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ALLOWABLE STRESS FOR TWO-HINGED STEEL ARCH

By Shigeru Kuranisur*

SYNOPSIS

An allowable stress formula for the conventional
structural design is presented in this paper on
the basis of the ultimate strength anaysis con-
sidered the finite deflection, the spread yeilded
zones and the cooling residual stresses of arches
as follows:

oo+ koo <(F.S.)

L5 =0y)(F.S.){0.51 +4n —10n?
—0.1(0y/2 400 k&/em?)
—0.5 x 10-522(5'y/2 400 k8/cm?)

k=0.55-+(2 400 *6/°m%/g,)/4

For the 2nd order elastic analysis, an allowable
stress formula is also proposed in a simple form:

o4 g2 <0.90,/(F.S.)

1. INTRODUCTION

(1) General

Concerning the load carrying capacity of arches,
a theoretical study, in which finite deformation,
residual stresses and spread yielded zones were
considered, was made by the author?. From his
numerically calculated results the following be-
havior of arches loaded to the ultimate state in
their plane could be concluded as a general
tendency.

1) If an arch keeps perfectly elasticity, it
makes no great difference in the ultimate load
intensity for symmetrical loading pattern and un-
symmetrical one. But if yielding occurs, the un-
symmetrical loading plays a leading role in the
load carrying capacity problem and decreases re-
markably the strength of the arch.

2) The collapse load of an arch is considerably
less than the elastic limit load determined accord-
ing to the 1st order elastic analysis, especially
for a nearly uniformly distributed load over the
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whole span.

3) The load carrying capacity of an arch de-
pends chiefly on slenderness ratio of the arch
rib, rise-span ratio and yielding point of ma-
terial.

4) The collapse of an arch occurs rather at a
low level of strain even in the plastic range, so
that strain hardening does not affect its load
carrying capacity.

Fig. 1 shows an arch and loading referred. In
this paper, a design formula according to the con-
ventional allowable stress method will be pre-
sented on the basis on the above mentioned
ultimate strength analysis. Besides it, a com-
parison of the ultimate load vs. the elastic limit
load determined according to the 2nd order elastic
analysis is discussed and a critical stress level
for design purpose is proposed to estimate the
ultimate strength of arches.
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Fig. 1 Loading and configuration of arch.

(2) Criteria for Cross Section

Two types of cross section, sandwich cross sec-
tions with the residual stresses and rectangular
cross sections were adopted for calculation to
discuss the behavior of arches at the ultimate
state. To generalize the results obtained, the
three characteristic factors of a cross section A,
W and I must be adjusted each other to get an
equivalent sandwich cross section or rectangular
cross section with an arbitrary cross section. A,
W and I are cross sectional area, section modulus,
and inertia moment of cross section respectively.
But only two factors in three are possible to
coincide with each other. In Fig. 2, compared



72 S. KURANISHI

Gmax(Rec.)! Amax.(Sand.)
1.1

A=T5 =100
1.0
= S
,:"/ AT
- =
09 a7 -
- T)=150 Py o 71
=200 n=0.150
0.8 s
0 025 05 075 1.0

Fig. 2 Comparison curves of ultimated
strength of arches with sandwich and
rectangular cross sections with coin-
cident A and L

curves for the ultimate loads of arches with sand-
wich sections and rectangular ones are presented
for the case of coincident A and I. In the figure,
2 indicates the slenderness ratio of arch rib con-
cerning the whole length of the arch. This case
is in the best agreement of the ultimate loads
among the three cases, so that, the use of an
equivalent sandwich cross section, coinciding with
sectional values in A and [ respectively, leads to
a good estimation of the ultimate strength of the
arch. Since the sandwith cross section may be
regarded to have more analogous characteristics
with a conventional cross section of steel struc-
tures than rectangular ones.

In this paper, all the calculated results and pro-
posals are presented in reference to the case for
sandwich cross sections with the residual stresses
(or=0y/3). Because the cross sectional shape af-
fects so much the ultimate strength of arches that
an almost infinitive amount of calculation is re-
quired to estimate it. But, of course, these may
be impossible for us and unfit for engineering
purpose. A unified cross section would be con-
veniently accepted as a basis of estimation and
variations of the ultimate strength of arches due
to the difference of the cross sectional shape can
be included in the factor of safety.

