques. In developing models,
a lack of understanding of the basic process oc-
curring simultaneously within a precipitation sys-
tem, or a lack of physical data from which rela-
tionships can be established, constitutes a limita-
tion on the application of physical hydrology to
the assessment of regional precipitation pattern
over a large area. One of the difficulties in de-
scribing precipitation pattern over a wider area
which results from complicated interactions of
meteorological and topographical characteristics
is how to evaluate regional differences of precipi-
tation at several stations. This difficulty is con-
veniently overcome by a suitable choice of a
multivariate statistical model by which the struc-
ture of dependence among the variates can be
approached. A distinguished feature of a multi-
variate technique adopted in this paper is an
orthogonality property which is a useful strategy
for evaluating regional differences of precipita-
tion pattern at several stations, and for classify-
ing the stations into some subgroups in an ob-
jective manner which have the distinct properties
of precipitation characteristics.

3. FUNDAMENTAL CONCEPTS

The main object of the proposed multivariate
technique is to describe adequately regional dif-
ferences of precipitation pattern at the adopted
stations, thereby applying the parameters esti-
mated from it to a simultaneous simulation model
of precipitation at the stations. To do this, a
mathematical model of a linear transformation is
constructed as follows:

G=WZ  corevvemrmmrenrennnas (1)

{01 92 g5 gn]" =[wy we wse---+- wal'Z (2)
where

G=[g: g2 gs---++-Gn]’ +++-e- (3)

W=[w; ws ws-wn]” -(4)

G T vverreeeeenarmnennnnes (5)

¢i, ith standardized composite variate (fth com-
ponent) and a (1 xN) matrix; w; ith standard
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weight vector and a (1 X #) matrix; Z, standardized
data array among the selected stations and an
(nx N) matrix; G, an (#xN) matrix; W, an

(nx #) matrix; », number of stations; N, number -

of observations.

Before the detailed statistical analysis of the
model equation, the fundamental properties of
the generalized form of Eq. (5) are presented.
Since the ith composite variate of g; should be
standardized with unit variance by definition,
postmultiplying Eq. (5) by ¢:"/N gives

W =1 evemeiieneeienieeeniieieeeenaee (6)
R=ZZ'IN

where R denotes a correlation coefficients matrix
among the stations concerned, and Z” and w;"
are the transpose of Z and w;, respectively.

To obtain a correlation coefficient between the
composite variate and each station, postmultiply-
ing Eq. (5) by Z"/N gives

where a; is defined as a structure vector consist-
ing of correlation coefficients between the com-
posite variate and each station (—~1<a;<1) and
it is a (1xn) matrix. The structure vector is a
useful parameter to account for the internal
structure of correlations among the stations and
to represent the relative contribution of each
station to a liner composite.

The sum of the squared elements of a structure
vector indicates the total contribution of the
stations to the composite variate. This sum is
given by

I/i:aiairzwiszir ........................ (10)

where R=R" and R*=RR.

To extract regional differences of precipitation
pattern from the available records at the stations,
an orthogonal condition that two composite vari-
ates are uncorrelated is introduced. This expres-
sion is given by

Gigi IN=wRw;" =0  (ff) —eeeeeeer (11)

The adoption of an orthogonal condition, from a
hydrologic point of view, indicates that the sta-
tions under consideration could be classified into
some subgroups with the distinct properties of
precipitation characteristics, so that a weight
vector is high in one component, while it should
be low in the other and vice versa.

The procedure to estimate a weight vector in
the first component is to choose w; so as to make
V1 a maximum under the condition of Eq. (6).
This criterion is written as follows:

2T1=W1R2w1r—11(w113w:r—1) ............ (12)

where 2, is a Lagrange multiplier.

Then, set the partial derivative of this new func-
tion 7 with respect to each element of w; equal
to zero, namely,

szlr—)qulr:
Substituting the transpose of Eq. (8) into Eq. (13)
gives

(R—MD)a T =0 oo, (14)

where I and 0 denote an identity matrix and a
null vector, respectively.
Premultiplying Eq. (13) by w: and using Egs. (6)
and (10) give

Vimm A= @i@y] wevevvenrrnnnieniaiennneniininns (15)

From Egs. (8) and (14) the following expression
is derived:
W1=dl/11

The maximization of Eq. (10) under the con-
dition of Eq. (6) leads to the system of Eq. (14)
for the solution of an eigenvalue (1,) and cor-
responding eigenvector (a:i¥) of a correlation
matrix R. An important feature of Eq. (15) is
that an eigenvalue of A, is precisely V), the
quantity which is to be maximized. In other
words, V; is equal to one of the roots of the
characteristic equation, namely, the largest root
1. Eq. (16) gives the solution of a standard
weight vector in the first component.

