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THE ULTIMATE SHEAR STRENGTH OF THE BRACKETED
PARTS OF REINFORCED CONCRETE BEAMS

By Wen-Hsiung Chen*

SYNOPSIS

The beams with brackets at their ends usually
fail as a result of shear compression. The ulti-
mate strength of this mode of failure of rein-
forced concrete beams was investigated. The
beam-truss structure was proposed as the model
to express the relation between the shear force
acting on the reentrant corner of the bracketed
parts of beams and the force in inclined steel.
Equations of ultimate strength are derived. The
ultimate strength is evaluated with regard to
three cases, depending on the crushing of con-
crete or yield of steel. The beams were tested
under moving load applied at various points along
the beam until failure occured to simulate actual
field conditions. The theoretical values are pre-
sented with the comparison of the test results,
and show reasonably good agreement. Design
approach is also described.

1. INTRODUCTION

There is some confusion in the terminology
used for describing the different modes of shear
failure in the extensive literature on shear. How-
ever, in a broad way, shear failure of uniform
section beams may be classified into 4 modes;
(a) shear compression failure, (b) direct shear,
(c) shear bond failure, (d) the others, such as
web crushing failure. For the beams with brack-
et at their end, it may fail in the modes of (b),
(c), and (d) as uniform section beams, but failure
is more common by the crushing of concrete
above the upper end of the ‘corner crack”,
which is developed from the reentrant corner of
the bracketed part of the concrete beam at an
a/ds ratio of about 2.5%, This mode of failure
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may be classified as the mode of (a), this paper
is to deal with the ultimate strength of this
mode of failure of the beams with bracket.

The internal structural system at ultimate state
of bracketed parts of a beam’s end are complex.
The simplified model which is founded on the
experimental studies of crack patterns is consid-
ered to simulate this internal structural system.
Basing on this analogy, the approximate equa-
tion expressing the force in inclined steel is pro-
posed.

The ultimate strength equations are derived
using the equation obtained from the model
analogy together with the three equilibrium
equations.

A number of recent papers!®~13 on this sub-
ject have researched various aspects of this prob-
lem. However, a definitive general solution re-
mains to be attained.

2. TEST SPECIMENS

Beam dimensions and loading arrangements
are shown in Figs. 1, 2, 3, and 4. The specimens
identified by the letter RC are reinforced with-
out prestressing. The letter T denotes T section
specimens. The letter D and E denote the speci-
mens which were tested by the two points load.
The letter A denotes the specimens which were
tested by the moving load, applying the load
from A load position to G load position at each
increment of loading until failure occurred.
Material properties are shown in Table 1.

