PROC. OF JSCE,
No. 212, APRIL, 1973

109

LINEARIZATION TECHNIQUES FOR EARTHQUAKE RESPONSE
OF SIMPLE HYSTERETIC STRUCTURES

By Hisao Goro* and Hirokazu IEMURA™*

1. INTRODUCTION

In recent years, statistical aspects of structural
vibration induced by earthquake excitation have
received considerable attention of many re-
searchers.
however, has only dealt with structures with
linear restoring forceb.

To evaluate the reliability of structures during
earthquakes, it is considered essential to investi-
gate statistical characteristics of the response of
structures with hysteretic restoring forces, since
most structures show weak or strong yielding be-
havior in strong earthquakes. However, from the
reason that the principle of superposition (Duha-
mel’s integral) cannot be applied to nonlinear
structures, it is generally very difficult to make
theoretical analysis of their earthquake response.

As an exact analytical method, we have the
Fokker-Planck equation®., But at the present
stage, it is applicable only to the stationary re-
sponse subjected to white noise excitation®. It
is also of great significance in the investigation
of earthquake response to consider the frequency
characteristics and the nonstationarity of the ex-
citation, since most of the strong earthquake
motions have the predominant frequency® and
the structures start to vibrate from the static
state. We cannot discuss these important char-
acteristics of the excitation and of the response
by the solution of the Fokker-Planck equation at
the present stage.

On the other hand, the numerical methods such
as a step by step integration of the equation of
motion on a digital computer have a great appli-
cability for any kind of hysteresis and for any
kind of excitation®. However these methods
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A majority of these statistical works, "

consume a lot of time for the calculation of many
samples. Moreover we have to consider addi-
tional ruling parameters due to hysteretic char-
acteristics of the structures. Therefore, accumu-
lation of a great amount of samples seems to
be needed for each parameters to make theoreti-
cal statements about the earthquake response
characteristics of nonlinear hysteretic structures
by the numerical methods.

To overcome these difficulties, equivalent line-
arization techniques are very powerful methods
in the range of admissible error, since the results
of random vibration theory in linear structures
can be available®.

In this paper, two equivalent linearization tech-
niques were used to find the general properties
of earthquake response of nonlinear hysteretic
structures. By using these two methods, not only
the stationary response but also the nonstation-
ary response of structures with hysteresis were
predicted. Moreover numerical simulations were
performed on a digital computer to seek for the
applicability of the equivalent linearization tech-
nigues used herein.

2. EQUIVALENT LINEARIZATION
TECHNIQUES

To make theoretical discussions about the earth-
quake response characteristics of nonlinear hys-
teretic- structures more general, a dimensionless
representation of the equation of motion was tried
in the previous paper”, which leads to the follow-
ing equation of motion of a single-degree-of-free-
dom structure with viscous damping and with
any type of nonlinear hysteretic characteristics:

HE)+Pop() +ala, By s 42, F)
= —#sE) (1, B, £) coevvvmeeeerennines (1)

where p(f): ductility factor, « and §: parameters
which show characteristics of dimensionless hy-
steresis ¢(a, 8, #, 11, 1), Bo: damping coefficient in
small oscillation of yielding structures, -: deriv-
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ative by dimensionless time, £, 75: a constant show-
ing the intensity of the excitation, ¢(f): a deter-
ministic shape function which exclusively assumes
positive values, f(z, ks, £): a stationary non-white
random process with zero mean value and the
variance of unity, y=wy/wo and ky: parameters
showing the characteristics of the power spectrum
of f(f), wy: predominant frequency of f(f), wo
(=1.0): natural frequency of small oscillation of
yielding structure, respectively.

By using the equivalent damping coefficient S
and the equivalent natural frequency weg, the
equation of motion of the equivalent linear struc-
ture can be written as follows:

)+ Beafilt) + wota(8)
= — Vs (G By £) woeeeeemeeeennne (2)

Concerning the techniques to determine 8¢, and
weq both in sinusoidal and in random vibration,
discussions have been made in the previous pa-
per®. After a further investigation of these tech-
niques, an interesting result about them has been
found. In connection with it, the following dis-
cussions shall be made as to two typical lineari-
zation techniques; one is the least mean-square
error method first developed by T. K. Caughey®,
and the other is what we may call the energy
balance method first proposed by L. S. Jacobsen!®,
These two methods have been discussed separate-
ly and their relation with each other has never
been investigated. However, we shall see in the
following sections that they are closely correlated
to each other.

