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DIFFUSION DUE TO RANDOM WAVES

By Nobuyuki TAMAT*

SYNOPSIS

The knowledge of the physical processes of
oceanic mixing has been advanced in the last
decade owing to enormous efforts by both scientists
and engineers in this field. Nevertheless, it is
far from completion. In this paper the effect of
random waves on oceanic mixing is specified.
The author described in a preceding investigation
that the linearized random waves had no diffu-
sivity due to the basic condition of the covariance
stationary, second order stochastic process. The
analysis is extended up to the third-order approxi-
mation including wave-wave interactions. Turbu-
lent diffusion coefficient is given in terms of wave
spectra.

Derived diffusion coefficient is classified into
two regions. In one region diffusion coefficient
D is linearly proportional to time elapsed after
the release of dye patches. In the other region D
is constant. The criterion between these two
regions is the interaction time of random waves.
However, precise description of the interaction
time is not sufficient because of relatively poor
knowledge of wave-wave interactions.

The magnitude of the theoretically derived
diffusion coefficient is compared with that observed
in ocean and in a wave tank. It is a subject of
further study to perform experiments under the
same conditions as those assumed in the theory.

INTRODUCTION

The objective of this investigation is to specify
the effect of random waves on oceanic mixing.
Analysis is concentrated on the mixing of dynam-
ically passive contaminants the presence of which
does not affect the dynamics of the ambient fluid
and the effect of surface tension is excluded be-
cause the main concern is placed on wind waves.
It is intended to express the coefficient of eddy
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diffusion in terms of wave spectra, since we have
relatively firm basis for the form of wave spectra
among many unknown factors concerning with
ocean, A brief review of previous works in the
related fields is given below.

A comprehensive survey of theoretical models
describing the horizontal distribution of concent-
ration due to turbulent diffusion in the sea was
made by Okubo?. According to theories, there
are two classes in solution of radially symmetric
horizontal diffusion in ocean. The horizontal
variance of released patch increases as #2 or £3.

Although vertical mixing is a weak process
compared with horizontal mixing in ocean, the
difference in the mean flow gives rise to an
effective mixing in the longitudinal direction when
combined with transverse diffusion due to small-
scale random motions. Okubo® explained the shear
effect model in two- and three-dimensional schemes
with linear distribution of velocity. He demon-
strated dye release experiments made in the Cape
Kennedy area solely on the basis of shear-diffusion
models with considerable success.

Hereafter, wave theories related to the present
study are discussed briefly. Non-linear interactions
between pairs of intersecting gravity wave trains
of arbitrary wavelength and direction on the
surface were studied by Phillips®. It is shown
that the third-order terms can give rise to tertiary
components whose phase velocity is equal to the
phase velocity of a free infinitesimal wave of the
same wave number, and when this condition is
satisfied the amplitude of the tertiary component
grows linearly with time in a resonant manner,
and there is a continuing flux of potential energy
from one wave-number to another. The charac-
teristic development time for the amplitude of
the tertiary interactions to become comparable
with that of the primary is obtained to be of
order of the (—2)-power of the geometric mean
of the primary wave slopes times the period of
the tertiary wave.

Pierson® solved the Lagrangian equations of
motion by a perturbation method up to the second
order for a long-crested wave train. According to
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this model, he obtained the probability that some
particle is involved in a breaking wave in terms
of wave spectra.

Hino® investigated the one-dimensional turbu-
lent diffusion induced by wave motions in the
Eulerian representation. He obtained the Eulerian
expression of the velocity of a particle in a wave
by the sum of the mean orbital velocity and a
fluctuation. The specific form of the fluctuating
velocity and its gradient, however, is left to be
decided in measurements.

Tamaif> considered the diffusion due to line-
arized random waves according to the Lagrangian
representation of wave motion. He expressed
diffusion coefficient in terms of wave spectra
following Taylor’s” method of approach to diffu-
sion of continuous movement. Derived turbulent
diffusion coefficient comes to be zero for linearized
random waves,

This paper presents the analysis of the diffusion
due to non-linear wave-wave interactions up to
the third-order approximation. Comparison is
made between the theoretical result and the
previous observation in ocean and in an experi-
mental wave tank.

THEORETICAL CONSIDERATIONS

The Lagrangian equations are stated in the
following paragraphs. Let a, 8 and § be the x,
y and z coordinates of a particle of fluid. In the
Lagrangian system of equations a solution to the
equations consists of finding the positions x, ¥
and z of all the particles in the fluid as a function
of time and the initial positions of the particles,
«, 8 and 4. The Lagrangian equations are given
by Eq. (1) where subscripts denote partial dif-
ferentiation.

TeelatYetYe+(2et+9)2a+ Pafo=0
ZoZstYuyst(zutg)zp+pelo=0 v (1)
2ot s +YeeYs +(2e+9) 25 +Ps [p=0
The equation of continuity is expressed by
2>, Y, 2)
e, B, 8)
Such solutions need not be irrotational, but, if
a function, F(a, 8, 8, t), can be found such that
AF=(x:Ta+YeYatzza) da+(xirs+y:ys
+2025) d B+ (Xes+ Yo Ys+2:25) ()
is a perfect differential, there is no vorticity.
A zero order solution to these equations is given
by

a=a, y=f, 2=0, p=po—gpd - (4)
in which all fluid particles are at rest in hydro-

static equilibrium under the force of gravity.

Here § is set to be positive in the upward direction.

We expand about the zero order solution in
terms of a small parameter, ¢, as in Eq. (5) in
which Fy is a constant. Here we think of & as
equal to ak, but the first order terms must have
the dimensions of a length, and so a=¢/k is used
in the various solutions that are obtained. The
parameter ¢ never appears explicitly.

