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FEM error due to discretization in the space domain causes inaccuracies in the nonlinear dynamic analysis
of saturated soil, especially in the analysis of liquefaction considering large deformation. An adaptive
strategy includes an error estimate and mesh refinement, in which the approximation is refined successively
to a predetermined standard of accuracy, is essential to the effective use of finite element codes for practical
analyses. In this paper, a posteriori error estimate procedure and /-adaptive FE are applied to liquefaction
analysis of saturated soil using the elasto-plastic constitutive model and updated Lagrangian formulation.
The advantage of this method is shown by the analysis of three numerical examples of saturated soil. °
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1. INTRODUCTION

Nonlinear FEM analysis of liquefaction is being
used in many of areas of research and for practical
engineering problems because liquefaction causes
serious damage to many types of constructions during
earthquakes. New effective constitutive models for
liquefiable soil have been developed to simulate the
material nonlinear behavior of soil. Owing to the large
deformation caused by liquefaction, the = finite
deformation theory is more suitable than the normal
theory based on the assumption of small deformation,
and it has been used in FEM analysis of liquefaction.
Although it effectively deals with the geometrical
non-linearity of liquefied soil, some problems should

be noted. As a type of numerical ' approximation

method, errors are inevitable in analysis results
obtained by the finite element method. The finite
-element method solution does not always guarantee
the desired accuracy, sometimes causing serious

analysis problems. For example, in liquefaction
analysis of saturated soil considering large
deformation, when a coarse mesh is used to save time,
error causes severe distortion of the elements and
sometimes calculation stops unexpectedly. The
accuracy of FEM remains a major concern,
particularly when a non-linear material response
occurs, or large deformation is involved.

FEM error is caused by discretization. Evidently,
reducing the size of the elements uniformly during
discretization minimizes error, but the number of
nodes and elements are increased as is the calculation
time. Our objective was to use a fine mesh in the area
of large error and a normal or coarse mesh in the low
error one.A method called the adaptive technique or
adaptive mesh refinement has been developed and
used to solve this error problem. It has been used
successfully in many fields including solid and fluid
mechanics, for linear and nonlinear problems, in order
to solve static and transient behavior of 2 and 3



dimensional continua. Our aim was to use adaptive
mesh refinement for the liquefaction analysis of soil
considering large deformation.

An adaptive FE method, in which approximation is
refined successively to reach a predetermined
standard of accuracy, is essential for the effective use
of finite element codes in practical analyses. The
procedure, which refines the mesh of the finite
elements according to an error indicator, has two
parts: error estimate and mesh refinement. A main
feature of this method is that it involves local, rather
than global, refinement. In the error estimation, error
is defined as the difference between the approximate
and exact solutions of certain variables, such as
displacement, stress, and strain. Generally, ‘it is
estimated by means of the energy norm or L, norm.

Mesh refinement includes A-, p-, Ap-, and r-refinement.

H-refinement is the simple reduction of subdivision
size, including remeshing and fission.

The h-adaptive FE method is here applied to
liquefaction analysis of saturated soil considering
large deformation. An effective cyclic elasto-plastic
model"™ based on Biot’s two-phase mixture theory
and the kinematic hardening rule was adopted to
simulate the non-linear behavior of saturated soil. The
u-p formulation was used for the governing equations
that describe the coupled problem in terms of soil
skeleton displacement and excess pore water pressure.
The updated Lagrangian method was used in the
formulation to account for large deformation. The
dynamic equations were solved by the Newmark-$
method. Bilinear, four-node quadrilateral elements
were used in the discretization. To estimate liquefied
soil error, an error criterion based on the Ly-projection
of stress or strain was selected. Because it is

impossible to obtain the exact value, we evaluated the -

i -17
more accurate variables by a recovery procedure®!”

in which least square technique is used in order to
make a comparision with the approximate solution.
The calculation is very simple and easy to use in
programming, and the result is reliable. A fission
procedure'®?? belonging to h-refinement was adopted
for mesh refinement. After the calculation of one step,
elements which exceed a given error limit are
fissioned into 4 elements and the next step processed.
The flow chart of this procedure is shown in Fig.1.