(1) The Least Mean-Square Error Method

In this method, the two equivalent linearization
parameters B¢ and w,q are determined so as to
minimize the mean-square error between Egs. (1)
and (2). The mean-square error in one cycle (z,
v+477) can be written as follows:

1 (eter . .
I(Beqs weq)zg ST {Bott+q—Peatt

Now, let us minimize I(Beq, weq) With respect to
Beq and wl,.

T 8o f 2t 4 § gpidt—PBeq § n2dt
fea
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weq
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in which j; dt denotes the integration over one

cycle of oscillation. If the nonlinearity of hyster-
esis is weak and the damping is slight, we can
assume that the response u(f) is a sinusoidal time
function with a slowly varying random amplitude
#zo(f) and a random phase angle &(f); i.e.,

2#(t)=polt) cos {wgqt+¢(t)} .................. ( 5 )
By substituting Eq. (5) to Eq. (4), we obtain

Bea(tt0)=Po+ j;qﬂdt/fp?dt

wiue)= § quat| § wa

(2) Energy Balance Method

In this method, the equivalent damping coeffi-
cient is determined so as to equate the energy
dissipation by the hysteretic structure to that of
the linear structure; i.e.,

§{ﬂoﬂ+q}dﬂ=§ﬂeq/ld,u .................. (7)

The equivalent natural frequency can be de-
termined independently by various methods. But
it seems to be reasonable to obtain it as the res-
onance frequency of structures with hysteresis.
In the previous study®, the resonance curve was
obtained as

{S(e0) — Borow} >+ {Cltto) — prow®}?=7% -+(8)

where

S(eo) = a(a, B, to cos 0) sin 9d6
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T

The resonance frequency is determined by let-
ting
dtto(w)
DT () eevneenneeneeie e e e eineaieaaanas 1
Pyt (10)
From Egs. (7)~(10), the equivalent linearization
parameters can be obtained as follows:

Bealtt0)= Po+ §qd;4/§ﬂd;z

, 1
wl(#0)=——Cltto)
Ho

Under the assumption of Eq. (5) and consider-
ing that dg=pdt, the results of Egs. (6) and (11)
completely coincide with each other for any type
of hysteresis. It is considered very interesting
from the physical viewpoint that the quite differ-
ent methods conclude the same expressions of the
equivalent linear damping coefficient and natural
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frequency. That is to say, the equivalent linear
structure determined from the least mean-square
error method has the same resonance frequency
and moreover dissipates the same amount of en-
ergy as that of hysteretic structures. Therefore
we can conclude that the least mean-square error
method is physically well-grounded in linearizing
the structures with hysteresis.

As a typical example of dimensionless hystere-
tic characteristics, bilinear hysteresis shown in
Fig. 1 is considered in this study. The yielding
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Fig. 1 Nondimensional representation
of bilinear hysteresis.

point is defined as the point at which g=g¢=1.
The initial stiffness before yielding is unity and
the second stiffness after yielding is (1—#), where
»n is the parameter which shows the nonlinearity
of the bilinear hysteresis. So that this hysteresis
shows the linear structure if #=0, and the perfect
elasto-plastic structure if #=1, Then after some
algebraic treatments, expressions in Egs. (6) and
(11) for the bilinear hysteresis yield

#o<1:  Begltto)=Bo )

to>1: ﬁeq(#0)=ﬁo+§%(5i;71) {

<l 0l (p)=1

po>1: wgq(po):%%@l " ]
s

+zz_ cos™! <1———2~> +(1—n)
T Ho

Numerical values for Eq. (12) are shown in
Fig. 2 for the parameters #=0.25, 0.50, 0.75, 1.00.
The values of the equivalent damping coefficient
Bea(#20) and the equivalent natural frequency weg(o)
within the elastic region (#<1.0) are 8 and uni-
ty, respectively. Since the area of the bilinear
hysteresis loop is proportional to » which shows
the nonlinearity, the value of the equivalent damp-
ing coefficient becomes greater according to the
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Fig. 2 Equivalent linearization parameters.

increase in the parameter z and it is asymptotic
to zero when the amplitude increases infinitely.
The equivalent natural frequency shows smaller
value with the increase of #. In the limit of in-
finite amplitude, it is asymptotic to vI—#z in
which (1—#) is the second spring constant after
yielding.