T=a+sxr+elru+edrin
y=PB+syr-+elyn+etym
z=0+ezr+e2zn+edzim 0 Lo (5)
p=po—gpd+eprtelputeipm
F=Fy+eFi+etFuntetFm
where subscripts of Roman numerals explain the
order of approximation in the solution.
The equations in & become
zr,,t+g21,+ p1 fo=0
y1,,+921,F prg/o=0
2, tgzr+prle=0 L. (6)
zr,+y15+21,=0
dFi=x1,da+y1,df+21,dd
The equations in &2 become
z,, +9zu,+ pu, /o= — 1, X1, ~y1,, Y1, 21,21,
Yir,, + g2+ priglp=— 21, Lr— Y1, Y1~ 21,21,
211, + g2, + punyfo=— X1, X1, — Y1, Y1~ 21,21,
211, Y1t 2y = 21, X1y H 215Y 1+ XY,
—yIﬁZIJ—‘Zlﬁ-Z‘Ia—xIayIﬂ
dFu=(ru,+x1,xr,+y1,y1, +21,21) da
+(ynt+m1£x1ﬂ+yILylﬁ—l—zILzIﬁ) dp
+(zm, +xr,2,+ YLy, e zn) dé

The equations in &% are written as
&ty +921, -+ pu, o= — T, 1, — X1, L1,
— Y11, Y1, — YI, Y1, — 210, 81, — &1, 211,
Yt +92mm, -+ prirg/o= — L1, L1y — L1, E114
Y, YT Y1, YTIg— 210, k15— 21, 21T g
zur,, +gzmit pry/e = — X, Ly, — T, 211,
— Y1, Y1, — Y1, Y, — 211, 21— 21, 210
2, + Y+ 2, = — 2, (Y14 21,)
—Y1ig (215—}-.1‘1“)—2115(.701&—1-2/1,9)
+ (1Y, + X121, VI + Y 21+ 211, 2,
+ZII/3?/15)‘}‘xlayl(;z[ﬁ+y1ﬁl’1521a+2152/1ax115
'—J/'In'ylﬁZI‘;—yIazlﬁxlﬁ_ZIa‘Z'Iﬁylﬁ
dFm=[(zu, + 21,21, +211,21,)
+ym,yr, v, yr)+ (2o, zr, 2 21,) 1 da
(e, w15+ wuper) + (v, + vy,
+yngyr)+ (2,215 + 21521,)14 8
+Hl(@wn, o1, +2mer) + (Y, v+ ymy,)
+(zmm, + 21,21, +211,21,) ] 6

Equations in (6) are linear. A solution of them
in turn determines the right hand side of Eq. (7).
Since the left hand side of Eq. (7) is linear, in
principle at least, a solution can be found. Also
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in principle it is possible to proceed to as high
an order as desired by this procedure.

Because the linearized model was described in
the author’s previous paper®, it is omitted in this
paper to make space for remaining part. The
long-crested wave model is more amenable to an
investigation of second-order effects because it is
simpler. We consider the problem of two waves,
and then generalize to the randomized process.
For two wave trains 1 and 2 the linear solution
is given by

Xi=—ame*i sin (k1a — o1t +€1)
—agekad sin (ko — wat +€2)

Zi=ae*1s cos (kra —wit +¢€1)
+ age*2d cos (kya — wot +¢3)

P=0 S (9)

Fi= aliwl ekid sin (ko — w1t +€1)
1

aswy

-+

e*ssin (koo — wot +€3)

where €1 and ¢ are random phase lag expressed
by Gaussian function for each wave train. Capital
letters in X, Z, P and F explain the product of
¢ and each physical quantity, for example, Xi=ex1,
Xpi=clrrn, and so on, because in the analysis of
wave-wave interactions the resulted value of ¢
in a higher order solution is not the same as that
in a lower order solution. Equation (9) is irro-
tational to first order. For simplicity, we assume
that wy>wi.
The second-order terms become

Xn= . aan <~9—13+w23 }e(k2+’“1)5
g w— w1
xsin ((ka— k1) a—(w2— 1) t-+ea—er)
_l_wlf_zﬁ (w3 @) o ehg—kDs
xsin (ks —k1) a—(w2—a1) t+e—e1)
+astan k162013t 4 astwskgeeodt
= nar (w12 + w103+ wa?) eCFrtEg)d
x cos ((ka— k1) a—(wa—a1) t4ea—er)
— a1gaz wy (we+ w1) eez—k1)8
x cos (k2 — k1) a—(wz—w1) t+e2—e1)
3 astk
Pu=opr P (s 1)+ gp I (o)
"“2{%11&2(1)20)1 e(k1tkys
x cos ((ka— k1) a —(wa—w1) t+ea—er)
+2paiarwawy eFrrd
x cos ((ke—k1) a—(w3—w1) t+e2—e1)
Fii=ai1arwietka—ks

xsin ((ka—k1) a— (03— ) t+e2—e1)
+a1as (w3 — 1) eFathps
xsin ((ka—k1) a—(wa—o1) t+e2—e1)

The full solution is obtained by combining Eqs.
(4), (9 and (10). This solution satisfies the
equations to second order. If more terms added
to the linear solution subject to the condition
that w1<wi<ws<-++-<wn, the terms in the linear
solution interact in a predictable way to generate
appropriate second-order terms. The randomized
second-order solution for x(a, 6, ) and z(«, 4, #)
are given by Eq. (11).

x(a, 9, )=a—12, a; ek sin (kia— ot +e)

k2
—2 ajeritsin (kja—wjt+ej)
7

a;a; w'3+w'3
—Z Z J ( T '
i>i1 g
xsin {((kj—k:) a —(wj—wi) t-+ej—e;)
a;a
+n 5
FEX A Y
xsin (kj—k:) a—(wj—wi) t+ej—es)
+ 2 adwikiet® it + 3] afwsk ettt
i J

z{(a, 8, )=0+3 a;e*i cos (kia—wit +e;)

>e(1cj+ki)a
wj—w;

(Cl)j+ (Ui) wj e(kj"ki)"

+2 ajeridcos (kja—awjit+ej)
J

+20 2% aiaj*(mﬂ-%wwﬁ-wﬂ) ety
i

xcos((kj—k) a—(wj—wi)t+ej—er)

— % 5 g (wst ) ek
i>iT g

xcos (kj—k:) a—(wj—wg) t+e5—es)

Although there are many cases of combination
of primary waves in tertiary interactions as
described by Phillips®, in this paper the inter-
action between two groups of a primary wave
train and a generated secondary wave is discussed.