A program based on this method was coded in
Fortran. Three numerical examples are given: the
compression of saturated sand by stepwise loading,
liquefied sand flow problems, and the seismic
response of an embankment resting on liquefiable
sand. The efficiency of this technique for liquefiable
soil analysis is shown.
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Fig.1 A posteriori error estimate and h-adaptivity
(77 is the desired limit of relative error)

2. BASIC FINITE ELEMENT METHOD
AND UPDATED LAGRANGIAN FORM

The two-phase mixture theory is used in the
analysis of liquefaction. It was proposed by Biot” in
1962 and has been widely used for the non-linear
analysis of saturated soils. A u-p formulation in the
mixed FEM based on the assumption of small
deformation developed by Akai and Tamura® in 1982.
We use a new version of this scheme as modified by
Di and Sato®”, in which the updated Lagrangian
formulation is adopted. The derivation of the
governing equations is introduced here.

(1) Constitutive equation

An effective cyclic elasto-plastic constitutive model
was used to’simulate the non-linear behavior of
saturated soil. It is developed by Oka"® based on
Biot’s two-phase mixture theory and the kinematic
hardening rule. The stress-dilatancy relationship and

-cumulative strain-dependent characteristics of the

plastic shear modulus have been taken into account.
The simulation results for saturated soil agree with the
experimental results, even for the liquefaction process.
This -constitutive model is incorporated in a mixed



FE-FD coupled method.
The general linear relationship between the
objective stress and deformation rates is
dijj = Dijkllkl _psij (1
where p is the of pore water pressure rate, I the

symmetric deformation rate tensor, &; the Kronecker

delta, and Dy, the instantaneous stiffness of the

material. The Jaumann stress rate, which gives an
objective measure of the stress rate, was used in the
present formulation.
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where &, is the Cauchy stress tensor rate and o; the

skew symmetric spin tensor defined by
_1
o5 =5(vi; = vy 3)
where v is the velocity.

" (2) Equilibrium equation
According to Biot’s two-phase mixture theory, the
equation of motion for total saturated soil is
O'ij,j'*'Pbi‘Pﬁi"Pf(wi"‘wkwi.k):o )
where oj; is the Cauchy total stress, v‘vij and w j are the

pseudo velocity and acceleration of the pore fluid
relative to the soil skeleton.
Neglecting acceleration of the pore fluid, the
equilibrium equation for saturated soil is
oy, +pb; —pii; =0 (5)
Integrating in the spatial domain, we obtain the
weak form of the equilibrium equation at time t-+dt:

-[ﬂh v t+d‘pt+dt ﬁtSvid“dtV + .[+d| v ( -[‘12 Sljdt)SEUdet V=
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where v; is the velocity of the solid skeleton. b; body
force on the volume, V, of the porous medium, T; the
traction on the surface A, E; the Lagrangian strain
tensor, and Sy the second Piola-Kirchhoff stress
tensor. '

(3) Constitutive equation

From Biot’s two-phase mixture theory, neglecting
the acceleration of fluid phase, the pore fluid
equilibrium equation is

(np); —npeb; +ny kW, +npii; =0 )

where n is the porosity, pethe density of the pore fluid,
¥r the weight in unit volume, and k the permeability
coefficient.

The mass conservation equation for fluid flow is
simplified as Eq.(7) by assuming that the porosity
distribution of the medium is sufficiently smooth,

solid partials are incompressible, the initial strain rate
is 0, and by neglecting thermal expansion of the fluid.
wii+é‘ii+—ip=0 ®)
s I{f
where Ky is Young’s modular of the pore fluid.
Combining Eqs.(6) and (7) gives a simple form of
continuity equation;
2
=0 ©)
Integrating over the porous medium volume, the weak
form of Eq.(8) is
_ t+d:pf t+dt§iidt+d(v _ 'L“V t+dt p,iidetV
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(4) Updated Lagrangian FEM equations

We used the updated Lagrangian description
belonging to the Lagrangian family in order to deal
with the large deformation of saturated soil. In this
formulation, all variables at time t are taken as the
reference configuration of the variables at time t+At.
The reference configuration is updated at each
calculation step.

Referring all stresses, strains and deformations at
time t+At to the current configuration at time t by use
of the updated Lagrangian method", the weak form of
the equilibrium and continuity equation at time t+dt
are rewritten as Eq. (11) and Eq. (12);

Lv Pt Sv,d'V + ﬁv([zsijdt)SEijd'V =
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k
where, b; body force on the volume, V, of the porous
medium, T; traction on the surface A, E; the
Lagrangian strain tensor, and Sy the second
Piola-Kirchhoff stress tensor.