(3) Equivalent Linearization Parameters in
Random Response

From the analysis in the previous section, the
equivalent damping coefficient and the equivalent
natural frequency are obtained as a function of
response amplitude g. Direct application of these
results to random response is impossible. But if
the probability distribution P(zo) of the peak am-
plitude g in random response can be estimated,
the equivalent linearization parameters in random
response would be defined as their expectations
using P(uo). Thus in the case of stationary ran-
dom response, the equivalent linearization param-
eters would be defined as a function of standard
deviation ¢, of ¢ in the following form:

)=\ Bt P e 9, )

otio) =\ trIP (e 9,po

in which the peak amplitude distribution has been
obtained by S. O. Rice'® as

2
P(pro, oﬂ)z—(':;i exp <—— 2“22 > ............... (14)
# #

In the case of nonstationary random response, the
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peak amplitude distribution which has been ob-
tained by T. Kobori and R. Minai'® as a function
of standard deviation of # and g and the correla-
tion coefficient between them shall be used in
this study. Then we obtain

.BEQ(G'm Pugs ag)
=SO ABCQ(#O)P(/"OY Cpus Ouiis O'/Z)d/,lo
@3 (Gps Opsis 1)
= SO wgq(ﬂo)P(/"Ov Gus Opjis O';Z)dﬂo
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3. STATIONARY RESPONSE

(1) Iterative Method

In this chapter, we will investigate the station-
ary response of structures with hysteresis sub-
jected to stationary random excitation 7sf(#) both
by analytical and by experimental methods.

In the previous chapter, equivalent linearization
parameters have been determined analytically as
a function of the r.m.s. response. But the sta-
tionary r.m.s. response itself is still unknown.
From the experimental methods such as numeri-
cal simulations on digital or analog computers, we
would be able to obtain it. However, analytical
methods to predict the response of nonlinear
structures are considered to be much more im-
portant in order to make theoretical discussions
about the random response of these structures.

It is also desirable in earthquake response analy-
sis to consider the frequency characteristics of the
excitation. In this study, therefore, we take as
the stationary excitation f(f) of which power spec-
trum shall be represented in the following form
analogous to the receptance of the relative veloc-
ity of a simple structure:

(o]0r)?
Ty (1 (o] wrP}2+4h% (o] or)?

Sr(w)=

in which %y is the damping factor and ey is the
natural frequency of a simple structure. It is

readily verified that Eq. (16) satisfies the condi-
tion that f(f) should have the variance of unity.

The stationary r.m.s. response of the equivalent
linear structure of which parameters B.q and weqg
can be obtained from Egs. (13) and (14) can easily
be estimated by using the random vibration
theory for linear structures as

1 o
si=1 | Sio) | H) o
_1 S“ 7557(w)(wr/p)*
o (03— 0P +(Beqw)?
Then the following three relations are obtained

for the stationary random response of hysteretic
structures from Egs. (13) and (17).

d@ ceevreeer (17)

Beg=func. (o,)
weg=func. (¢,)  p e (18)
[ =func. (Beq, Wegq, Vs, WF, /’l]‘)

By solving three relations, equivalent linear pa-
rameters foq and weq would be determined as those
of the optimum equivalent linear structure and
the r.m.s. response of it would also be predicted.
However it is quite hard to obtain the solution
of Eq. (18) explicitly. Therefore, to find the nu-
merical results of Eq. (18), an iterative method
was used on a digital computer!®, In this method,
we first estimate the r.m.s. response of the linear
structure with parameters wo and jo, then we ob-
tain corresponding equivalent linear parameters
weq and Beq from Eq. (13). By substituting these
parameters to Eq. (17), we have the r.m.s. re-
sponse ¢,. Repeating this procedure, the response
approaches a constant value.