3. FAILURE MECHANISMS

The beams with brackets at their end subject-
ed to the moving load have the differential mecha-
nism of failure from the usual two points loading.
When the beams are subjected to approximatly
50% of design load at the point which is about
twice the distance of the effective depth of brack-
ets from the point of support, the corner crack,
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Fig. 1 Specimens and loading arrangement of reinforced concrete rectangular beams
(moving load test).
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Fig. 2 Specimens and loading arrangement of reinforced concrete rectangular beams
(two points loading test).
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Fig. 3 Specimens and loading arrangement of reinforced concrete T beams (moving
load test).
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Fig. 4 Specimens and loading arrangement of reinforced concrete T beams (two
points loading test).
Table 1 Experimental and calculated analysis of results
Experimental Value
Specimen .
Mark a 14 Iy Ip p sy ook Mode of Ultimate Load
ds (cm) (cm) (cm) (deg.) |(kg/cm?) | (kg/cm?2)| Failure Pu means
(tons) (tons)
RCA-1 17.38
-42:2.4 26 22 32 45 3200 358 Shear 17.69
RCA-2 17 18.00
RCD-1 21.25
&=1.5 8 8 18 45 2930 412 Shear 21.63
RCD-2 17 22.00
RCE-1 40 19,50
=24 21 22 28 45 2930 412 Fi 1 19.68
RCE-2 7 XU 1085
RCAT-1 30 15.28
—=2.5 12 12 19 45 3 200 458 Flexual 14.71
RCAT-2 12 14.14
RCDT-1 16.70
2;4=2.() 6 6 14 45 2930 323 Shear 18.28
RCDT-2 12 19.85
RCET-L 1 3 o0 15 16 21 45 2930 323 | Flexval | 2% | 1358
=2, a .
RCET-2 | 12 exu 14.15
Calculated Value
Specimen . Flexual Calculated
Mark Shear Failure Failure Experimental
Case A | Case B | Case C | Eq. of ACI
(tons) (tons) (tons) (tons)
RCA-1 17.07
RCA-2 17.07 34.24 — 18.54 17.69 =0.96
RCD-1 19.93 _
RCD-2 20.93 22,90 19.93 20.67 21.63 =0.92
RCE-1 13.44
RCE-2 — — 21.42 13.44 19.68 =0.68
RCAT-1 17.10
24.33 26.59 22.53 17.10 o, =1.16
RCAT-2 14.71
RCDT-1 - 15.54
RCDT-2 15.54 19.03 15.73 16.53 18.28 = =().85
RCET-1 11.64
19.28 20.77 15.96 11.64 <o =0.86
RCET-2 13.58
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Fig. 5 Idealized pattern of corner crack de-
veloped by moving loads.

a, usually develops from the reentrant corner of
the brackets’),8 as shown in Fig. 5.

After the moving load is increased and appli-
ed at various points along the beam from one
side to the another over and over, the beam
may develop the flexual crack from midspan.
Subsequently the corner cracks and flexual cracks
increase their length and the area of the com-
pression zone decreases.

When the moving load is applied again on the
top of the beam of corner cracked part, the
secondary cracks & (Fig. 5) will branch out from
the previously developed corner crack and extend
upward directly toward the load point. These
secondary crack are considered to occur as a re-
sult of bending of the bracket together with the
entire tapered block which is above the corner
crack. At this step, the beams have lost their
special properties of abrupt change in depth of
cross section and have been transformed into
a statical indeterminate structure as regard to
inner forces with high order, the compression
zone of the cracked beam may be considered as
the member to subject bending, shear and axial
force, the concrete d (Fig. 5) between corner
crack @ and flexual-shear crack ¢ (Fig. 5) may
be considered as inclined members, and the steel
reinforcement may be considered as tension
members.

The failure takes place usually when the mov-
ing load approaches to the point about 2.5 times
of effective depth of bracket from the support.
The failure occurred initially in two ways: (1)
crushing of concrete in the compression zone
(2) yielding of steel. However, in both cases
the beams reach maximum load when concrete
in the compression zone crushes. Final failures
in both cases appear somewhat similar.

4. MODEL ANALOGY

The model shown in Fig. 6 is adopted to re-
present the internal structural system of ultimate
state of brackted part of concrete beam end.
This model belongs to the beam-truss structure
and is statically indeterminate to the first de-
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Fig. 6 Mechanical model of the beam with
bracket.

gree. The notations of each model member ob-
tain as shown in Fig. 6.

(1) Assumption

1. members 3, 6, 7, 9, 10, behave as the beam,
members 2, 5, behave as inclined members
to take compression and the members 1, 4, 8,
behave as the tension members to take ten-
sion only

2. material property of each member of model
is equal to the portion of the ordinal beam
that model member represents.