The third-order terms are written as

aitar o (w24 o1) (0 —2w301+-201%)
2g? (w2— 1) (w2 —201)
X e(2h1+Ed sin ((ka—2k1) «
—(wy—2w1) t+e3—2e1)
aar wz(@3+on) (0 —wder— w0l +201%)
g2 w3 — 2w
x ka3 sin ((ka—2k1) a — (ws—2w1) 1 +-e3—2¢1)
_ aray oy(ef—201") eChg—2k D3
2g? w3—2w1
x sin (ks —2k1) a —(w2—2w1) ¢ +e2—2e1)
a1a9? o (o3+w01) Cos?—2wsw01 +w1?)
+ 2g% (w2— 1) Cwz— 1)
x ek1teEgd sin ((2ks — k1)
—(Cws—w1) f+2e3—-€1)
a122® oty (2w’ —1?) (Bws—2w1) .
2g2 (w2 — o1} (Zwa— 1)
x sin ((2ka— k1) a —(Zwr— w1) £+ 2e3—e1)

Xr=—

(2kg—51)5

a®
——wlfetFitcos (k1o —wit +€1)
g
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ai1agt
— PO Bt e £ cos (kra—wit+e€1)
0
a5 gk
——nga)z e%%93 £ cos (kao — wat +e3)
aita
— GLE ) Bws? ekrtd ¢ cos (koo —wst +e3)
3 a:® .
-2 O it edkidgin (k1o — wif+e1)
2 g2
3 ag .
_ 2 O sk g3ka sin (Koo — wst +€1)
2 ¢
aias? 209 — 0w+ witer! — wlferd
g o1 {wz—w1)
x eCer+2ki sin (k1o — wit +e1)
a1a? wi(wetwi
LAy A&J(Zwﬁ—wzzwl—mzwﬂ-}—m13)
g2 w1
X eWkg—kd sin (k1 — w1t +e1)
aila; 0o —wldeit+ 0w’ —20:f
g? w3 (w2 —w1)
X e@k1tki sin (koo —waf +€3)  -ooeee 12)
g 8 (093 — wolw— 2wid
aita; o (0d—wltaor—2wm?) JRTTIEA
2g° (03— w1) (w3—2w1)
x cos (ka—2k1) a— (w2 —2w1) t+e2—2€1)
aila; it (wa+ w1)(w?— w01 —w1?) g
g2 ws—2w1
x cos (k2—2k1) a— (02— 2w1) t+e3—2€1)
g 9 (9% — 2a12)2
_artay @0 =200 L o
2g% w3 —2w1
% cos (ka—2k1) e —(wa—2w1) £+ ea— 2¢1) Fu

a1as’ o1* 2w+ wawi? —wr?)
2¢% (ws— w1} 2wz —w1)
x cos ((2ks— k1) a—(2w2— w1) t+2e2—e1)
aias? S (Lo — 01?) (3w —2w1) .
292 (w3— 01)? (202 — w1)
x cos ((2ka— k1) a—(2w2— w1) t+2e3—e€1)

e(k1+2kg)s

e (Bkg—F1)8
a’ .

——— o1’ e¥*1 t sin (k1o — wit +e1)
g2

aray .
—— wlagd e FriikD3 t sin (k1o — ot +e1)
g

ag .
- w2 e3%90 ¢ sin (kaa — wat +e3)
g

ailag + .
——— ot eQF1EDI Esin (foaa — oaf +e3)
1 ad
+E—Tm14 e%%18 cos (k1o — wif +e1)
g

+—1— afﬁwz‘i e%%33 cos (kaa — wat +€3)
2 g

n a1ay? 09 (022 01— 1)

ok +2kgD5
g2 ws—
x cos (k1a—wit+e1)
aiaz’

e o1 (w3 + o1) (02 + w01 — 012)
x ¢Q2kg—%1d cos (k1o — wit +-¢€1)
ailar 0B (wl—ow1—o?)

g2 wr— w1
x ek 1+Es cos (koo — wat +e3g)

Pur
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w3—2w1
x co0s ((k3—2k1) a—(w3—2w1) t+e2—2¢1)

ailas
— 1)

i\« ekad
'] we—2w1

x cos ((ka—2k1) a — (03— 2w1) t+e3— 2¢1)
_ar’ay _oron(of—200) (202 —3w1)

- g w3 — 21

x o8 (k2 —2k1) a —(w2—201) £ +€a—2e1)

_@mad 0rey(Bwr—2w1) .

g 2w — w1
% cos ((2ks— k1) a — (23— 01) t -+ 2e2—e1)
a1a2® odw; (3wi—2w1) .

eClg—2k1)d

Iy +2kg)s

(2kg—lp)s

+
g 2w3— w1
x cos ((2ka— k1) @ — (203 — w1) t+2e3—c1)

(Z13
~ w1t e¥%13 cos (kra —ent+e1)

a?d
——— g %20 cos (kga — wat +e€3)
g

2a1as?
— = w198 ek T8 cos (k1 — wif +€1)

2aiaq9?
4 ZET w1 (w3l — wy?) ePg—kd
g
% cos (kra— w1t +e1)

2a1la;
— " w1dwy ek1t%9)3 cos (kaa — wef +¢€3)
g

alay o (wa—3w1)

T2 otk )8
29 @9 — w1

x sin (ks —2k1) @ — (02— 2w1) # +e2— 2¢1)
_ ailas

w3 (wy -+ 1) (03— 201) e*28

x sin ((ka—2k1) a — (w3 —2ew1) t+€2—2¢1)
ailas
+7;
x sin ((ks—2k1) a— (02— 201) t+e3—2¢1)
_may? 0}Gei—w)

29

xsin ((2ka— k1) a—(2ws—w1) £+ 2e5—e1)

aiag? w30y (3ws—201) .
2g (w2 —w1)?

x sin ((2k3—k1) a — (2w3— 1) t+2e3—e1)

w3 (wsd -2y 2) elFy—3k1>8

eBkg+E
w3— w1

(@Rg—F1)3

aid
—{—wgl— w1t e3k19 ¢ cos (kra— w1t +e1)

asd
+—;— wat €3%30 ¢ cos (oo — watf +€2)

aia?
+ ——— w1098 eQ@kgtE3 ¢ cos (kra—wit+e1)
g

aila

2
wr@1® ekt cos (ko — wat +e2)

3
—% w1® %18 sin (k1o — w1t +-€1)

3
~—;§~ w33 e%Red sin (kyo — wal +€2)
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aia?  wider
g wr— w1

ailas oo
g 03— w1
ai1aq?