(2) Calculated Results

The numerical results for the stationary r.m.s.
response of structures with bilinear hysteresis and
corresponding equivalent linear parameters are
shown in Fig. 3 for the set of parameters 7;=0.5,
Po=0.1 and #=0.00, 0.25, 0.50, 0.75.

In Fig. 3(a), we can find that the r.m.s. re-
sponse of the bilinear structure with a stronger
nonlinearity of hysteresis is comparatively less
than that of the linear structure, #=0.00, that is
weg=wo and Peg=po in the frequency range from
p=wr/©=0.75 to 3.0. On the contrary, in the
frequency range 7<0.75 the r.m.s. response is
not necessarily smaller than that of the linear
structure.

In order to discuss these response characteris-
tics of hysteretic structures generally, the varia-
tion of we and feq which are shown in Fig. 3(b)
and (c) should be investigated. The equivalent
natural frequency weq is always less than wo be-
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Fig. 3 Stationary response of structures with
bilinear hysteresis.

cause of the softening-type spring characteristics,
and the greater # is, the less weq becomes. The
equivalent damping coefficient B¢y is necessarily
greater than B in consequence of hysteretic en-
ergy dissipation: it increases with increasing #.

The effect of such properties of weq and Feg in
the stationary r.m.s. response would reasonably
be explained from the concept of the transition
of the receptance of the structure due to its hys-
teretic properties schematically illustrated in Fig.
4 in terms of the spectrum coordinate. That is
to say, as the structure softens due to yielding
and consequently we, decreases, the receptance of
a relatively “rigid” structure (=0.5; wo>wy)
moves closer to the peak of the spectrum of the
excitation and tends to increase the response. On
the contrary, such a shift of the receptance tends
to suppress the response of a relatively ‘“soft”
structure (=2.0; wo<wy). DBesides, an increase
in feq limits the response over the whole frequen-
cy range, and the compound effect of Beq and weq
results in Fig. 3(a). Thus the concept of the
transition of receptance seems very powerful to
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Fig. 4 Transition of the receptance due to
nonlinearity and hysteresis.

make theoretical discussions about the random
response characteristics of structures with any
kind of hysteresis.

(3) Numerical Simulation

In order to check the accuracy of the predic-
tion of the r.m.s. response in the previous sec-
tion, a numerical simulation has been carried out
on a digital computer.

The stationary artificial earthquake has been
generated by the following procedure. First, a
white noise was generated as the summation of
500 sinusoidal time functions of which circular fre-
quency and phase angle are random variables
with uniform probability densities'¥, Then the
velocity response of a simple structure with pa-
rameters oy and %y subjected to this white noise
was calculated by the linear acceleration method.
The stationary part of the velocity was taken as
the excitation f(¢).

The response of the structures with bilinear
hysteresis was obtained by integrating the govern-
ing equation of motion by the linear acceleration
method. The r.m.s. response ¢, of the ductility
factor ¢ was calculated as the time average over
the stationary duration of 20 times the natural
period of infinitesimal vibration.

Both analytical and experimental results are
shown in Fig. 5 for the same sets of parameters
as in Fig. 3. It is observed that the analytical
and simulated results agree rather well for the
parameters of #=0.25, 0.50 and 0.75 as shown in
Figs. 5(a), (b) and (c). So within the limits of
these parameters, it could be said that the iter-
ative method investigated in the previous section
is very effective to predict the r.m.s. response of
the bilinear structures.

Concerning the distribution functions of the
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Fig. 5 Comparison between simulated and predicted results of stationary response.

ductility factor g of these structures, H. Kameda
and one of the authors showed in their previous
paper!® that they are not on the whole extremely
different from the Gaussian distribution. There-
fore the statistical properties of the stationary re-
sponse of these structures could be explained by
using the Gaussian distribution with zero mean
and the standard deviation predicted by the equiv-
alent linearization used herein.

