画像計測を用いた試験システムによる
突合わせ溶接継手の低サイクル疲労強度の検討

鍛石 和雄1・判治 剛2

1正会員 工博 名古屋大学教授 工学系総合研究センター（〒464-8603 名古屋市千種区不老町）
2学生員 工修 名古屋大学大学院 工学研究科土木工学専攻（〒464-8603 名古屋市千種区不老町）

本研究では、従来の砂時計型試験体では困難とされている、溶接部の低サイクル疲労強度を実験的に明らかにすることを目的とし、新たな試験システムとして、画像計測を用いたひずみ制御低サイクル曲げ試験システムを開発した。あらかじめ、画像計測面近傍にひずみゲージを貼付し、それにより測定できた範囲内で画像計測値とゲージ値を比較することで本計測手法の精度を確認した。本手法を用いて素材試験体と突合わせ溶接継手試験体の疲労試験を行った結果、素材試験体に関しては過去の研究におけるデータと同様の傾向を示した。一方、溶接継手試験体では、素材試験体の疲労強度を大幅に下回っており、溶接継手の低サイクル疲労強度は著しく低下することを明らかにした。

Key Words : low cycle fatigue strength, welded joint, image analysis

1. はじめに

1995年1月に発生した阪神・淡路大震災において多くの低サイクル疲労による構造物が報告された4). 例えば橋脚基部周辺において、数サイクルの反復曲げにより、低サイクル疲労と考えられるき裂が発生し、基部が断面状態に至る事例3)や、ルーマン橋脚隅角部において、塑性変形の繰り返しにより延性き裂が発生し、脆性破壊が生じた事例3)などがある。このように鋼橋のひずみ集中部では過大な外力の繰り返しによりき裂が発生し、耐荷力が著しく低下する危険性がある。そのため、地震時の繰り返し荷重による低サイクル疲労や脆性破壊などの高塑性域での破壊メカニズムについて解明する必要があると考えられる。

鋼材材の低サイクル疲労に関する研究は、造船や機械などの分野で数多く行われており4), 鋼材材の低サイクル疲労強度については、塑性ひずみ振幅と疲労寿命が両対数で直線関係を表すという、Manson-Coffin関係式がほぼ成り立つことが明らかとなっている。しかし、大震災での事例やその後の研究5, 6)により、ほとんどの低サイクル疲労き裂は溶接継手部から発生することが示されている。したがって鋼材材のみではなく溶接部の低サイクル疲労強度を明らかにすることが重要となる。しかし従来の砂时計型試験体を用いた方法（WES-1101）6)では、試験断面は一断面のみであり、さらにその断面内でひずみ、応力の分布も表面と内部では異なることが知られており、疲労強度を評価するための物理量を捉えにくい。したがって、場所によって材料特性が大きく異なる溶接継手に適用することは困難である。そのため金多・甲斐7)、町田ら8)は、溶接部から小片を切り出し、円柱状に加工した丸棒試験体を用いて溶接部の疲労強度に関する研究を行っている。また飯田ら9)は、9%Ni鋼の母材および溶接材に対して、板曲げにより低サイクル疲労試験を行っている。いずれの研究においても溶接部の疲労強度は母材のそれより明らかに低下することを示している。しかし、金多・甲斐らの研究では試験体の形状による制約から、また飯田らの研究ではひずみの測定にひずみゲージを用いていることから、対象とできるひずみの大きさに限界があり、大ひずみ領域
に適用することは難しい。しかしこれまでのところ、溶接接着部の低サイクル疲労強度に関する十分なデータを得るには至っていない。

近年、酒井・松浦10)は、板の曲げ試験によって生じる平板表面の変形形状を画像計測によってとらえ、ひずみを測定する手法を提案している。板曲げ試験では試験体に生じる応力状態を把握することが困難であるという欠点があるが、試験体に変形を与えられるのが容易であり、溶接を含んだ試験体にも適用可能であると考えられる。また小茂鳥ら11)、桑村・山本12)は、ひずみ振幅が大きくなるとき裂発生位置が材料表面から内部へと遷移することを明らかにしているが、板曲げ試験では、き裂は試験体表面から発生すると考えられることから、このようなき裂発生位置の相違について考慮する必要がないという利点もある。