-ekgtk8 gin (k1 — w1t +e1)

e kat2kyds sin (ks — wat +€2)

/

w01 (w3+ wr) eBky—k3

xsin (kia—wit+e) 0 e (15)

The randomized version of tertiary waves is
obtained as in the case of the second-order theory.
In Egs. (12) and (13), there are terms whose
amplitude grows lineary with time ¢ and the phase
of these terms is in advance of the primary wave
by m/2. As it stands, the solution of this type is
only valid for wt«(1/2a%k?y!, after which the
developing tertiary wave has an amplitude com-
parable with that of the primary wave. Notice
that the interaction time, or the time scale of
development of the resonant tertiary component
is of the order of (--2)-power of the maximum
primary wave slope times the wave period. As
for the condition at the free surface, P does
not vanish when § is set to be zero. Although
tertiary components with differences of wave-
numbers and frequencies of the primary compo-
nents cancel out among themselves, tertiary
components with the same wave-numbers and
frequencies as the primary components does not
reduce to zero. However, the amplitude of re-
maining terms is bounded in time and remains
in third order for any combination of frequencies
of two wave groups. Therefore, expressions of
Egs. (12) and (13) are used hereafter neglecting
a bounded third-order deviation in the surface
condition.

The condition of the existence of a growing
tertiary wave with differences of wave-numbers
and frequencies of the primary components is
checked as follows. If the solution of such a type
satisfies the homogeneous differential equation
and boundary conditions, the solution obtained
can be added to Egs. (12) through (14) because
of the linearity of the basic perturbation equation.
Suppose we have a solution for third-order waves
as

Zin=B etkg2ks t sin ((ka—2k1) «
—(03—201)t+e3—26e1)  oeee (16)
This is a homogeneous solution to the differential
equation for Zi. In order to satisfy the surface
condition that Pi==0 for =0, the following
condition must hold.

(wa—2w1)2 =g (fka—2k1)
Considering the relation that wi=gk for the first

approximation, we obtain w:=3wi/2. Another
condition that wy=2w; is required to fullfil the

surface condition. These two conditions men-
tioned above are unable to coexist. Even if the
bounded third order terms are neglected for the
surface condition, the value of coefficient B re-
mains undetermined. Therefore, it is concluded
that the growing tertiary component with differ-
ences of wave-numbers and frequencies of the
primary wave does not exist in the Lagrangian
representation.

CALCULATION OF TURBULENT
DIFFUSION COEFFICIENT

Turbulent diffusion coefficient is calculated for
secondary waves generated by interactions of two
wave trains in the same method as described for
a linear model. Because the expectation of the
products of different random phase lag function
comes to be zero due to their independence, the
contribution of secondary waves to diffusion if it
exists will be originated by their square products.
Therefore, we can discuss the effect of secondary
waves on diffusion separately.

In this section diffusion about the mean position
in the direction of wave propagation is discussed
for a particle at the water surface. The z-com-
ponent of the velocity of particle is obtained by
partial differentiation of the first equation of Eq.
(11) with respect to time, £. Excluding the uni-
form secondary mean drift current, the expression
for the fluctuating velocity is easily extended to a
spectral representation of two wave groups.

M:g S Mﬂfg;io—zlcos ((k2—F1)
wy ey
~—(wr—w1)t-+ez—er) VO (w1) dor VO (w3) dws

Here @(w) is the frequency power spectrum of
surface displacement, where the frequency is
regarded only as positive.

Covariance of the velocity due to the secondary
component is denoted by ca(r) and is given as

xcos ((ws—w1) ) dordws - (18)
Exchange an integral variable from w; to 7
through the relationship of wg—w1=r. Integration
is first made along the line ws—wi1=7 for a fixed
value of » and then 7 is varied from zero to
infinity to cover the domain where ws>w1. ¢2(7)
is given by
c3(c)= 5 ” Uw ORCoEN B (017 dw1}
otJo 29?
xcosrrdyr e (19)

The Fourier transform pair of Eq. (19) is given by
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wy Wi-wy=h

Wz =y

0 0,

Fig. 1 Exchange of an integral
variable

2 (- (= 01t 2o +7)?
- So ¢z (t)cosrt dz-_go T g
* @ (w1) @ (wi+7) dor

Following Taylor’s approach turbulent diffusion
coefficient is equal to \ ¢3(z)dz, which is obtained
0
putting »=0 in Eq. (20) to yield Eq. (21).

lg 2w1

D:V’cz(f) dr=
1]

@ (w1) D (01) dw:

However, the condition of =0 which is equivalent
to that ws=a1 cannot be accomplished in the
interactions of two different wave trains because
the consideration mentioned above is applied to
secondary interactions between different two wave
groups. Therefore, it is manifested that the
secondary wave has no constant energy flux among
different frequency components and that the cloud
of materials floating on the water surface does
not expand continuously with time.

The diffusivity of the tertiary waves is first
considered about the terms with differences of
wave-numbers and frequencies of the primary
components for very large values of time because
the growing tertiary waves are considered to exist
only for finite value of time within which the
amplitude is smaller than that of primary waves.
For small values of time the diffusivity of the
growing tertiary waves is discussed later.

The x-component of the velocity of a particle
at the water surface is calculated through partial
differentiation of first five terms of the right-
hand side of Eq. (12) regarding with time ¢, and
is written in a spectral representation.

“:S S 1 wlert
wgloy gZ W —w
—(w2—2w1)t+fz~—261) VOri(w1) dw1 VO (ws) dws
_ g 1 (Aot 208w+ 2w201t — @t
Jugse] 292 ((1)2_0)1)2
x cos ((2ks—k1) a— 2wz —@1) t+2e5—e1)
VO don VO dan e (22)

————cos ((k2—2k1) @

where @11 explains the spectrum for square of the
surface displacement.
Ou(w) is calculated after Hino’s$ method as

(I)IL(H)):“ZS:G)(Q)—JU)@(x) dx e (23)

Covariance of the velocity due to the tertiary
components with differences of wave-numbers and
frequencies of the primary wave is denoted by
c3(7) and is shown as

()_Scogoo"oo 1‘ (1)24@18
at= 030 50 ¢ (3—wn)
x cos (wa—2w1) 7) dx dws dws
oo fooroo 1
L for, oD (01—2)0(z) D
+5\ |, gt/ C0n (=)0 (@) (01

x cos ((Cwg—wi)t)dordx dwy -+ (24)

D (w1—2x) C (2) D (we)

where
w1t (— 4wt + 205801+ 2wt w12 — w1t)?
(w3—w1)*

flo1, wa)=

Exchange an integral variable from w2 to s and
g through the relation

ws—2wi=s and 2w3—wi1=q - (25)