On the other hand, the simulated result shows
much greater values than the analytical result for
the structure with perfect elasto-plastic hysteresis
(=1.0). This discrepancy is remarkable espe-
cially for a “rigid” structure (»=0.5). For a
“soft” structure, it is not remarkable since the
response remains almost in the elastic region.

These effects are mainly attributable to the
growth of the plastic deformation due to an ex-
cessive yielding behavior. The authors pointed
out by using the moving average method that a
conspicuous plastic deformation occurs only at
the structure with perfect elasto-plastic hyster-
esis”. Therefore the r.m.s. response cannot be
predicted by the equivalent linearization tech-
niques without estimating the plastic deformation

analytically.

4. NONSTATIONARY RESPONSE

(1) Step-by-Step Method

In the previous chapter, the equivalent linear
structures and their response in the stationary
state were investigated. It is, however, very im-
portant in the reliability analysis of structures in
strong earthquakes to investigate the nonstation-
arity of response of structures with hysteresis for
the following reasons. 1) The strength of earth-
quake motions varies with time. This time vari-
ation seems to depend on the location of the ob-
servation site relative to the hypocenter and on
the pass characteristics, etc. 2) Even we might
simply assume that the earthquake excitation is
stationary, structures in earthquakes start to
vibrate from the static state.

In this section, we shall discuss the step-by-step
method!®,19 to obtain the variances of displace-
ment and velocity response, and the correlation
coefficient between them at each step of time.

Under the initial conditions that
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e l=0=p0,  pE)|e=0=flo,
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the solution of Eq. (2) is obtained by the summation
of the free vibration due to initial condition and
the forced vibration due to excitation as follows:
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p=vol,— L4,
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From Egs. (20) and (21), the variance of dis-
placement and of velocity response and the cor-
relation coefficient between them at #=&, are
represented by
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The values at i=£; of the three terms on the left
side of Eq. (22) can be obtained if those at #=0
are known. Hence the nonstationary response
can be estimated by dividing the duration into
many steps and applying Eq. (22) to each step.

The first terms of the right side of Eq. (22)
were calculated by using the approximate results
obtained by H. Kameda and one of the authors!'®
taking the same technique of T. K. Caughey and
H. J. Stumph!®.

The covariance between the free vibration and
the forced vibration will become zero if the power
spectrum density of the excitation is white, since

el16) | ner—rirerar |
=E [So_fl Ho—t")f(")dt"
. ‘? h($1~f’)f(t’)dt']
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Hence in this case, the calculation of Eq. (22) can
easily be made with the aid of the digital com-
puter.

However if the power spectrum density of the
excitation is not white, the estimation of the co-
variances becomes very complex procedure due
to the varying of the equivalent linear parameters
of the each step. Thus we shall neglect these
covariances in this study for the two reasons:
1) if the peak of the power spectrum density of
the excitation is not so sharp as the receptance
of the structures, the covariance between the free
vibration due to the previous excitation and the
forced vibration due to the present excitation
would be small, and 2) the free vibration dies
out with time by virtue of the damping coeffici-
ent feqg, S0 that the covariance would also become
small.

To check the accuracy of the estimation of the
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linear r.m.s. response derived from the step-by-
step method ignoring the covariance between free
and forced vibrations, the theoretical results ob-
tained by H. Kameda®’ and the results of the step-
by-step method are shown in Fig. 6(b). After tedi-
ous algebraic treatments, H. Kameda obtained
the theoretical r.m.s. response of a simple linear
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4 — THEORY 7 =10
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(b) Comparison between step-by-step
method and theoretical results

Fig. 6 Nonstationary response of linear
structures.

structure subjected to an earthquake-type non-
stationary excitation represented by the product
of the nonstationary deterministic function shown
in Fig. 6(a) and the stationary random process
with the power spectrum given in Eq. (16) for
the set of parameters 9=1.0, /Ty=10, hy=0.9,
ho=0.02, 0.05, 0.20. In Fig. 6, r denotes the equiv-
alent duration defined by him. Both results seem
to coincide well with each other except at the
first and the second step.