The procedures to estimate weight vectors in
the other components are subject to the condi-
tions, which are the restriction of Eq. (6) and the
orthogonal condition of Eq. (11). The quantity
of Eq. (10) should be maximized under the con-
ditions of Egs. (6) and (11). The functions neces-
sary for obtaining the weight vector wj (j>¢) in
Eq. (5) corresponding to Egs. (12) and (13) are
expressed as follow:

2T j=wiRrw;" — A {wiRw;* —1)—20w; Rw;"
(>3 (17)
Rw;" —2jRw;” —0Rw;" =0 (7 >1) (18)
where 2; and ¢ are Lagrange multipliers.
Premultiplying Eq. (18) by w; and using Egs. (6),
(10), and (11) yield
VimAGm @ias wovveeerreveeomneesiinnennnee (19)
Premultiplying Eq. (18) by w; (¢+j) and using
Eqgs. (6) and (11) yield
0=w;R2w;"
Suppose ¢=1 and j=2, then substituting Eq. (13)
into Eq. (20) and using Eq. (11) yield

In general, Eq. (21) can hold for the chosen pair



80 K.

of ¢ and j. Therefore, Eq. (18) reduces to

RZer—lJRer:O ........................... (22)
Substituting Eq. (8) into Eq. (22) yields
(R=251)a i =0 -orvveeeiiicniiniiciinn @23

Eq. (23) is explicitly identical with Eq. (14) in a
mathematical notation.

From Egs. (19) and (23) it is clear that 1; and
a;j¥ are the jth largest eigenvalue, and its as-
sociated eigenvector of the correlation matrix,
respectively. The generalized expression of weight
vectors corresponding to Eq. (16) is written as
follows:

WIT=@GAG  wvreesrerrrnresreseneie e (24)

The advantage of technique proposed herein is
that all weight vectors in Eq. (5) are obtained
directly from the successive eigenvalues and their
associated eigenvectors of the original correlation
matrix. Most scientific subroutine libraries on
the computers may facilitate the evaluation for
the solution of 25 and a; in Eq. (23). However,
the elements of each eigenvector in Eq. (23) must
be normalized to satisfy the relation of Eq. (19),
so that they are divided by the square root of
the sum of their squares and then multiplied by
TR

Some distinguishing properties®»'® of eigen-
values and eigenvectors in the system of a real
symmetric matrix (the correlation matrix) are:
(a) The eigenvalues are all real, positive, and
distinct. (b) If a; and a; are eigenvectors cor-
responding to the distinct eigenvalues 2; and 1j,
then aia; =0. (c) For the correlation matrix
with unities in the diagonal, the A; means the
variance of each component, and the sum of the
variances of all # components is equal to the
trace of R, the trace being the sum of the di-
agonal elements. Since the trace of R is the
total variance (equal to #n) to be accounted for,
the cumulative sum of eigenvalues divided by the
trace is the proportion of variance accounted for
by the resulting components.

From the property of (b), and Egs. (19) and
(24), expressions with respect to the structure
vectors and weight vectors are written as follow:

aia;" =2
{ iy =4 e (25)
aia;’ =0 @+
¢ 7=1,2,3, - , )
and
wiw:" =1J2
i avd =1k L e (26)
wa" =0 (i#5)

G j=1,2,3, o, 1)

According to the property of (c), equations with
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respect to the eigenvalues are derived as follow:

m
Z,‘llz/n x 100% = P (m<n)
=

where Py, represents the percentage of variation
accounted for by the mth component.

From Eq. (26) row vectors of W in Eq. (1) are
linearly independent, so that the determinant of
W is different from zero and W has an inverse.
Premultiplying Eq. (1) by W—! gives

ZmTW LG cerreereeennniiseinernonennerrossuneens (29)

where W1 denotes the inverse matrix of W.
Eq. (29) produces a number of properly correlated
series of precipitation of the length desired for
the specified time points at # stations when the
elements of an (# x #) matrix of W are estimated
from the available records at the stations with
help of Egs. (23) and (24). Numerical procedures
are very simple and consist only of generating
random numbers of G because a set of # com-
posite variates are mutually orthogonal (uncor-
related) by Eq. (11).