Integration is carried out along the lines w3—2w;:
=s and 2w3;— wi=q for fixed values of s and ¢q. The
ranges of § and ¢ are —oo<s<oo and 0<q to
cover the domain where w3>wi. The range of
w1 is determined as

0<m <o for s>0
{ —s<w1<oo for s<0 oo (26)
0<wi<q

¢3(r) reduces to the following expression.
{0 L ot )on
° (T)_SO Ho So gt (o1+s)
X O (w1—2) O (x) D (2wi1+5)dx dlecos stds
(T (2L Ror—s)lerd
+§0 [\ So gt (o1—s)
XD (01—x) P (2) D (2w1—Ss) dx dwl}cos stds

el fa, o @ q
+So ]:SOSO 4g* <2+ 2 ,w1>(D< 2 +2 $>

J—s

X O (x) D (o1) dx dau]cos grdqg e 27
w0y wy=2uh W20 =6 s
Wa=w
’
/II
o/
/ -
Y
/
S i’
() (b

Fig. 2 Exchange of integral variables
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The sum of first two terms in the right-hand side
of Eq. (27) is denoted by [c3(7)l1 and the last
term by [c3(7)]lu. Therefore,

cs(m)=les (D]i+[es ()]
The Fourier transform pair of Eq. (27) is written

as follows:
2 ofee 1 (2w1+ $)tw1d
;So[cg (7)1 cos st drzgo So —g;——((;—l—:l)z—l—
XD (w1—2) P (2) @ (Lwi+s) dx dwr
S‘*’ (1 (2ar—s)od
~s§0 gt (ﬂ)l—s)z
X @ (w1—2) D () © 2w1—5) dx dan

28" (=L e a >
ﬂgo [cs(r)]ncosqrdr_gogo i < 5 T o1

x@<%+%_x>@(x)@(wl)dxd01 ----- @8)

We can obtain cs(t) dr by setting s=¢=0in
0

the Fourier transform of Eq. (27).

D:gwca (r) dr
1]

J

=1§—4ng;”8:m10@(w—x)®(x)@(2w) dz do
The condition that s=0 is compatible with the
condition that ws>wi.

Phillips? summarized results taken under the
wide range of experimental conditions and stated
that, at frequencies appreciably above that of each
spectral peak, the spectra of ocean surface waves
are all clustered about a single line, @ (w)=fg2w5,
regardless of the wind speed or fetch. Its steep
forward face rising to a sharp maximum is
characteristic. Several sets of experiments can
be used to find the value of the numerical con-
stant 8. The mean of these values is 1.17 x 102,
Therefore, the functional form of the wave spectra
is defined as

D (w)=pg*e™"
=0 otherwise

for w>wp

where wp shows the frequency of spectral peak.
Because @ (w—x) is defined for wp<w—x, the
effective range for x is x<w—wp. Furthermore
x should be greater than wp in the function of
@ (x). Therefore, ©>2wp is necessary for the
integrand to have a finite value different from
zero. D is rewritten as
D:MSW wssw_wz’ilAdx do--(31)
2 20, Jo, (@—x)ab
The upper bound of @ is infinity in theory,
which makes the inner integral infinitely large.
This means that energy contained in a secondary
wave is infinitely large, which is unrealistic

physically. Spectral density decreases propor-
tionally to (—5)-power of frequency so that the
density of energy involved in the frequency range
above certain finite value of frequency becomes
approximately zero from practical point of view
and also higher frequency range corresponds to
capillary waves. The possible maximum value
for » is denoted by om and the corresponding
value for W is represented by Wp.

28
D:_L/; o (32)

where W=(w—wyp)/wp, and

. S W 1 [ Wi—Ww—
Tl (W) 2

+28(Wi—W—2)+112(W— W—1)+1401n W}dW

L (W= W)

It is concluded that wm is about five times of the
frequency of spectral peak, referring to several
measured data shown in Phillip’s books®. Then
turbulent diffusion coefficient due to tertiary
components with differences of wave-numbers and
frequencies of primary components is given by
Eq. (33) with the value of 7=11.9.

D=2.90x10"3wp~3 (mifsec) - (33)

Making use of the expression for wyp proposed
by Mitsuyasu and Nakayamal®, D is written down
in another form.

D=6.50x 10—/ 131-3Fet-85 .o (34)

Here U1g is the wind speed at the level of 10m
above the surface and Fe is fetch.

Computed diffusion coefficient is a constant with
respect to time. Therefore, the variance of the
cloud of substances at water surface increases
proportionally to the square root of time. The
order of magnitude of the obtained diffusion
coefficient is much smaller than that observed in
the same scale of ocean, partly because the calcu-
lated coefficient is deduced from tertiary waves
which have smaller magnitude than that of primary
waves and partly because the considered case is
concerned with the absolute turbulent diffusion as
studied by Taylor. However, measurements are
taken in an open sea where dominant scale of
eddies increases as diffusion proceeds and the
characteristic length scale of diffusion increases.
Therefore, the concept of neighbor-distance move-
ment or relative diffusion becomes important. In
order to take account of relative diffusion, it is
necessary to proceed to the analysis on diffusion
due to growing tertiary waves for relatively short
times of duration.

Considerations stated above excludes developing
tertiary waves and tertiary waves with the same
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wave numbers and frequencies as those of primary
waves. The characteristic feature of the develop-
ing tertiary waves is that the phase is in advance
of that of the primary waves by 7/2. In the follow-
ing study on the diffusivity of the growing tertiary
waves, another direct way of approach is applied.
Statistical variance of the position of a particle
is considered directly rather than covariance of
fluctuating velocity.

The horizontal position of a particle after time
t which is initially placed at a point (a, 6)=(0, 0)
is expressed in Eq. (35) including up to third-
order terms.