The cause of the discrepancy between the two
results at the first step is considered to be that
the time derivative of the shape function shown
in Fig. 6(a) is considerably great there. From
this point, it is desirable that the length of the
interval of the time steps is short. On the con-
trary, to ignore the covariance between free and
forced vibrations, it is desirable that the interval
is long. In this study, the section was chosen so
as to furnish the same maximum r.m.s. response
as that obtained by the theoretical method.

Thus the step-by-step method investigated here-
in seems very powerful to analyze not only non-
stationary linear response but also nonlinear
response of structures subjected to earthquake
motion from the following merits. 1) This method
can be applied to any kind of shape function.
2) The linear structure parameters can be changed
at any step. 3) The process of calculation is
rather easy on digital computers.

(2) Calculated Results

The r.m.s. response of structures with bilinear
hysteresis subjected to nonstationary excitation
has been predicted by using both the equivalent
linearization technique investigated in the previ-
ous chapter and the step-by-step method in the
previous section.

In this prediction, the equivalent linear param-
eters feq and weq at the first time step were taken
to be equal to B and we (#=0.0), respectively, and
the linear response at the first time step was ob-
tained from Eq. (22), since the structure is con-
sidered to be in the elastic range at the start of
vibration. Then 8 and we, were determined from
Eq. (15) according to the response level of o2,
g2 and p,;. At the second step, the nonstation-
ary response of the equivalent linear structure
with parameters Beq and w.q were calculated un-
der the initial conditions stipulated by 2, o,?
and p,;. Then the equivalent linear parameters
were determined in the same manner as that in
the first step.

In Fig. 7 shown are the numerical results ob-
tained by the above mentioned procedure for the
set of parameters »=1.0, t/ty=3, hr=0.9, o=
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Fig. 7 Nonstationary response of structures
with bilinear hysteresis.
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0.04, »=0.00, 0.25, 0.50, 0.75.
The time variation of the
r.m.s. response is shown in W

Fig. 7(a). It may be observ- 30-
ed that the maximum value
of the r.m.s. response of
structure with bilinear hys- 2a-
teresis is limited and the time

1.0

lag between the time of the

maximum r.m.s. response
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°  SIMULATION
—— STEP BY STEP METHOD

Tai.0
T/T=3
he=0.02
° N=05
o o rs-l.&
o

| ]
2.0 3.0

and that of the maximum o) 1.0 t/T 40
intensity of excitation is . .
shortened as the nonlinear- (a) Bilinear hysteresis (2=0.50)
ity of the hysteresis becomes
. . 3.0
strong. Especially the maxi- .
o
mum value of t?u'a r.m.s. re- bi2.0~ o . n=0.75
sponse of the bilinear struc- 4 o
ture with the parameter n= o/fb ° ° < °
0.75 is one third of that of 1.of ° ST o
the linear structure and it 06 ©
1 i ! 1
takes place alr;lost at the 0 ) 50 30 t/T 40
same time as the maximum . .
intensity of excitation. It is (b) Bilinear hysteresis (#=0.75)
obvious that these results are mainly attributable .
to the additional damping due to the hysteresis. 120~ o L0
In other words, we could say that these results N . e °
well reflect the characteristics of the energy dis- 100 o °
sipation of structures with hysteresis. « .. o "
The increase in the equivalent damping factor biso_ "t
Bog=Beq/(2weq) and the decrease in the equivalent ¢
natural frequency weq are shown in Fig. 7(c) and 60- R
(b). As could be expected, k., grows greater and ’ o (”=I‘OO )
weq smaller as the nonlinearity of the hysteresis o, ELASTO-PLASTIC
becomes stronger. 40r
The time lag between the maximum response K
and excitation becomes remarkable in general in 20~ Z
structures with longer natural periods?. Hence
1 1 3 1 L i I
the decrease in weq takes the role of making this 0 5 20 30 1/740

time lag great. However this time lag effect of
weq 1S s0 small compared with that of A which
shortens the time lag, that the maximum response
of hysteretic structures occurs much earlier on
the time axis than that of linear structures.

The effect of the decrease in we on the magni-
tude of the r.m.s. response would reasonably be
explained by the concept of the transition of the
receptance investigated in the previous chapter.
In this numerical example, the natural frequency
of the bilinear structure in infinitesimal vibration
is the same as the predominant frequency of the
excitation oy, so that the decrease in we limits
the r.m.s. response.