Column-curves for a sandwich cross section with
or=0, 0-/3 and 20,/3 and other typical ones are
presented in Fig. 3. The basic column curve
at the Japanese Specification for Highway Bridge
based on the buckling about a weak axis of H
beam is added also in the figure. The effect of the
residual stresses on the ultimate load g, of an
arch is shown by the ratio to the lst order elastic
limit load in Fig. 4 for the case of =100, #=0.150
and oy=2 400 kg/cm?, 3 600 kg/cm?, where s is a
coefficient concerning the load distribution pat-
tern as shown already in Fig. 1 and » is a rise-
span ratio.

The ratios of the ultimate load gn,, to the lst
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Fig. 3 Column curves with sandwich cross
section.
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Fig. 5 Comparison of ultimate load vs. 1st
order elastic limit load.

order elastic limit load ¢}** are shown in Fig. 5
for #=0.150, ¢3=2 400 kg/cm?, 3 600 kg/cm?.

(3) Applicable Arch and Loading

A numerical study was carried out using the
following parameters, steel and loading:

n=0.125, 0.150, 0.200
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A=T75, 100, 150, 200
s=0, 0.25, 0.5, 0.75, 0.99
0y=2 400 kg/cm?, 3 600 kg/cm?.

The proposed formula may be valid only in the
above mentioned range.

The strength studied herein is concerning the
inplane collapse of two-hinged steel arches, but it
might be applicable rather safely to other types
of arch, for instance, fixed arches or arches with
stiffening girders. Only unsymmetrically distrib-
uted loads are applied herein, but concentrated
loads or symmetrically distributed loads are not
dangerous for arches calculated by the allowable
stress based on the unsymmetrical load pattern.

2. FORMULATION OF ALLOWABLE
STRESS

(1) Allowable Stress for the 1st Order Elastic
Analysis

Axial force N'** and bending moment M*** act-
ing on an arch subjected to the ultimate load
can be calculated applying the 1lst order elastic
analysis. Usually there is a small difference of
position between two points the maximum value
of M's/M, or the maximum sum of M's*/M, and
NN, are produced, where N, and M, are
axial yield force and yield moment respectively.
In this paper the values at the point where the
bending moment takes the maximum value, are
used and denoted by M}* and NI*. Because
the sandwich cross section has a tendency to
be estimated the effect of the axial force too
high and the difference of the values at the two
point is not so large. For some slender arches,
the maximum stress is calculated at their spring-
ings. But nevertheless the point where the bend-
ing moment becomes maximum, is referred to
the analysis considering that axial forces at the
springings affect little the deformation of the
arch,

An interaction equation relating N's* to M!st
obtained may be expressed by the following con-
ventional design formula:

NKSL/N7+ lest/MySalst
or O oS @S K (FLS.) oo (1-b)
o3t =(a'stey)/F.S.
where ¢!* and ¢li' are working axial and bend-
ing stresses respectively, 1% is the allowable stress
for the 1st order elastic design, F.S. is a factor

of safety and «'** and k are coefficients depend-
ing on 2, # and ¢y. The coefficients a'** and k

are determined for the maximum bending moment
Mt and the axial force Nt at the same point
as mentioned above.

Fixing 1, #» and ¢,, the coefficients a'** and %k
can be calculated for the various loading pattern
parameter s by an iterative method. At the first
step, supposing M*=0 for s=0.99 (a nearly uni-
formly distributed load over the whole span) and
providing NX'/Ny=a'', a'** and k are calculated
for a certain s. Using these «'* and k, we can
get improved a'** and k again for $=0.99. This
calculation process is repeated to obtain the suf-
ficiently converged values of a's* and k.

For a certain slenderness ratio, the values of
a'* show very small variations with s=0, 0.25, 0.5
and 0.75 and scattering of the calculated values
is less than 0.5% of the mean value of a'**. Fig.
8 shows the interaction curves of these mean
values vs. slenderness ratios taking g,=2 400 kg/
cm? and 3600kg/cm?, and #=0.125, 0.150 and
0.200.

The value of k varies depending on s, i.e. de-
pending on the ratio of NJS'/Ny and ML'/M,.

Fig. 6 and Fig. 7 show the interaction curves
k vs. s, 2 and 0y.

The value of «!** may be expressed also by a
conventional parabolic curve equation as follows:

alst=A— Bj?