4. PRACTICAL APPLICATION

The application of the theory developed in the
preceding section to the problem of the analysis
and synthesis of ten-day total precipitation (ten-
day is referred to as “Jun” in Japanese) on the
available records was made.

Ten gaging stations scattered over Hokkaido,
Japan, were selected to illustrate various features
in the regional distribution of precipitation, where
simultaneous records of ten-day total precipitation
were available for the period of 27 years from
1943 to 1970.

Fig. 1 demonstrates the location of stations un-

‘N&KANAI (8)

™
li Y ESASHI(9)
i % 8,
. %
< e o
& AL LOOMU(LD) Y
~7 g 33 ! 60(
H, ) 3 ¢
é,* HABORO(7) : %
o T
oF UMQ,I/(6) .
e ASAHIKAWA(5)
ot e

0 %0 80 km

o e b
s& TSAPPORO(4) M
L RV 2

S k;

0, 4! i
TTTU(2 7 \

] 4 *

)i \
‘ URORAN (1) -

Pacific Ocean

Fig. 1 Location Map of Selected Stations.
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der consideration with station numbers assigned.
The station numbers in this figure correspond
to numbers in the subsequent results shown in
several figures.

Before proceeding into the detailed statistical
analysis of the model equation, results by the
traditional techniques of frequency distributions
and a time series analysis are presented.

Fig. 2 gives a typical illustration of the annual
variation in the means and the coefficients of
variation of ten-day total precipitation at three
stations which are considered as representatives
of different meteorological regions of Hokkaido.
The complex pattern of precipitation in Hokkaido
reflects several interacting influences. The marked
variations in the annual precipitation cycle are:
(a) In the Western areas, heavier precipitation

occurs during the winter, where the impor-

——— 3 (1), Pacific Ocean
5 {(7), Japan Sea Side
""" 5 (9), Okhotsk Sea Si

tance of the cold continental high-pressure
and mountains as factors in the production
of precipitation is evident. The coefficients
of variation are far more stable during the
winter. And melting snow provides the
major portion of the annual runoff in the
side of the Sea of Japan.
A summer maximum of precipitation is ob-
served in the sides of the Pacific Ocean and
the Sea of Okhotsk, where the low-pressure
center recedes northward during the summer.
The coefficients of variation show large sea-
sonal fluctuations in the Pacific Ocean side.

However, the different characteristics of statisti-
cal quantities in the individual regions could not
be employed for the simultaneous syntheses of
precipitation over a fairly large area.

Some examples of correlograms are presented

(b)

Side

de

3 (1), Pacific Ocean Side
3 (7), Japan Sea Side
5 (9), Okhotsk Sea Side

Sep.

Fig. 2(b) Coefficient of variation of ten-day precipitation.
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not only to demonstrate the properties of the- following facts:

oretical stochastic and deterministic processes, (a) The correlograms tend to reach their maxi-
but also to examine the use of a Markov chain mum values at lags that are multiples of 36
model. The solid line in Fig. 3 represents the “Juns” (12 months).

serial correlation coefficients of an observed time (b) The maximum amplitudes of correlograms
series for ten-day total precipitation with the lie within 10 to 20% of the total variance
sample size of 972. From these correlograms the s0 that seasonal variations in the observed
structure of an original time series indicates the time series are assumed to account for 10

Correlogrem at SUTTU (2)

~——; Observed

3 slaulated

Cotrelogram st SAPPORO (4)

—— ; observed

3 eimulated

i obsarved

i etsulated

——— ; observed

ceee i simulated

0.2

——— ; Observed

et KFY XNy ¥ T i simulated

/
Fig. 3 Correlogram of an Original Time Series.
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Fig. 4 Correlogram of a Standardized Time Series.

to 20%, while stochastic random components

account for 80 to 90%.
The fact of (b) indicates that a generation model
of ten-day total precipitation by the time series
theory could fail to make the statistics of simu-
lated data compatible with those of observed re-
cords because of high variances in a precipitation
time series.