(3) Numerical Simulation
In order to check the accuracy of the analytical

(c¢) Elasto-plastic hysteresis (#=1.00)

Fig. 8 Comparison between simulated and
predicted results of nonstationary re-
sponse.

values obtained through the step-by-step lineariza-
tion technique in the previous section, a numer-
ical simulation of the nonstationary mean-square
response has been carried out on a digital com-
puter.

Earthquake-type nonstationary random excifa-
tions were generated as the product of the non-
stationary deterministic shape function shown in
Fig. 6(a) and the stationary random process used
in the previous chapter. The sample size for
each parameter was taken as 50. The mean-
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square of them at each time-step is plotted in
Fig. 8. It is obvious that the analytical and the
simulated results agree rather well for the param-
eters of #=0.50 and 0.75 as shown in Fig. 8(a)
and (b). Especially at the beginning of the ex-
citation, they coincide with each other fairly well,
since the response of the structure is almost in
the elastic region. After the response reaches
the yielding point, plots of the simulated results
fluctuate about the analytical values. This fluc-
tuation is supposed to be an effect of the yielding
of the structures with hysteresis. However it
would be extinguished by the additional samples.

On the contrary, the discrepancy between the
two results is quite clear for the structures with
perfect elasto-plastic hysteresis (#=1.0) shown in
Fig. 8(c). This discrepancy would be explained
from the growth of the plastic deformation due
to its excessive yielding behavior discussed in the
authors’ previous paper? in which the authors
pointed out by using the moving average tech-
nique that a conspicuous plastic deformation oc-
curs only at structures with perfect elasto-plastic
hysteresis. This growth of the plastic deforma-
tion is considered as the progressing structural
failure. Therefore an analytical method to pre-
dict the amount of the plastic deformation should
be investigated in the near future to discuss the
process of the structural collapse during strong
earthquakes.

5. CONCLUSIONS

This study has dealt with the earthquake re-
sponse of structures with hysteretic restoring
forces through analytical and experimental meth-
ods, from which the following conclusions have
been derived.

(1) Two equivalent linearization methods have
been proposed to find the general properties
of earthquake response of nonlinear hyster-
etic structures; one is the least mean-square
error method and the other is what we may
call the energy balance method.

(2) From the analysis using the slowly varying
parameter method, it has been found that
the final expressions of the equivalent damp-
ing coefficient and of the equivalent natural
frequency obtained from these two methods
have the same form.

(3) By using the peak amplitude distribution,
the stationary r.m.s. response to a Gaussian
random excitation with the power spectrum
density Sr(w) has been predicted by an iter-
ative method for structures with bilinear

hysteresis.

(4) From the investigation of the equivalent
linear parameters of hysteretic structures,
it has been found that the characteristics of
the r.m.s. response would reasonably be ex-
plained from the concept of the transition
of the receptance due to hysteretic proper-
ties of the structures.

(5) The step-by-step linearization technique
which gives the equivalent linear parameters
varying with the response level of the equiv-
alent linear structure of the previous step
has been applied to predict the nonstation-
ary response subjected to an earthquake-
type excitation.

(6) From the error survey made with the aid
of a numerical simulation on a digital com-
puter, it can be said that the egquivalent
linearization techniques dealt with herein
are applicable to the prediction of earth-
quake response of structures with bilinear
hysteresis within the parameter 0.00<n<
0.75 and 0.0<7;<1.0.

As pointed out in this paper, the equivalent
linearization techniques dealt with herein serve
as powerful methods in the range of admissible
error both to predict approximately the earth-
quake response of structures with hysteresis and
to make theoretical discussions about the response
properties of these structures in virtue of the
hopeless difficulties in theoretical treatments of
such a problem and of the time-consuming step-
by-step integration of the earthquake of motion.

However, these methods cannot be applied to
the structure with perfect elasto-plastic hysteresis
due to the growth of the plastic deformation
which could be considered as the process of the
structural failure in strong earthquakes. From
this viewpoint the authors are planning to investi-
gate the amount of the plastic deformation through
both theoretical and experimental methods.
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