@ . ®
&=—aisin (— el +e)— aysin (— vt +¢3)

©]
aias [ w3+ wd
w3 — w1

p )Sin(—(a»z—wl)t—}—{z—(—j)

@

—f-%(wﬁ»au) wy sin (—(wy—w1) t+e3—c1)

® ®
+ arorkit+ artoskst

ai*dy wa(wa+ ) (ws? — 203014 20n?)
242 (wa— 1) (w2 —2w1)
x sin (—(wys— 2w1) t-+ea—2c1)

®
aitay wi(wsto1)(0d—odor— ool +201)
g% ws—2w1
x sin (—(wg—2w1) -+ c3—2c1)

ai1?as (s —2wik)!
2¢9% w— 2w
x sin (—(wz—2m1) t+e3—2¢1)

@
a1as® 0*(—4wrt 4 20014 209012 — ont)

o (w3~ w1)? (sz—wl)A
x sin (— (203 — wy) £+ 2e5—c1)
@
3
—%wﬁ cos (— w1t +€1)

®
as®
_"giz wg® t cos (— wat +cg)

®@
aias?
LA w1lwed t cos (—wit+€1)
@
ai’a
e widwal t cos (— wat +e3)
% o
ay .
R w1t sin (— w1t +€1)
3
asy .
S ot $in (— waf +€3)
@
araz? 203 —wdw1+ orto? — odw®
g w1{wz2—w1)
x sin (— mif+e1)

aitas wdwid— welwt+ wew1® —2w1b

g? w2 (w2— 1)

x sin (— waf +€a)

®
@103 o (onto)
¢ w3
xsin(—wit+e) 0 e (35)
Each term in Eq. (35) is numbered from (D) to 9.
Expected position of the particle over a period of
wave is given by

(209® — w1 — w1+ w1®)

Ell=e+® e (36)
Variance and diffusion coefficient are defined by
H=H@—Eal] e @7
_1dah .
T2 di (38)

Therefore, we have to obtain the expectation of
the square of x without terms of (5) and &).

Because terms with different random phase lag
are independent of each other, the expectations
of products between terms of different random
phase lag comes to zero. Terms in Eq. (35) are
classified into three groups from the point of
random phase lag.

First group is consisted of terms with differences
of wave-numbers and frequencies of primary
components. They are terms of @), @, @, @),
@ and (0 in the right-hand side of Eq. (35).
Expectations of the square of these terms are
constant. Although the diffusion coefficient ob-
tained through Eq. (38) reduces to zero, constant
value can be made infinitely large for particular
combination of frequencies of two wave groups.
The diffusion coefficient of this type of secondary
and tertiary waves is discussed previously by
means of covariance of fluctuating velocity.

Second group is composed of terms with the
same wave-numbers and frequencies as those of
the primary component. Coefficients of these
terms do not become infinitely large for any
combination of frequencies of different wave
groups. It has been shown that linearized wave
has no diffusivity. Therefore, the contribution
to diffusion by terms of @, @, &, 48, @, ® and
@ in the right-hand side of Eq. (35) is concluded
to be zero.

Third group is concerned with growing tertiary
waves. Wave-numbers and frequencies are the
same as those of primary waves. However, phase
is in advance by z/2. Therefore, the expectations
of products between terms which belong to the
second group and the third group become to be
zero. Only the square of growing tertiary waves,
which is expected to raise diffusion, is considered
hereafter. The randomized version of the turbu-
lent diffusion coefficient is given by
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1
D:2—g4[2 ad w35 2] aitafodo 2w+ wjy)
T

J>i 4

+X 3 alatodof (wi+205)+ Y] a0t
2 -

FE

The first term involves the 6th power of surface
displacement. Expectation of this higher order
term is obtained as

E[C)=Vm1(0)= 18(8:00) (w) d(u>

X (Sjgj@(w—x)@(x) dx dw>

However, we cannot know how the factor wl® is
related to two definite integrals with respect to
. Therefore, the magnitude of the diffusion
coefficient is discussed for one of the interaction
terms generated by two wave groups. One of
interaction terms is expressed in terms of the
wave spectrum

0

(D)I:%Gmwﬂgjdi(w—x) 9 (2) da da)1>

X <\ @33 D (w3) dwz\}
Jo /

+

%<Smm16 Sj@(m—x)(b(m) dx dan)

0

g
x(S w2t @ (w3) dcuz> ------ (40)
Jo

Introducing the functional form of the wave
spectrum and referring the physical interpretation
of the maximum frequency range, Eq. (40) is
rewritten in the form of

“ o, 0y, 1
D)i=1.68%2w, 1\ "\ Lo—t SR
(Dn=1.6¢8%wy S%wl Smp (or—aya dx don
7] wy— o, 1
I e
+1.6¢p33%¢g S%pan vy (@1 dx dwy
...... (41)
Eq. (41) is reduced to a following expression.
(Dn=1.68%%wp2(44+B)¢t ... (42)
where
A—Swm[ Wt - 1
T L2(Wlr 2WH(W41)
6 W 16 1
3 (W1 3 W3 W1
28W: 28 . 112W
(W1 Wer(W+1) (W1
112 In W
w0 4
and
B_Swm[ wH _ 1
h 2(W+1p  2WH(W+1)8
16 W3 16 1

T3 WL 3 W)

Lomwr s 12
(1P~ WIWEL) T (Wlp
112 in W
e P |2

Calculation is performed to produce A=114 and
B=39 for W;»=4 which is the consequence of wm=
5wp mentioned previously.

Diffusion coefficient due to one of interaction
terms in developing tertiary waves is expressed
by Eq. (43) after the calculation of a factor.

(Dh=3.76 x 102wp 2% (mifsec) - (43)
There are three pairs of comparable term expressed
by wave system in Eq. (39). Therefore, the order
of magnitude of diffusion coefficient obtained by
Eq. (39) is estimated as in Eq. (44).

D=10"1wp~% (m?fsec) oo (44)

The mean value of interaction time, £, for

various values of angular frequency is computed
to be

f(%: 1.71x102 (sec) e (45)

The mean interaction time is independent of the
scale of wave field, if the wave system is in the
equilibrium range.

DISCUSSION OF RESULTS

The theoretical results obtained are summarized
and compared with observation. It is shown that
turbulent diffusivity of random waves has its
origin in the tertiary components. Longitudinal
turbulent diffusion coefficient is expressed by

1) D=10"1wp~% (m?/sec) for ¢t -+ (44)
) D=3x%10"%wy=3 (m?/sec) for £»t------(33)
where 7 is the mean interaction time.

The relations derived show the same functional
form as Taylor obtained for two extreme cases
for correlation time. However, in Taylor’s theory
the criterion of two regions is decided by the
characteristic time of the decay of turbulent
eddies. In an unbounded environment (ocean is
approximately unbounded in horizontal direction)
the decay time of eddies becomes larger and larger
as the scale of diffusion expands. Therefore, it
is said that practically all problems lie in region
(T) as far as horizontal oceanic mixing is concerned.