Discretizing Eq.(11) in the space domain by the
finite element method, gives the final form of the
equilibrium equation;

IMI{"** U} +[K 1{dU} + [K o 1{dU} + [K 1{** pg)

={F}+{F}-{F} (13)
where [M] is the mass matrix of the porous medium,
[Ki] the stiffness matrix of the elements, [Ky.] the
geometric stiffness matrix, {ps} the excess pore
pressure vector at the element center, and [Ky] a
matrix coupling the displacement increment with



excess pore water pressure. {Fp}, {Fv}, and {F’}
respectively are the load vector expressing the effect
of the element surface traction force, the element body
force, and the element initial force.

In the same way, we obtain the final form of the
equilibrium equation as Eq. (14);

—pf[Kvl{iJ}—%[Kv]{U}+[a1{‘*“'p5}+

nYw t t+dt . .
'[Vka[Np]d V{*p }=0 (14)
where p is approximated by [Np]{ ps}, pe the excess
pore pressure at the center of each element, and

[o]{*“pg} the difference expression of the second

term in Eq. (12).

Adding Rayleigh damping to Eqs.(13) and (14),
gives the final finite element formulas as the u-p form
for dynamic analysis of the porous medium. The
Newmark- 8 method for time domain integration is
used to solve the dynamic equations.

3. POSTERIORI ERROR ESTIMATE

Error estimate is the first and most important
procedure of adaptivity giving an indication of the
next step, mesh refinement. The error for each
element, which is due to spatial discretization in the
FEM, is calculated in this step. The elements which
need to be refined then can be distinguished from
those which do not by comparing the errors with an
acceptable limit. FEM accuracy therefore is improved
. in addition to saving degrees of freedom. There are
two distinct types of general error estimates,
recovery-based and residual-based one. A posteriori
error estimate procedure that depends on local
smoothing of variables based on a least squares fit
scheme was used. It is a recovery-based estimate type.

(1) Definition and Measure of Error
Error is defined as the difference between the exact

solution and value of the finite element approximation.

Variables considered in the error estimate - are
displacement, strain, and stress. For example, an error
in strain is described as

’ e, =g*—¢" (15)
and an error in stress as
e, =c*-c" (16)

where £¢* and o * are the exact solutions, g’ and

G" the values of the finite element approximation.
To explain the approximate value of FEM and the
exact solution, a  one-dimensional linear

approximation of strain g"and &* is shown in Fig.2.

Fig.2 Approximate values and exact solution

The direct definitions of error described in Eqs.(15)
and (16) are not convenient for use in the process of
error estimation. Usually, scalar norms, such as
energy or L, norms, are used to measure error. This
scalar measure corresponds to the square root of the
quadratic error. In this study, we used the L, norm to
measure error, as it can be associated with errors of
any quantity. For the strain or stress in the element i,
the L, norm of the error, €;, is

o= J, EFekvv) T an

In the practical adaptivity process, a relative

" percentage error generally is used because it is more

easily interpreted. Its definition for the ith element is

e 100% (18)
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It is clear that the energy and L, norms are related to

the strain energy. This relationship is shown as
follows:

Considering the physical relationship. between the

stress and strain,

fe}=[D]" {e} (19
the total potential energy, A, of a system predicted by
the approximate solution of FEM is

A= [Tl v - R @)

where {R} is the vector of the loads and the reaction

(20)

acting on the nodes, {ﬁ} the vector of displacement
on the nodes, and [D] the stiffness matrix.

Assuming infinitesimal displacement {dﬁ} on
nodes, from the principle of virtual work,

R)"{aa)= [ foe" oy @1
Substituting Eq. (21) in Eq. (20), the total potential
energy is
A= [’ [DT L{ et v
- [0 Jiv— [ o+ DT o Jav
(22)
Eq. (22) can be put into another form;

A= [ 4" —o*'[D]" fo" o *fiv+c @3) .

where ¢ is the constant without relation to nodal



displacement.
Using another physical relationship between the

stress and strain,
{o}=[De} (24)

By the same derivation method, the same conclusion
for error of strain is

A= [ [D];; —g*fdv+c (29)

From Eqs. (23) and (25), the total potential energy
is interpreted as a weighted, stress error squared
quantity. When the size of an element is small enough,
the unweighted, error squared quantity corresponds to
the weighted error squared quantity. The relationship
between the L, norm of error and the total potential
energy is ensured. Because the L, norm of error is a
positive definite function, the global L, norm of error
is the sum of the local L, norms of error. Then the L,
norm can be used to measure error, not only in the
global mesh, but in a local element.

(2) Local smoothing by extrapolation

In the error estimate process, the more accurate
values rather than the exact solution are used to
calculate errors because the exact solution is not easy
or impossible to obtain. In the past twenty years,
recovery procedures have been developed and used
widely. We use a local smoothing procedure, a kind of

recovery for such interest variables as stress and strain.