(2) Derivation of Equations

The model is subjected to the loads 2 V, and
it is on the equilibrium state, the work done by
the model may be written as
N? M?
W____S dx_|_g 2—E—I—dx ............... ( 1 )

Setting the axial force D of member 1 as the
statically indeterminate quantity, the force D can
be found from Eq. (2)

dW {oN N
oD —S oD EA

oM M

‘WS ap E1%=0

The first term of equation (2) is the first de-
gree of D and the second term is the first de-
gree of V and D, with a rearrangement, these
take the form

= v
7+
where 1, 72, and 3 are coefficient which are de-
termined from the sharp, material properties of
members and the loading condition, these are
as follow:

_ i n I
M= A B, sin? 0, Ak, sin? 0
I3 Iy H?
Y A, tant 6, T AsEssint6; H”
+ Is H? n s H?
AsEgsin? @5 H'?  Ag¢Estan?gy H’?
I H? IsH?
.A']Ec AsEs



1 he Ultimate Shear Strength of the Bracketed Parts of Reinforced Concrefe Beams 97

for h<a<(ly+1s)
__Balst—(a—L)
T BE.Lsint
alsly H
Eclysingy H’
133 I8 HY [, H?

3al?—(a—hi)® H
6E.lssind; H’

B3Rk | 3EJ, H T Eh HE
for (h+h)<a<i/2
__ 182213 +-3ly) | 18(2l+3l0) H

Y 6E.Lsin 01 | 6E.lsin 0y H'
l(a+13+b)(@—13—1)

+ 2FE:I; sin 61
+ Ii(a-+1s+ 1) (@—ls—lo) + 2als(l— 2a) H
2EcI sin 61 H'
1 I8 H?  Ia—I3—1)
P BEL T 3Eck; H Ech
+ l?(l—ls—~lip—a) H?2
E. Iy H’2

(3) Simplified Equations

Giving equations more acceptable for design
purposes, the following assumption are made to
reduce the number of parameters.

1. Considering the crack pattern of the beam,
the model is assumed to be symmetrical,
and in uniform sections.

2. The work done by axial force in model is
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neglected, that is 9:=0.

3. Length of bracket is short enough to neglect,

ly=0.

4. Considering the ordinal proportion of beam

depth span ratio, and the shear span effec-
tive depth ratio which would usually cause
the shear compression failure, the terms
which are less effective to the results are
neglected.

From the assumptions 1 to 3 the Eq. (4) may

simplified as follow:
(cot f1+cot de)hmza

2= smireme Vi)

~[ammena o)
(31—4H)H? sin 01 |\ hm
(cot 91+cot Ga)hm<a<l2

Py e
~leammma )
- [ (31—42[) sin 61 }

and from the assumption 4, the simplified equa-
tion may be

____sinds a
T 2sin (614+063) dSV (5)
Assuming the inclined compression members of
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Fig. 7 Relationships between the applied load and tension force in inclined steel

(moving load test).
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Fig. 8 Relationships between the applied load and tension force in inclined steel (two

points load test).

the model are parallel to the corner cracks in
the relation between the shear force acted on
the reentrant corner of the bracketed parts of
the beams and the force in inclined steel bar,
an approximate equation may be written as fol-
lows

sin 4, a

ospAsp= 2sin (6¢+0p) ds g
Osp=0syD

The computed results using Eq. (6) are com-
pared with the experimental result as shown in
Figs. 7 and 8.

5. ULTIMATE STRENGTH

(1) Assumptions

The failure surface considered is as shown in
Fig. 9 and it is on the equilibrium of forces of

Q

P
Z
V sm
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Fig. 9 Free body diagram of beam end with

bracket.

this surface that the analysis is based. The

other assumptions considered are as follows:

1. Any shear transfer across the crack caused
either by aggregate interlock or dowel action
are neglected.

2. Local effect, such as caused by reactions and
loads, are neglected.

3. The stress in vertical steel bar is equal to
that of inclined steel bar.

4. The bracket should be provided with the in-
clined steel.

(2) Derivation of Equations
Considering the state of stress at failure as
given in Fig. 9, the following equations of equili-
brium for the cut section may be written.
2 H=0
bldsao=0sgAsa+0spAspcos fp

.................................... (7)
V=0
Vu=0sy Asy+0spAspsin Op+Ve -+ (8)
L M=0
k
Vua=0s5ASHds<1——2~> tasyAsvly
kd.
+GSDASD<ZD- ———éi cos 0u> ...... (9)

The above three equations are insufficient in
number to determine all unknown quantities, as
the additional conditions or equations for com-
puting the pertinent unknowns, the aforemen-
tioned equations of model analogy were applied.