The characteristic feature of diffusion coefficient
in region (I) can describe the general nature of
relative diffusion. Diffusion coefficient given in
Eq. (44) increases as the time elapses after the
release of diffusive substances, which is the case
encountered in ocean.

As for the non-linear interaction between dif-
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Fig. 3 Variance, {r%), versus diffusion
time, ¢, from dye-diffusion ex-
periments. (After Okubo®)

ferent wave groups, we can consider that it
occurs continuously, which means that one grow-
ing tertiary wave approaches to the size of the
primary wave component and breaks, while other
tertiary component is always under developing.
Therefore, we can imagine the mixing power of
waves holds the standard of intensity shown in
region (I) in Eq. (44).

Diffusion coefficient computed by Eq. (44) is
probably larger than the order of 10-%f (m?/sec)
considering the frequency at the spectral peak is
less than 10 rad. sec™! in most cases encountered
in ocean. Field measurements summarized by
Okubo® are shown in Fig. 3 in terms of variance
versus diffusion time. The functional form be-
tween diffusion coefficient and diffusion time is
concluded as

D=10-6£1-3 (mifsec) s (46)

The diffusion process explained by Eq. (44)
shows much more rapid mixing than observed,
though the exponent of ¢ is a little less than that
obtained through observation. Although it is said
that the interaction between two wave trains
appears only when the waves have been running
long enough, the diffusion generated by the grow-
ing tertiary waves is quite strong once after the
interaction occurs. The estimation of effective
time is very difficult for diffusion due to non-
linear interaction, because the interaction between
different wave-numbers and frequencies depends
upon the previous history of the wave system

under consideration. Therefore, it is concluded
that the discrepancy in factors of diffusion co-
efficient cannot be explained essentially until the
process of developing tertiary waves is observed
and fully understood.

For region (II) in diffusion problems the ex-
perimental result in a wind-wave flume is referred.
Because the maximum eddy scale is bounded by
the size of equipment, the diffusion process in an
laboratory tank is expected to belong to region
(II). Masch!l made one study in a wave tank
which was wide enough (1.2m) that the wave
spectrum was essentially two-dimensional, as is
the case in nature. Polyethelene spheres (average
diameter 2.8 mm) with a specific gravity of 0.97
were used so that they floated on the surface in
order to preclude vertical mixing. Masch states
that the wind did not act directly upon the spheres.
Wind blowing over the water surface creates a
surface current as well as waves. Both the cur-
rent and the waves were measured. Masch found
no evidence of the four-thirds law, except near
the source. Over most of the range of the
horizontal plume lateral eddy diffusivity was found
to be a constant.

Assuming that the longitudinal diffusion co-
efficient is equal to the lateral diffusion coefficient,
the computed values through Eq. (33) are com-
pared with experimental measurements.

Estimated values shown in Table 1 are much
smaller than those obtained in experiments. It
seems that the contribution of random waves to
the measured diffusion process is of the order of
1/400~1/1 000 of the total diffusivity and mixing
is effectively caused by surface current. However,
the difference of experimental condition from the
theoretical postulation should be pointed out to
explain cirtain portion of the discrepancy between
the theory and the measurements. Masch used

Table 1 Comparison between the theoretical
results and the experimental results

2
Run :gé/cs rag)/;']sec g™ Do
Theory |Experiment
HM3-1| 0.48 13.1 4.47x10-4 | 1.34x10-2 5.57
2] 0.53 11.8 6,10 ~ 1.83 » 4.63
3| 0.56 11.2 7.14 7 2,14 »# 9.77
4| 0.56 11.2 7.14 7 2.14 » 15.2
5 0.59 10.6 8.40 » 2,52 » 19.9
HM5-1| 0.33 19.0 1.46 » 4.38x10-3 3.53
2| 0.31 20.2 1.22 » 3.66 ~ 5.82
3| 0.36 17.4 1.90 » 5.7 # 8.00
4] 0.38 16.5 2,23 6.69 11.9
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floating particles of mean diameter of 2.8 mm.
Althrough the specific weight of particles was
almost the same as that of surrounding water, it
is uncertain whether the particles followed exactly
the motion of fluid particles. Because the specific
weight of polyethelene spheres was 0.97, they
have tendency to float and therefore they inclined
to be kept in a zone with high positive velocity
near the water surface. This makes diffusivity
of particles much more intense than in the case
theoretically considered in which the orbit of
particles is nearly a circle and particles encounter
the negative velocity with respect to the direction
of wave propagation during the orbital motion.

The reasoning stated above is also supported
from another point of view. Masch explained
the obtained lateral diffusion coefficient as a
function of the sum of the surface current and
the half of the maximum orbital speed of water
particle. This means the orbital speed is con-
sidered always positive and the arithmetic average
is taken. Therefore, it is said that the floating
particles were exposed to positive orbital velocity
for longer time due to buoyancy of the particles
and resulted diffusion was strongly affected by
the orbital speed.

Another set of datal® is referred in order to

Coetficient (m¥/sec)

Diftusion
o5
i
1

i0° 10 10° 10
t{sec)

Fig. 4 Diffusion coefficients measured
in the sea off Tokai-mura. (Dy and D,
express time-averaged diffusion co-
efficients along the coastline and in
the direction perpendicular to the
coastline, respectively. Both were
obtained through velocity fluctuation.
Dg shows geometric average of dif-
fusion coefficients in two horizontal
directions obtained by dye release
experiments. After Ref. 12)

compare the theory with observation. These data
were obtained in the measurements 700 m off
Tokai-mura coast. Turbulent diffusion coefficient
was obtained by two ways, that is, through the
measurement of velocity fluctuation and through
dye release experiments. Lagrangian correlation
was calculated from Eulerian correlation which
was actually measured. Observation time was in
the range between 103sec. and 105sec. The velo-
city fluctuation was measured at 3m beneath the
sea surface.