It is based on the least squares technique.

The conventional least squares smoothing method
gives a smoothing function for a two- dimensional
problem;

P(x,y)=a,+ax+a,y+a,xy+a,x> +-- (26)

The smoothing problem becomes one of finding the
aj coefficients which - minimize the function
corresponding to potential energy shown as

A= [[(c-P)*dxdy @7
where P is the smoothing approximate value.
For function A to be minimal
0
A =0 (28)
Oa,

This equation defines a set of linear equations. For
a smoothing function of a given order, the aj
coefficients are easily obtained.

Assuming the smoothed stress, ¢ *, in an element
can be interpolated from the smoothed nodal value,

o*,is
for}=[No+} (29
where [N*] is the interpolation function. If the same
interpolation function is used with the displacement
shape function, the smoothed stress is one order
higher than the approximate solution.
In place of P(x,y) using Eq. (29) the function

corresponding to potential energy is rewritten

A= [ 16" I (o} Nl v
(30)
For function A to be minimal, a set of linear

equations are needed by a more accurate nodal value
of stress can be calculated'
)dv 0

—_[N* N*] 31

From Eq. (31), an explicit formula is derived by
which nodal stress can be calculated;

[Mlie*}= [N+ {6 Jav (32)

o fed=IMP [Nt (3)
where

[M]= [ [N+ [N *hav (34)

Matrix [M] has the structure of a classical mass matrix.
In'some studies, matrix [M] is used as a lumped form
to avoid the difficulty of inverting a consistent matrix
and simple iteration can be used to obtain the solution
to Eq. (32) or (33).

We used the consistent form of matrix [M] in the
local smoothing procedure for a bilinear four-node
element with 2x2 gauss rule shown in Fig.3.

Taking sampling points at the four points of the 2*2
gauss rule, a discrete expression for one bilinear
isoparametric element is obtained from Eq.(32);

s
sk : ¢={F}

o]

O,

(35

where
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Fig.3 Local smoothing by extrapolation
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(b) nodal averaging

Fig.4 Nodal averages

Local smoothing is extrapolation of the nodal value
G, , from the values on the gauss points, G| . It

does not produce unique values for the stresses at
nodal points; therefore, arithmetic averages of nodal
values must be calculated. The smoothed variables of
different elements at the same node should be
averaged as shown in Fig.4.

The local smoothed procedure for strain is the same
as the procedure for stress introduced above. It is
easily inserted in the programming code because

evaluations of the appropriate €* and g" quantities
are possible using a part of the existing codes within
the FEM scheme.

(3) Example of an error estimate

The effectiveness of this error estimate method is
shown in the following as example. In Fig.5 a
saturated sand block 4m long and 2m high is
compressed at the top surface by a uniformly
distributed load. The load increases linearly to
100kN/m until t=10 seconds. The right and left sides
are freely in displaced and undrained. The top surface
is freely displaced and drained. The bottom is fixed
and has an undrained boundary. The parameters used
for simulation are same as the Edosaki sand 1 given in
Table 2.

Ly bbb
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L N
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| 4m

1

Fig.5 Example of error estimate
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Fig.6 100-element mesh

The right half part was analyzed because of the
symmetry of the model and 16-, 100-, and
400-clement meshes are used in the error estimation.
The 100-element mesh is shown in Fig.6.

In the case of 100 elements, the relative errors of
strain at times t=2, 4, and 6s are shown in Fig.7. The
maximum value of the relative percentage error,
77, » that occurring at the right top corner is given.

Clearly, the error of strain increases with the increases
in the strain and load.

Fig.8 shows the contour of relative error for three
meshes of different element size and number: 16, 100,
and 400 elements. A comparision of the relative errors
of strain at point A with coordinates (1.6,1.6) at time
t=2s for the 16, 100, and 400 element cases shows
clearly that a reduction in element size reduces error.

Point A can be taken as a sample point for the
global distribution error because it was selected
randomly. Fig.9 shows the relationship between the
error in point A and the number of elements in a
doubled notched specimen to demonstrate the
effectiveness of the application of our error estimate
method to the elasto-plastic analysis of saturated soil.
The sloping line is in good agreement with other
findings™. Although no analytical result is given for
comparison, the tendency for convergence with this
method is reliable.
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4. MESH REFINEMENT

The error for every element is obtained from the
error estimate process. The next step is mesh
refinement, implemented for elements for which the
errors exceed an acceptable limit, in order to improve
the accuracy of the finite element approximation. If
improvement of accuracy is taken as the target of the
adaptivity procedure and the error estimation gives a
correct indication, then mesh refinement is the only
way to the target. Mesh regeneration based on error
estimation also is an effective adaptive procedure, but



in consideration of economy, in this paper in which
non-linear dynamic analysis was used, the mesh
refinement method was selected.