From the conditions of geometry,

cot 66—_———-{5”— .............................. (10)

substituting Eq. (10) into Eq. (6) yields
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11—k
2[(1—k)ds cos 6p+1m sin 6]

gswlsp= Vu

where Asm, Asy, Asp, and lg are given by assum-
ing the failure of the brackets occurred along
a diagonal plane between the load and the re-
entrant corner of the bracket.

Three cases triggering the failure, which de-
pend on the yielding of steel and crushing of
concrete are considered here. These as follows:

Case A Crushing of concrete.

Case B Yielding of horizontal steel bar.

Case C Yielding of inclined steel bar and

vertical steel bar simultaneously.

The ultimate shear strength V, is calculated
by the following equations. The computed re-
sults used by these equations are compared with
the experimental result as shown in Table 1.

Case A;

According to the other assumption of V; neg-
lected in this case, the four remaining unknowns
are 0sm, Osw, Vu, and k, these unknowns are de-
termined from solving Egs. (7), (8), (9), and
(11), then the results of the solution are given
by Egs. (12a), (13a), (14a) and (15a)

ZlH sin ﬁp
k :1_7[ A 2ds
L L sin p—=—cos Op
ASD a
................................. (12a)
1>k>0
P bkdsaoer
SH—_ASH

% {: ASV(G*IV)—FASD(LZ sin 01)—-11)) ]
Agy(a—1Iy)+ Aspla sin §p+ds cos 6p—Ip)

OsyHZ20SH

bkds2aack<1 —%)
Asv(a—Ilv)+ Aspla sin 6p+ds cos 0p—Ip)

asw =

Osyw Z0sw
bdstacak(1—k)

Agv(a—ly)+Asp [a sin 6p

Vu =

X (Agv+Agp cos 0p)
+ds<1—§> cos 0,3-11,]

Osyw Z08w » OsYHZOSH

Case B;

The similar equations can be drived from Egs.

(7),(8),(9), and (11) from the failure standard,
horizontal steel being yield.

Yok~ Vot qa¥o~¥elk+qa¥s—¥)=0

................................. (12b)
1>k>0

OSHTOGYR +wrrrrrrrrerrosrsansosnesooneanns (13b)

. bkdsaac;,;—— O'SY_HASH

Osw = Aar costn (14b)
OsYw = 0sw

Ve osymAgmds < 1— k >

a 2

bkdsaog—osymAsm
aAspcos p

X [Asvlv+Asp<lp—- _I_c_;_ii cos 01)):]

where

_Asw Iy Ip
29 Aun ds+d 3cos bp
2lg .
wcz—dsg sin ép
qm= Asmg Osvm
= bds Acer
Case C;

In this case, the ultimate shear strength is de-
termined by the assumption that vertical and
inclined steel reached the yield strength. The
derived equations which were simplified are as
follow.

[3+gp cos 0ok +[2gp¥ v —qp cos 6p—2)k

— 2T =T ]=0 worrvrerrrenirroniiennns (12¢)
1>k>0
- bkdsagex—0sypAspcosp (13¢)
Asm
OsYyHZ0SH
GSWT=TGY W +orevrersvenresrensntnsesiateneenaas (14C)
(bkdsac—0asypAsp cos 8p)ds k
V= <1~—)
a 2
+ sy D ]:ASVIV+ASD<ID— kds cos 6p >]
a 2
................................. (15¢)
OSYH20SH , Osyw=0sw
where
_Asp gsyp
P="ds " aow
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6. DESIGN FORMULAS

For design, osm, 0sp, and osy in Egs. (7), (8),
(9), and (11), may be assumed to be equal to
the yield strength and os is known, then the
design formulas are derived as follow.