After an appropriate estimation of the curves,
B may be written by the following simplified
equation:

B=0.5x10"%x (0/2 400 Es/om%) .oovinien (3)

This equation is valid only for ¢,=2 400 kg/cm?
and 3 600 kg/cm?, but it may apply approximately
to an intermediate value of oy.

Substituting the assumed value of B into Eq.
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Fig. 6 Effect of #, 1 and s on %k
(oy=2 400 kg/cm?).
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Fig. 7 Effect of », 2 and s on k
(6y=3 600 kg/cm?).

(2), A can be obtained by the least square method.
But A depends on # and ¢y as shown in Fig. 5.
Estimating appropriately the curves obtained by
the least mean square method and simplifying
coefficients so as not to exceed far beyond the
calculated points, A is expressed by the follow-
ing equation:
A=0,51+4n—1012—0.1(g,/2 400 xe/em?),

Combining Eq. (3) and Eq. (4), the following

formula is obtained for a!s':
a'*t=0.51+4n —10n2—0.1(gy/2 400 k&/cm?)
—0.5x10-%(0y/2 400 ks/em) 2 ... (5)

The curves calculated by the above formula are
plotted in Fig. 9 with the aimed values presented
in Fig. 8.

Even for an arch applied uniformly distributed
loads, there is produced some bending moment
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Fig. 8 Appearent inelastic buckling stress.
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Fig. 9 Proposed curves for apparent unelastic
buckling stress.

due to shortening of the arch rib it by the axial
force. But as is clear from Eq. (1), a***c¢y pro-
vides the apparent inelastic buckling stress of
arch.

It seems to be a little difficult to formulate the
value of k, because k varies complicatedly ac-
cording to the values of s, #, 2 and ¢y. Using
Eq. (5), k can be recalculated. Scattering of k
obtained covers also the range of about +0.05 for
0<5<0.75. The maximum values of k in the
range of 0<s<0.75 are plotted in relation to 2 in
Fig. 10. These interaction curves vary also com-
plicatedly with # and ¢y, so that it may be hard
to express these curves in a simple equation.

Estimating boldly these curves not to exceed
beyond the maximum points of them, we can
take k=0.8 for g,=2 400 kg/em? and 0.71 for oy
=3 600 kg/cm? in safety sides.
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Fig. 10 Maximum k& curves in Fig. 6 and
Fig. 7.
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Because of smaller W of on arbitrary cross
section compared with that of the equivalent
sandwich cross section with the same values of
A and I, the value of k¥ may be reduced by
about 10%. But in case of braced rib arches,
the above mentioned values are seem to be ap-
propriate ones.

So we can propose the following value for k
in safety:

k£ =0.55-+0.25(2 400 8/02Gy) oviinnn. (6)

If application of the above equation is confined
to the conventional cross sections of solid rib
steel arches, this value may be reduced by 10%
also.

(2) Allowable Stress for the 2nd Order Elastic
Analysis

In the preceding chapter, the allowable stresses
were presented relating to the conventional struc-
tural theory. But of course, the so-called secant
formula approach is applicable to estimation of
the strength of arches.

In Fig. 11, the upper and lower bound curves
for the ratio a?®? of the ultimate loads to the
elastic limit loads according to the 2nd order
elastic analysis are presented. The difference of
«®d for each case is so small that it is impos-
sible to identify each curve distinctly in the
figure. In any case, these ratios fall in the range
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Fig. 11 Range of ratio of ultimate load and
the second order elastic limit load.

between 1.0 and 0.9.

Considering not so large nonlinearity between
the load and the bending moment or the axial
force obtained by the 2nd order analysis, the
following allowable stress is given:

09 =0.90y/(F.S.) . correeemerriaeriinniiians (7)

This value may be raised a little for a conven-
tional cross section also and the values of ¢,/
3" are presented in Fig. 12, for reference, con-
cerning the case of the rectangular cross section.
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Fig. 12 Ratio of ultimate load and second
order elastic limit load for rectan-
gular cross sections.

3. CONCLUSION

Rearranging the results obtained by the ulti-
mate strength analysis of two-hinged steel
arches?, we were able to formulate reasonable
design equations as given by Eq. (1), (5) and (6)
for the conventional structural design method.

If the secondary elastic analysis is applied, Eq.
(7) makes a good estimation of the strength of
two-hinged steel arches and other types of arches
also.
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