There are four kinds of mesh refinement methods:

(1)  h-refinement; reduce the size, 4, of the
elements in high error regions;

(2) p-refinement: increase the order, p, of the
polynomail shape function in high error
regions;

(3) hp-refinement: simultaneous application of
both the 4- and p-refinements;

(4) r-refinement: relocate the nodes.

A h-adaptive technique’® was used in which the

adaptive process is executed by element error

measures in order to allocate elements for generating a

mesh with the smallest number of elements and, at the
same time, to obtain the required accuracy. The
h-adaptive technique involves two methods: mesh
regeneration and simple mesh refinement, a fission
scheme. Mesh regeneration is a means to regenerate a
new mesh in the global mesh as indicated by the mesh
density obtained in the error estimation process. Data
transfer is needed also to move the elements and nodal
variables from the old mesh to the new mesh. The
fission scheme refines the mesh by fissioning those
elements with large error into smaller, equal-sized
elements then transferring the variables of the nodes
and elements from the old mesh to the new mesh by an
interpolation procedure. A comparison of these two
schemes, clearly shows that the latter involves less
computation than the former. Data transfer in the

latter scheme is local whereas in the former it is global.

Taking into account the thousands of time increment
steps in the dynamic analysis, the fission scheme
saves computation and improves accuracy.

In the refinement process, an acceptable relative
error limit 77 must first be given. If the relative error,

7, , of the ith element exceeds this limit, then the

element is fissioned into four elements. This process
is illustrated in Fig.10. The initial mesh is shown as
mesh-a. After error estimation, the relative error for
element 5 exceeds the error limit, and the element is
fissioned into four elements: 5, 7, 8, and 9. Five new
nodes, 13, 14, 15, 16, and 17, are created in the mid of
four sides and the center of the element. The new
mesh refined at the first step is shown as mesh-b. The
parameters of element 5 in mesh-a are transferred to
elements 5, 7, 8 and 9 in mesh-b, and the variables of
the new elements are interpolated from the variables
of element 2 in mesh-a. The pore pressure values of
the new child elements are same as the pore pressure
value of the old parent element. The displacement,
velocities, and accelerations of the new nodes also are

9 10 11 12
4 5 6
5 6 7 8
1 2 3
1 2 3 4
mesh-a
9 0 15 1 12
9
4 16 178 14 6
5 7
5 6 13 |7 8
1 2 3
1 2 3 4
mesh-b
9 10 15 11 12
9
4 16 1'/8 14 6
5 7
6 13 8
> 12 | 11 7
1 20 T 19 3
2 10
1 2 18 3 4
mesh-c

Fig.10 Fission process

interpolated from the values of the old nodes in
mesh-a. The next calculation step is based on mesh-b.
In that step, element 2 exceeds the limit of error, and
new eclements and new nodes are created. The
difference is that a node is created in the mid of side
7-6, a new node need not be created on this side. The
refined mesh is shown as mesh-c.

When an element is fissioned next to an unfissioned
one, slave nodes are created, e. g., node 13 in mesh-b
Fig.10. The motion of slave node 13 should be
governed by the constraint of compatibility,

{Vis} =[T]{\V;} - a9

where [T] is a linear operator which enforces
compatibility and {V¢} and {V;} are the velocities of
the master nodes. When node 13 is midway between
nodes 6-and 7, [T] is defined by [I/2,1/2], in which I'is
a unit matrix. The equation of motion is not evaluated
at the slave node. Instead the nodal forces at the slave
nodes ‘are added to the forces at the corresponding
master nodes;
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Table 1 NABOR array for the element 2

mesh | JE [L1 |L2 |13 |14 |L5|L6[L7|L8

b 2,010 1313171511 1

c |2]10j;07j10]10]12]1211]1

F 6 F6 T
(h{e] e a9
where {F;3} are the nodal forces at the slave node and
{F}* those at the nodes 6 and 7 prior to the
consideration of {Fi3}, This is the standard technique
for treating constraints in explicit methods.

To clarify the interrelationship between the old and
new nodes and elements, requires an elaborate data
structure in the process of node and element creation.