Diffusion coefficients obtained by different
methods show the same functional relation with
time except its coefficient for smaller range of
diffusion time as explained in Fig. 4. They in-
crease linearly with time. However, diffusion
coefficient based on the correlation of velocity
fluctuation tends to approach to a constant value
when the observation time becomes greater than
10tsec. Dye release experiment does not show
such a trend. Reported values for linear part
with time are as follows:

(i) diffusion coefficient along the coastline

=5.9x107%¢ (m?fsec) - 47
(ii) diffusion coefficient in the direction per-
pendicular to the coastline
Dy=3.2x10~4¢ (m2/sec) - (48)
(iii) measured value by dye release experiment
Dg=1.6x10-%¢ (m?’/sec) - 49)

The wvalue of diffusion coefficient obtained by
dye release experiments is very small compared
with that obtained by the correlation of velocity
fluctuation, though diffusion coefficient shown in
Eq. (46) is smaller in magnitude than that given by
Eq. (49). Equation (46) is derived as a best fit curve
of dye-diffusion experiments covering the range
of observation time between 7.4 x10%sec. and 2 X
108 sec. Therefore, it may be said that the
magnitude of diffusion coefficient obtained by dye
release experiments may give smaller values than
those obtained through velocity fluctuation,
leaving some scattering of data due to the dif-
ferent experimental condition.

The discrepancy between diffusion coefficient
along the coastline and that in the direction
perpendicular to the coastline probably depends
on geographical features of the coast. Theoretic-
ally derived diffusion coefficient based on the
velocity fluctuation solely due to random waves
shown in Eq. (44) is of the order of 10-3¢ (m?/sec).
Therefore, the measured diffusion coefficient along
the coastline given in Eq. (47) shows agreement
with the theoretical prediction in the order of a
factor as well as its functional form.
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Velocity fluctuation was measured at 3m
beneath the sea surface. The magnitude of velo-
city fluctuation at the sea surface is considered
to be greater than that of velocity fluctuation at
the level of 3m beneath the sea surface. On the
other hand, the theory is concerned with diffusion
of a fluid particle at the sea surface. Therefore,
in order to compare the theory with field obser-
vation, the measurement of velocity fluctuation
should be done at the sea surface. It is reason-
able to suppose that larger values of diffusion
coefficient than those described in Egs. (47) and
(48) would have been obtained, if the velocity
fluctuation had been observed at the surface of
sea. Furthermore, it is appropriate to consider
that the magnitude of diffusion coefficient mea-
sured in real sea will be greater than that derived
from the theory which takes account of the sole
effect of random waves even if other conditions
are the same, because there are many other
factors which generate diffusion of substances in
real ocean, that is, wind drifts, littoral currents,
tidal currents and so on.

Diffusivity of random waves comes from the
interaction between primary waves and mass
transfer velocity which is second order in magni-
tude in wave theory. In reality there exist other
currents as mentioned above whose velocity might
have stronger magnitude than that of mass
transfer velocity. Therefore, diffusion measured
in real sea is under the combined influence
of total velocity field not only generated by
random waves. It is difficult to estimate the
exact rate of contribution of random waves to the
whole diffusive process at the present stage of
investigation until the precise measurement is
carried out under the same condition as the theory
postulates and the effect of each factor is analyzed.

It must be pointed out that there are other
differences between the postulation of the theory
and the condition of measurements. The theory
considers the case of deep water condition, but
the measurement was supposed to be performed
in shallow water. Therefore, the transformation
of waves in shallow water has to be considered
for rigorous discussion. Also the effect of short-
crested waves should be taken into consideration.
Theoretically derived expression of Eq. (44) is
applicable only when the amplitude of growing
tertiary waves is smaller than that of primary
waves. The time scale of development of tertiary
waves is estimated to have the order of 10%sec.
This is out of time scale of reported measurements
in Fig. 4. Although the extrapolation of measured
data implies the same relationships as those shown

in Egs. (47) and (48) for the shorter range of
observation time, the detailed picture of the higher
order interaction of waves is the future subject
of the investigation.

In the last part the remarks on the vertical
diffusion coefficient due to random waves are
described briefly. There are growing tertiary
wave components in the expression of surface
deformation. Therefore, the same order of dif-
fusion will occur shown in Eq. (44) for region (I).
For region (II) it is derived that the tertiary waves
with differences of wave-numbers and frequencies
of primary components have no diffusivity by
considering covariance of the fluctuating velocity.
Although there exists the same intensity of mixing
in the vertical direction as in the horizontal
direction in this analysis, ocean is usually strati-
fied in the vertical direction. Therefore, diffusion
in the vertical direction is strongly suppressed by
the exsistance of stable stratification.

CONCLUDING REMARKS

Concluding remarks of the study on the turbu-
lent diffusion due to random waves are briefly
summarized as follows.

1) 1t is shown that the diffusivity of random
waves has its origin in non-linear interactions
between different wave groups. The lowest order
of wave components which show diffusive nature
is found to be tertiary components.

2) There exist growing tertiary wave compo-
nents with the same wave-number and frequency
as those of the primary wave. The phase of these
terms is in advance of the primary wave by z/2.
The solution of this type is only valid for
1 2/(a?kiw).

3) The horizontal diffusion coefficient obtained
for the long-crested waves is classified into two
regions and the functional form with time ¢ is
the same as described by Taylor. The criterion
of these regions may be the mean interaction
time in this case.

4) The diffusion coefficient derived from grow-
ing tertiary waves is linearly proportional to time,
t. The mean interaction time during which the
magnitude of tertiary components is small com-
pared with that of the primary wave is of the
order of 102sec. The factor of ¢ in the theore-
tically derived diffusion coefficient is much greater
than that observed by dye-diffusion experiments
in ocean. Diffusion coefficient along the coastline
obtained by the measurement of velocity fluctu-
ation, which follows the same procedure as in the
theory, shows fairly good agreement with the
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theoretical prediction of diffusion coefficient due
to random waves. Details of conditions, however,
do not coincide exactly between measurements
and the theory.  Although it is shown that
diffusion due to random waves is able to describe
essential features of the oceanic diffusion process,
more extensive study is necessary to specify the
exact contribution of random waves to the whole
diffusion process.

5) The diffusion coefficient derived from the
tertiary components with differences of wave-
numbers and frequencies of the primary compo-
nents is constant. Comparison of the calculated
results with measurements made in a wave tank
indicates that the contribution of random waves
to the measured diffusion process is very small.
However, quantitative estimation on the ratio of
the contribution due to random waves is not
satisfactory due to the discrepancy between as-
sumptions of the theory and the experimental
conditions.

6) Experimental verification of the process of
tertiary interactions and of the sole effect of
random waves is required for further under-
standing of mixing phenomena due to random
waves.
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