(24T o)l [2(T ot U)o+ 200y + U,

() ereeeeneeenenin et e araaeaareanraanes (16)
where
?Ifm:l£ tan 6p+1
ds
v, = (a=1lr)dVu
Y7 bdstader

v _|:IV sin dp—Ip PVua
*7| dscosép bdstaoer

and

(a—lv)qSVu—bkdsZaack(l—-g-)

ASD: (Tsy[lp—ds COs 01)—117 sin 5[}]
.................................... (17)
ASV __ ¢Vu[lp—ds cOoSs 0D—IV sin BD]
Aty Vu-bkds2am<1—f2€)
—SIN Gp oerrreeeiireiiiiiii (18)

Asg _ bkdsagallp—ds cos 6p—Iy sin 0]

—cos fp

In the practical design, the dimensions of the
section are first assumed considering the follow-
ing points.

(a) the ratio of the over all depth of the beam
to the span length should be selected so as
to get the most economical design.

(b) the over all depth of the bracket should be
selected so that there is no sudden break
in the outline of the structure at this por-
tion.

(c) the length of the bracket should be long
enough to equip the bearing plate, but
shorter are the better.

(d) the width of the bracket should be large
enough to take care of the shears.

then

(e) if the loading condition are unknown, as-
sume a=2.5ds as the critical loading condi-
tion and the failure plain as a diagonal
plane between the load and the reentrant
corner of the bracket.

(f) the arrangement of reinforcement, /=, /v,
Ip, are assumed from previous experience
or by crude approximation.

(g) the location of the neutral axis can be cal-
culated from Eq. (16) or obtained from
Charts 1-4.

(h) the amount of reinforcement can be calcu-

Asp (a—lV)¢Vu-bkdszaack<1—-£> lated from Egs. (17), (18), and (19).
2 for the numeral example, the specimen of RCA
a Y= 5;’—5,%2 +]
'J?ZZ Example :
v| % Given.  du =267
ds = /7" ]
% P bp = a5° :-30m
Answer.  Yx=253 -
§72%)
6.01
s0
@
0l
@
fo )
0]
<10

Chart 1 Nomograhy for ¥, of Chat 4.
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which is subjected to ¢V,=18 tons at ¢=40cm
and ¢sy=3200 kg/cm?, adex=300kg/cm? is shown
in Charts 1-4.

7. DISCUSSION

(1) Some of the simplifying assumptions
which are employed may be noted as being
arbitrary. However, it may be recognized as
adequate considering the sensibility of using
simple model to express macroscopically the in-
ternal structural system and the accuracy of the
final result.

(2) Referencing Figs. 7, and 8, the measured
internal force in diagonal steel is above the cal-
culated value at low values of g/ds and under at
high values of a/ds. However, as a whole the
agreement is acceptable since the calculated val-
ues have a tendency to agree best with the ex-
perimental values at the ultimate load on the
alds at which the shear compression failure
usually takes place.

(3) The values k obtained from Egs. (12a),
(12b), and (12c) must satisfied all of the follow-
ing conditions according to the engineering
meaning, that is,

(a) O0<k<1

(b) to give osg>0, osw>0 in Egs. (13a), (14a),

(13b), (14b), (13c), and (14c).

If Egs. (12a), (12b), and (12c) do not give the
values of k which can satisfy the above condi-
tion, this mean that the bracketed part of the
beam end does not fail in shear compression
failure at this loading condition. It may fail in
other modes of failure which are beyond the
scope of this paper.

(4) The factors influenced to behavior and
strength of bracketed parts are numerous, for
examples; the proportions and location of bracket,
the amount and arrangement of reinforcement,
type and location of the load, the properties of
the concrete and steel, etc. The case A failures
occur when the bracketed parts of the beam end
are over-reinforced, the case B failures occur
initially by excessive elongation of horizontal
steel and the case C failures occur when the
bracketed parts of the beam end are poor in
web reinforcement.

(5) There are some limitations as stated in
conclusion (3) for applying the formulas here
developed. These limitations are imposed by the
assumptions on which the formulas are based,
and are undecided mathematically.