To develop master and slave nodes during the
fission process an important array NABOR(NE,8),
composed of the eight neighboring element numbers
of a concerned element are used (Fig.11).

NE is the number of the element. To clarify the use
of the array, consider mesh-b in Fig.10 with element 5
already fissioned into element 5, 7, 8, and 9. Also
consider mesh-c obtained by fissioning the element 2
to element 2, 10, 11 and 12. The NABOR array for
element 2 is given in Table 1 for both meshes. The
first thing to note is that the zero entries for L1 and L2,
indicate a boundary at the bottom of element 2.
Therefore, 2 new node needs to be created (node 18)
which is a master node. Next, L.3=14=3 indicates that
element 3 extends along the entire side of element 2.
Therefore a new node (node 19) must be created,
which is a slave node. Now, L5=7 and L6=5, therefore
a node already exists (node 13) which is a slave node
in mesh-b, and, it becomes a master node when
element 2 is fissioned.

5. NUMERICAL EXAMPLES

(1) Compression of saturated soil
- This is an example of the simulated compression of
saturated soil taking into account large deformation,

in which h-adaptive FE analysis is implemented .

within the period of compression before liquefaction.
The soil block is 2m long by 2m high, and analysis

Fig.12 Compression of saturated soil

Fig.13 Relative error before refinement

begins with a 100-element mesh, as shown in Fig.12.
The parameters of soil used for analysis are those of
the Edosaki sand 1 defined in Table 2. The initial
stress  of - elements are calculated with gravity.
Displacement of nodes perpendicular to the boundary
side is constrained on the left and bottom. A drained
boundary condition is present only on the upper
surface. A stepwise load is applied to the right side of
the top surface of the block through a rigid plate, 0.8m
long, without weight. The load is increased linearly to
20kN/m until t=2 seconds.

The saturated sand which is Enshyunada sand with,
relative density Dr=40% and initial void ratio
€0=0.992 is described by a cyclic elasto-plastic model.
four-node quadralitera isoparametric element is used.
Error of shear strain is estimated. The relative error
limit 77 is 25%. The relative error distribution before

mesh refinement is given as Fig.13. A large shear
strain bound is appeared. L ‘

The refined meshes at time t=Isec and t=2sec are
given in Fig.14, (a) and (b). The elements in the strain
bound are refined.



(a) t=1sec, 178 elements

]

(b) t=2sec, 274 elements
Fig.14 Refined meshes

In this example, h-adaptive FE method is
implemented in elasto-plastic analysis of saturated
soil during the period without liquefaction. When
location phenomenon is appeared, the error of shear
strain is increasing evidently with increasing of shear
strain. Error estimator evaluates errors successfully
shown in Fig.13. At the same time, fission scheme is
used in the area with large error value indicated by
error estimate. It’s no doubt that our method is
applicable to nonlinear analysis without liquefaction.

(2) Simulation of shaking table experiment

The aim of this example is to check the efficiency
of h-adaptive FE method applied to nonlinear analysis
of liquefied soil. Hamada®" et. al.(1994) did a shaking
table experiment of saturated sand in which flow
process of liquefied soil was given. The experimental
equipment and the process of experiment are shown in
Fig.15. First, a strong vibration, which the maximum
value of accelerate is 100 gal, acts on the shaking test
table until time t=7sec. This vibration causes the
saturated soil liquefied. Then inclined the soil
container to a certain angle (4.2%) in order to let the
liquefied sand flow by gravity. The process of
inclining begins from horizontal angle at time

i0

liquefied
sudsoil

Fig.15 Shaking table test procedure
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Fig.17 Initial mesh for liquefied sand flow

t=8.7sec and reach to the angle 4.2% at time t=10.6sec.
Enshyunada sand with relative density Dr=40% and
initial void ratio €,=0.992 is used in the experiment.

A time history of acceleration shown in Fig.16 is
used to simulate this experimental process.

H-adaptive FE analysis is applied to simulate this
experiment. The initial mesh with 24 elements is
shown in Fig.17. The upper surface is drained
boundary. Four-node isoparametric element is
adopted. Error of strain is evaluated in error
estimation. Because the aim of this example is to
check efficiency of adaptive FE method in
liquefaction process, the fission scheme starts at time
t=8.7sec.