Fig. 4 gives the correlogram of a standardized
time series where the seasonal variation at a sta-
tion is removed in such a manner that the mean
is subtracted from an original series for each
“Jun”’, and the difference is divided by the stand-
ard deviation for each “Jun”. The serial cor-
relation coefficients were tested for significance
on a normal random time series of N values'?
(=972). The confidence limits (CL) for a com-
puted value of serial correlation coefficients (R(t))
are given by

—1+1.960VN=7—=2
N—7—1

CL(R(z))=

where r denotes lag time, and the value of 1.960
is the standardized normal variate corresponding
to the probability level of 95%. The confidence
limits of Eq. (30) are also shown in Fig. 4. Since
most of the serial correlation coefficients of a
standardized time series for ten-day precipitation
lie within the confidence limits, R(r) is considered
to be insignificantly different from zero at the
probability level of 95%. Therefore, the reliability
of a Markov chain model for generating sequences

of ten-day total precipitation is questioned be-
cause a time series with seasonal variations re-
moved is regarded as a pure random process.
Some results by the multivariate technique are
presented. Fig. 5 gives the percentage contribu-
tions of the first four components to the total
variance for ten-day precipitation where each

eigenvalue is divided by the total variance of 10.

The four components account for more than 75%

in every month. The contribution of the first

component to the total variance is the largest in
every month, indicating an important general
factor of precipitation pattern among the stations.

Seasonal differences in terms of variance of each

component are noticed:

(a) During the winter season, the first component
contributes 35 to 40% to the total variance,
and the contributions of the second and third
components are equal to about 20%.

(b) During the summer, the first component ac-
counts for about 70%, which shows the
higher contribution in contrast with one
during the winter. The second and third
components account for about 20% and 10%,
respectively.

(c) Relative large contributions of the second
and third components during the winter
suggest that regional differences of precipita-
tion distribution among a given set of sta-
tions would be recognized. This problem is
solved from the subsequent result in terms
of a structure vector.
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Fig. 5 Contribution of each component to total variance.
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Fig. 6 Distribution of Three Structure Vectors.

Fig. 6 illustrates the distribution of structure
vectors of the first three components in the three
dimensional systems. The distribution of struc-
ture vectors which are mutually orthogonal facili-
tates the evaluation of regional differences of
precipitation over a wide area, and the clustering
of the stations. Three structure vectors, for ex-
ample, are given by (a1, @, as)=(0.736, —0.305,
—0.249) for MURORAN (station 1), (ai, @, as)
=(0.337, 0.326, —0.453) for SUTTU (station 2),
and (a;, az, as)=(0.820, 0.025, —0.331) for OTARU
(station 3) in the first “Jun” of January and so
on.

Equation (25) is an important property in which
the contribution (equivalent to the eigenvalue ;)
is related to the structure vector of each com-
ponent, so that it is possible to evaluate the effect
of a structure vector to the variance in one com-
ponent in which some elements of a structure
vector have large values and the others have
small values. Some characteristics with respect
to the distribution of three structure vectors are:
(a) A structure vector of the first component

has positive elements in every ‘“Jun” be-
cause (almost) all correlation coefficients are
positive in the original correlation matrix.
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During the summer, a structure vector has
large coefficients of about 0.8 for all ten
stations, causing the 1; to have the large
contribution to the total variance. No re-
gional differences of rainfall are recognized
and a large-scale pressure area is uniformly
continuous during the summer season. On
the other hand, during the winter, a struc-
ture vector has a wide range of coefficients
between 0.3 and 0.8, resulting in the
having the smaller contribution. This result
suggests that snowfall may be influenced by
the local variations inherent to the in di-
vidual regions during the winter.

(b) A structure vector of the second component
has positive coefficients for the stations in
the Sourthern part of Hokkaido (stations;
(1), (2), (3), and (4)), and negative coefficients
for the stations in the Northern part (sta-
tions: (5), (6), (7), (8), (9), and (10)) during
the summer. This division may result from
the different meteorogical factor. As shown
in Fig. 5, the contribution of 1; is large in
the second “Jun” of July. This effect is
interpreted from the fact that the stations
(1), (2), and (4) have large positive coefficients
of 0.7, while the stations (8) and (9) have
large negative coefficients of —0.7 in Fig. 6.
On the other hand, during the winter, a
structure vector of the second component
provides a means for the divison of the sta-
tions into two groups in the sides of the
Sea of Japan, and the Sea of Okhotsk. The
Mountains running in the north-south direc-
tion as a factor in the production of pre-
cipitation is of great importance in the
second component.