(6) The inclined steel bar should be princi-
pally provided in the reentrant corner of the
bracket by the standpoint described here. In
known examples from practice, the inclined steel
is usually used together with the vertical and
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horizontal steel with the range of about (100A4sv)/
(bsv)=1~4, (100Asp)/(bsp sin 0p)=1~7, (100Asg)/
(bds)=0.3~7. These reinforcements are used to
resist not only the stresses due to the loads but
also the other causes, such as the nonuniform dry-
ing shrinkage or nonuniform temperature distri-
bution during the hardening of concrete, etc.
The eccentric loading or torsional loading, the
tension produced by contraction of beams, and
caused by imperfect action of the expansion
bearings, etc., should also be considered in de-
signing.

8. CONCLUSIONS

On the basis of the experimental results and
within the limitations of this research the follow-
ing conclusions may be drawn.

(1) The approximate value of the force in
inclined steel at the reentrant corner of the
bracket of reinforced concrete beams may be
evaluated if the model analogue is adopted.
This approximate value may be calculated from
the equation

sin @, a v
2 sin (6c-+8p) ds
(2) The ultimated shear strength of reinforc-
ed concrete beams with bracket at its end is
given by the minimum value of V,, among the
calculated results by means of the cases A, B,
and C.

(3) The derived equations are applicable

under the following limitations

(a) the equations can not applicable to the
bracket without failing as the result of
shear compression failure induced by the
corner crack.

(b) the equations are applicable to beams
whose shear span effective bracket depth
ratio is between 1.5 and 3.5.

(c) the length of bracket of ordinary beais
is from about 1 to 0.3 times the over all
depth of the bracket. The over all depth
of bracket is about a half of over all
depth of beam. The equation appears to
be in conformity with the results in this
range.

(d) the inclined steel should be provided in
the reentrant corner of the bracket and
the beam end should be conventionally
reinforced.

0spAsp=
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NOTATION

I, gy ooy Ly : lengths of model members 1,
2, 10, respectively

Ai, Ag, ---, A1yt cross-sectional area of model
members 1, 2, .-, 10, respectively

L, L, -+, Iy moment of inertia of model
members 1, 2, ..., 10, respectively

61, 03, +++, O10 inclination angle of model mem-
bers 1, 2, -+, 10, respectively

hm : height of model

2 : Alhm

H : cotfi+coté

H’ . cot@i+cotfs

a : shear span, distance between load point
and nearest support

! : span of beam

ls : length of bracket base to the support

lg : horizontal distance from the point of in-

tersection of the cormer crack with the

horizontal steel to the load

lever arm, the perpendicular distance

from load point to the force, which re-

presents the resultant of all forces car-

ried by the vertical and inclined steel,

respectively

b width of compression face of beam

h : over all depth of beam

hs : over all depth of bracket

d : distance from extreme compression fiber
to centroid of tension reinforcement of
beam

ds : distance from extreme compression fiber
to centroid of tension reinforcement of
bracket

Agm, Asv, Asp: total area of horizontal, verti-
cal and inclined steel all of which cross
the corner crack, respectively

OsH, 05V, 0SD stress of horizontal, vertical
and inclined steel all of which cross the
corner crack, respectively

osw + =0gy=0SD

dsyH, Osyv, Osyp: yield strength of horizontal,
vertical and inclined steel all of which

lv, lD:
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8V, 8D

a0cr

dp
Oc

Ve
Vv
Vau

¢
Ya

q=, 4D

1y

2)

3)

4)

Photo. 1 Crack pattern of the specimen.

cross the corner crack, respectively
the spacing of vertical and inclined steel
along the direction of the member, re-
spectively
average compressive stress of concrete
at failure
inclination angle of inclined steel
inclination angle of corner crack at fail-
ure
ratio of depth of neutral axis to effective
depth at ultimate load
total internal compressive force in con-
crete
resisting shear supplied by compression
concrete
shear acted on a given cross-section of
a beam
shear at ultimate load

. capacity reduction factor
¥y, ¥o:  factor [see Eq. (12b)]
factor [see Eq. (12b)]
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APPENDIX

Derivation of Eq. (3) for h<a<(ly+).