After the strong vibration from t=0sec to t=7.0sec,
the saturated soil in the containor is liquefied. When
liquefaction happens reduction of effective stress and
lose of stiffness and strength of soil. Inclining the
container, liquefied soil flows driven by gravity. The
flow causes large deformation and high value of
discretizition error. Before the liquefaction is onset,
the error value is not so large, even though distribution



of error is fluctuate in space. But after the onset of
liqufaction the high values of error concentrate in the
regions with large deformation. For this reason,
adaptive FE method is more effective in the flow
analysis of liquefaction. In this example, the adaptive
mesh refinement for liquefied soil starts from the time
that the flow of liquefied ground starts. The final
refined mesh is given in Fig.18. The relative error
limit 7 is 30%. We can find that the elements where

large deformation occurs, in other words, where errors

are large, are fissioned step by step and the sizes of

these elements become small.

The final surfaces of soil calculated for 3 cases
were compared in Fig.19. In case a and ¢, 720
elements fixed mesh and 24 elements fixed mesh were
used without adaptive mesh refinement. In case b, we
used adaptive mesh refinement with 24 elements as
the initial mesh. We can find that although the final
surface calculated with fixed 24-element mesh is
coarse, but the final surface calculated by A-adaptive
FE method from 24-elements mesh is almost as fine as
that calculated with fixed 720-element mesh. The
calculation time in case a is about 20 hours, but the
calculation time in case b is about 11 hours in the
same computer. We can get the conclusion that the
level of accuracy of finite element method is raised
while the calculation work is reduced by using
adaptive mesh refinement. This result can be
explained easily by the mechanizm of adaptive
technique. In adaptive analysis, the local elements
with large error but not global mesh are refined, thus
the small-sized elements with fine accuracy are used
in the region where fine mesh is needed and number of
degree of freedom is used efficiently. That’s the
reason why the result in case b can reach almost same
accuracy as the result in case a.

From this example, we can find that h-adaptive FE
method can be applied effectively to liquefaction
period of elasto-plastic analysis.
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(3) Earthquake response of embankment

" In this example, s-adaptive FE method is applied in
an earthquake response analysis with updated
Langrangian method of embankment sitting on
liquefiable soil. An overall elasto-plastic process
including liquefaction is given. The efficiency of our
method used in practical engineering is checked.

The model of embankment and soil layer is shown
in Fig.20. The embankment is 2m wide on the top and
20m wide in the bottom. There are two kinds of soil
without water in the embankment, Edosaki sand and
crushed stone. The soil region we considered is 60m
wide and 12m deep. There are two kinds of saturated
soil, Edosaki sand and silica in the soil layers. The
dynamic parameters of these soils are shown in Table
2.

Table 2 Parameters of soil(t,m,s)

Material Edosaki | Crushed | Edosaki | silica
parameter sand 1 stone sand 2
Density p(t/m”) | 1.75 1.54 1.857 | 1.990
Coefficient of - - 1.7E-5 | 2.5E-5
permeability
k(m/s)
Initial void 0.856 0.856 0.856 | 0.676
ratio e
Compression | 0.0264 | 0.0264 | 0.0264 | 0.025
index A 0
Swelling index { 0.0055 | 0.0055 | 0.0055 | 0.002
K 5
Initial shear 829 829 829 1280
modulus ratio
Go/omo
Over 1.0 1.0 1.0 1.0
consolidation
ratio
Phase 0.91 091 0.91 0.91
transformation
stress ratio My,
Failure stress 1.12 1.12 1.12 1.51
ratio my
Hardening 3000 3000 3000 5000
parameter Bg
Hardening 0.0 0.0 0.0 0.0
parameter B, '
Hardening - - 60 100
parameter Cy
Plastic - - 0.01 0.004
reference stain
Elastic - - - 0.03 0.09
reference
strain
Dilatancy 0.0 0.0 5 1.2
parameter Dy _
Dilatancy . 0.0 0.0 1.2 4.0
parameter n
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In Fig.21, the initial mesh with 216 elements is
shown. The displacement of bottom boundary are
fixed, side boundary is fixed in horizontal direction.

We use a time history of horizontal acceleration
shown in Fig.22 as input load. It was recorded in a
strong earthquake, the maxmum value is 722 gal. Only
9 seconds is used in our analysis.

The curve of extra pore water pressure ratio of
element 1 is given in Fig.23. When the value turns to
1.0, the soil is liquefied. We can find that the soil
begin to turn into liquefaction state at time t=4.5 sec.
We give the analysis results from t=0 second to t=9
second. In this period, the saturated soil shows all
states of a liquefaction process, from elastic state to
plastic state.