(c) In the third component, one subgroup of
stations (5) and (6), and another subgroup
of stations (8) and (9) contribute to make
the 25 large during the summer. During the
winter, a structure vector has larger co-
efficients for the stations (8), (9), and (10) in
the side of the Sea of Okhotsk.

(d) The distribution of these three structure
vectors plays an important role in clustering
the stations. A set of ten stations are made
up of some distinct subgroups. For example,
they consist of 4 subgroups of (1, 4), (2, 3,
6), (5, 7), and (8, 9, 10) in the first “Jun” of
January, while 4 subgroups of (1), (2, 3, 4),
(5, 6, 10), and (7, 8, 9) in the first “Jun” of
July and so on.

The distribution of three weight vectors is
similar to that of structure vectors, since elements

of a weight vector are proportional to those of
a structure vector as expressed by Eq. (24).

Since it is possible to express the contribution
of each component to the total variance by an
eigenvalue, and also to assess independent effects
of weight vectors by an orthogonality property
in the multivariate analysis, the simulation tech-
nique by Eq. (29) is valuable for simultaneous
syntheses of ten-day total precipitation at 10 sta-
tions. One of the difficulties encountered in the
practical study was that ten composite variates
which are mutually orthogonal were generally
skewed, even though the available records for
each ‘““Jun” were normalized by a square root
transformation. To overcome this situation in the
simulation process, normal random numbers on
a gamma distribution were generated. Such a
system is represented® by

2 ﬁz_ﬁi)“’_i ——
gij= " (1—)— 6 36 " (31)
(6=1,2,3, , 10)

where y; denotes the coefficient of skewness in
the 7th composite variate of Eq. (5), #;; is a nor-
mally distributed random number with zero mean
and unit variance, and &;; is a random number
on a gamma distribution with zero mean, unit
variance, and skewness 7;.

Ten-day total precipitations at 10 stations were
simultaneously generated for the period of 50
years by Eq. (29), where elements of a (10x10)
matrix of W were estimated from the available
records by use of Egs. (23) and (24), and random
numbers of G were generated by Eq. (31). As
a check on the validity of the multi-site simula-
tion model by Eq. (29), the means and standard
deviations of the observed records compared with
those of the simulated data for 50 years of opera-
tions are illustrated in Fig. 7 for some stations.
The serial correlation coefficients of the observed
(sample size=972) and the simulated (sample size
=1 800) for ten-day total precipitation are shown
in Fig. 3. Results by Eq. (29) reveal fairly good
agreements with the essential statistics of the
observed records.

Even though the use of simulation techniques
can not entirely remove the chance elements in
water resources projects, the good agreement be-
tween statistical properties of the observed and
generated data indicates that the simulation model
of correlated simultaneous ten-day total precipita-
tion over any specified length for any number
of stations proposed herein is useful for decision
making in the simulation process.
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All computations involved in this study were
performed on the FACOM 230-60 system in the
computing center of Hakkaido University.

5. CONCLUSIONS

On the basis of some results from this study,
the following facts are satisfactorily presented:
(a) The multivariate statistical analysis by ma-

trix representation is a very useful tool for
extracting information from a given set of
stations.

(b) The system proposed herein ultimately leads
to the solution of a linear-equation system,
with the problem of a matrix inversion, and
the solution of eigenvalues and correspond-
ing eigenvectors of a correlation matrix.
Therefore, the theory is simple and the com-
putation procedures are suitable in practical
situations when investigators can utilize the
subroutine libraries on the high-speed com-
puter.

(¢) The contribution of each component to the
total variance is expressed by an eigenvalue
which is a useful index for evaluating sea-
sonal variations of precipitation distribution
over a fairly wide area.

(d) The structure vectors which are mutually
orthogonal facilitate the evaluation of re-
gional differences of precipitation pattern
among the stations. And the distribution
of the structure vectors reflects several in-
teracting influences of meteorology and
topography as factors in the production of
precipitation, and it offers the solution to
the problem of clustering the stations even
when there exist high interrelationships
among them.

(e) A decrease in the time unit of a hydrologic
time series usually leads to increased pro-
blems in fitting of data generating models
mainly due to the high variance of a time
series. The inverse transformation of a
linear system proposed herein provides a
means for simultaneous syntheses of any
specified length for any number of stations,
where the total variance is expressible and
independent effects of weight vectors can be
assessed. The model equation improves some
shortcomings of the traditional simulation
techniques when the time unit of a precipita-
tion time series decreases.
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