Referring to Fig. 6. Let

Dsin ;=8

Then

w

_ LS

T 2A;E;ssin? 6
1352

2A3E;tan? &y

1;S?
2A3 E; sin? 6,
1, S? H?
2A.Essin? 6y H’?

-
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n 1552 H? 1352 1S H?
2A;FE,sin2 ;s H’? 2EcAstant 9,  2E¢Assin? @y H’?

T 1552 Hr LHAS? L HIS? 1552 H? 1sS? H?
2AcEctan? @y H'? ' 2A:E;  2AgEs 2E;Assin? 95 H’? ' 2E.Agtan® @y, H'?
Slg [Vx]f'* 8““19 [V(ls+x)— Sx]2 dx I H2S? [ HS? Slg [Vx)? dz

2E019 2E.I; 2EcAr  2EsAs  Jo 2Ecl
gty [Va—S(a—bh+ ) I3 (V(ly+x)—Sx]?
+, 2B G, e
10 [Vx]2 S‘Hs”’s) [V{s+ly+2)—1S]2
S 2E iy *h 2Bl de
H 1?2 H 2
V—lm [V(lm—i—x)——Sxﬁ;] e +gz—2a [Va_hs?["jl dx-l—Slm [Vz] i
Jo 2E.Is Jo 2E.I 0 2Echy
H 72 H 12
e [V (a=to+2)5 ;] . N [Vt a)-5-2 ] .
0 2E.I; 0 2Es]s
2 3
L [Vd—lsS‘*Hj} P |iV(ls+lm+.’L‘)—lsS'—lij|
g"____H&_d i gty H' dr
+ Jo 2E.I ¥ 80 2E.I
Therefore Therefore
ow LS + IsS oW LS " 1S
S T EsAisin?@; ' E,;A;sin? 6 S ~ EsA;sin? 61 ' E;Ajsin? gy
4 1S i IS H? i 1S i IS H?
EqAstan? 0y  Es;Assin? gy H’2 Es;Astan? 8,  EsAgsintfy H’2
L BS kS H L BS__H, kS MW
E:Assin?0; H'® ' E;Astan2@y H’? E:Assin 05 H'* ' E;Astan? @y H’?
LHS [JH2S (d 19)2(20—}-19) IH2S L H!S _ (23 +3lg) 152
E,Ar ' EsAs 6E.0; EcAr * E As 6E.l;
(a 1y)3 S— a(ls—lg+a)(13+lg~a) n 133 S_ ls{a+ls+1s)(@a— ls-—-lg)
3E013 ZEOIS 3Ec[3 2Ec[7
[313((1 )+ G+lh—a )2](ls+ls—-a) + I (@~ 1y —15) S_als(l—Za) _}iv
3Ec[3 EOI7 E(;I7 H/
_ (a=ho)¥2a+10) *‘H~V—I— (a—lo)® H? i li(l—2a) H? . (2s+3ho)led —IiV
6E:Is H' 3E.ly H” EJ; H”? 6E.I; H’
_ a(ls—lo+a)(ls+li—a) “}LV + I3 H?
2E.Is H' 3E s H”
_ Bia—l)+ (e +lo—a)l(ls+ho—a) H? S _ (et lit+ho(a—li—lho) -H—V
3E: L H'’3 2E.I H’
_ aldy H " lfl; H? +162(a—-ls—-l1o) H? s
E.I; H' E., H'? EcI H’?
Hence, with a rearrangement, we have Eq. (3). Hence we have Eq. (3).

2. Derivation of Eq. (3) for (h+h)<a<lif2.

W= 5 S? 1,52 (Received May 23, 1972)
2EsA;sin? 0, ' 2E;Assin? 6y