Bilinear isoparametric four-node element is
adopted. Considering that different kinds of soil cause
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Fig.24 Mesh for large deformation without adaptivity
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Fig.25 Refined mesh for large deformationwith adaptive FEM
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the strain discontinue in the joint surface, the L,-norm
of effective stress is selected to evaluate the error. The
initial mesh with 216 elements is given in Fig.21.

In Fig.24, (a), (b) and (c), the meshes at =7,8,9
second analyzed by fixed 216-element meshes are
given respectively. The stress and strain in the region
besides the foot of embankment and under the
embankment are larger than other region. The value of
error in these regions is increased.



In Fig.25, (a), (b) and (c) refined meshes analyzed
by h-adaptive FEM with updated Lagrangian method
are given. The elements in the region with large error,
as same as where we mentioned before, are refined
step by step. The mesh is turning fine while the
number of elements is increasing.

In Figs.26 and 27, the horizontal and vertical
displacements of node 1 are compared between the
adaptive FEM case and FEM case. The elements in
the region with large error are refined. The elements in
this region are also with large deformation and strain.
They are the main part of the whole mesh which
affects the displacement of the embankmen. It’s
evident that refinement of these elements improves
the accuracy of the embankment displacement result.
From the difference between the two lines is enlarged
with mesh being refined, we can find that adaptive FE
method improves analysis result efficiently.

As a comparision, we also give the mesh results of
FEM and adaptive FEM with small deformation in
Figs.28 and 29 respectively. Although the general
deformation due to liquefation are not so large, but
there are some region with large deformation,
especially in the areas near or under the embankment.

large deformation
Adaptive FEM
o= FEM
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Fig.26 Horizontal displacement of node 1
for large deformation
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Fig.27 Vertical displacement of node 1
for large deformation
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It’s easy to find the difference between the two
adaptive FEM results, with infinitesimal deformation
assumption and with finite deformation theory. The
deformation of the last case shown in Fig.29 are larger
than the deformation of the other case shown in
Fig.25, and the errors of the last case are also larger.
For this reason, the elements number of refined mesh
of the last case is more than that of the other case.
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The horizontal and vertical displacements in node 1
in two cases are given in Figs.30 and 31. The same
phenomenon as Figs.26 and 27 occurs although the
deformed meshes, number of refined elements and the
displacements are not same as those in large
deformation case. The comparison between Figs.27
and 31 indicates that the displacements of node 1 with
large deformation theory are larger than those with
infinitesimal deformation assumption.

By this example, h-adaptive FE method is
demonstrated to be effective in application to
elasto-plastic analysis of saturated soil including an
overall liquefaction process. No matter in large
deformation case or in small deformation case, this
methods works well.

6. CONCLUSIONS

This paper applied adaptive technique to non-linear
FE analyses of saturated soil considering large
deformation including liquefaction phenomenon. We
used fission procedure belong to the A-refinement
indicated by the error measure of elements. The
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_predetermined

approximation is successively refined as to satisfy the
standard of accuracy, and the
efficiency of this method was confirmed in the finite
element analyses. This method is easy to applied to
solve practical and engineering problem. In transient
analysis, the limits of error are from 2.5%-15%%"2,
There are less papers which introduce adaptive mesh
refinement applied in dynamics analysis. Here, in
dynamics analysis of adaptive mesh refinement,the
limits of error are 20%-30%. The results of our
examples are acceptable

A posteriori error estimate based on L, norm of
strain or stress error was adopted in this paper. It can
estimate the error of elements after every step of
calculation in nonlinear FE analyses of soil effectively.
Smoothing variables procedure includes variables
extrapolation from the value in gauss points and nodal
values average. In a transient analysis of saturated soil,
both strain and stress can be used to estimate errors.
But in a dynamic analysis of saturated soil, strain
gives more smooth distribution of error than stress.
This method is easy to implement into any code and
the calculation based on this method is very simple as
well as the advantage in saving computation time is
evident. This is a reliable indicator for mesh
refinement.

The program developed for liquefaction analysis
was modified by using this theory. Three numerical
examples were given to demonstrate the efficiency of
our method. These were compression of saturated
sand caused by a stepwise loading, flow of liquefied
sand problems considering large deformation which
are elasto-plastic analysis without liquefaction and the
analysis of liquefied soil problems respectively and a
non-linear dynamic analysis problem of saturated soil
including liquefaction. The results we have obtained
show that this adaptive scheme is capable of achieving
substantial improvements in accuracy under a limit
computational effort. Generally, an adaptive mesh is
capable of achieving one order higher level of
accuracy as a fixed mesh with less than half of the
computational resource.
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