そこで本研究では、板曲げ試験による低サイクル疲労試験システムの構築を行った。その際のひずみ計測手法として、ひずみゲージによる測定が挙げられるが、15%以上のひずみの測定は不可能であり、大変形の繰り返しによりひずみゲージが剥離してしまうなどの問題がある。そこで、画像計測を用いた大ひずみ計測システムを開発し、これによりき裂発生位置におけるひずみを計測した。本計測システムは酒井・松浦のシステムを改良したものであり、試験体側面に描いた標点の移動量からひずみを計測するものである。

本研究では、まず鋼素材の試験体に対して開発した低サイクル曲げ疲労試験を行い、過去のデータと比較することで、本試験システムの妥当性を検証する。さらに、溶接接着手に対して適用し、溶接接着手の低サイクル疲労強度について明らかにする。

2. 画像計測によるひずみ計測システム

(1) 計測システム

計測システムは、デジタルカメラ、画像処理プログラム、疲労試験機で構成されている（図-1参照）。デジタルカメラは一般に市販されているものを使用した。また、カメラはコンピュータに接続されており、リリース操作をコンピュータ側から制御できる。画像データの高速自動転送が可能である。なお、カメラの有効画素数は約311万画素（2160×1440）、撮影距離は18.8-36.1cmである。

(2) ひずみ計測手法

画像計測によるひずみ計測の流れを以下に示す（図-2参照）。なお、使用したコンピュータの性能はPentium II 600MHz / 256MBByteRAMであり、画像を撮影し、ひずみを算出するまでに要する時間は画像データの受信が約15秒、ひずみ算出が約45秒の計約60秒である。
a) 標点の抽出
計測前に試験体側面のエッジに沿ってひずみ計測用の標点を設ける。画像計測による標点抽出を容易にするため、標点は赤色とした。まず、デジタルカメラで変形前の試験体側面の画像を記録し、コンピュータへ転送する。次に、画像データの色彩情報にしがい値を設定し、赤色の領域のみを抽出する。ただし、この時点では、標点以外のノイズ成分も画像内に含まれる。さらに赤色の領域をラベリングし、それぞれの画素数を求める。ある画素数以下高地領域はノイズ成分として除去する。これにより標点のみがメモリ上に記録される。

b) ひずみの算出
記録した標点の重心の座標を求め、再度、標点をラベリングし、行、列を規則正しく並べる。次に、各標点間の重心間距離を計算し、変形前の距離の変化を、各標点間の真ひずみを求めめる。ここで標点間距離は、隣り合う3つの標点から回帰曲線をひき、その曲線を積分することにより求めた（図-2参照）。また、試験体側面と同一平面に位置
するようにキャリプレーション用基準体を試験体に貼り付け、同時に写し込んだ。これは、変形前後の
画像における1画素の大きさの変化を補正するためのものである。

(3) 試験体および載荷方法
試験体の形状および寸法を図-3に、供試鋼材の
ミルシートによる機械的性質、化学成分を表-1に
示す。試験体は板厚8mmの平板から採取し、6mm
まで機械切断した後、表面に傷がなくなるまで載荷
軸方向に入念に研磨した。素材試験体はTYPE-1、2、
3の3種類用意したが、これは試験を進める過程で
最適な形状を試行錯誤し、加工したためである。ま
た、TYPE-4は中央に突合せ溶接を施した試験体
である。溶接はX線に3バネ（電流130A、電圧
20V）で行った。溶接ビードによるひずみ集中をな
くすために余盛りは削除した。さらに、溶接部で最
大のひずみが生じるように中央部の板厚を滑らかに
削りこんだ形状とした。なお、超音波探傷により溶
接部に欠陥は検出されなかった。また、試験体表面
に傷がなくなるまで入念に研磨した。
試験には島津サーバルサを用い、曲げ荷重の負
荷には図-4に示す治具を使用した。この治具は試験
機のヘッドを下させることにより、試験体に曲げ
荷重が作用する構造となっている。

(4) ひずみ計測結果の比較
画像計測結果と比較するために、図-5に示すよ
うに抵抗線式塑性域ゲージ（東京測器製）を試験体
の画像計測面から約5mmの箇所に貼付した。ひず
みゲージのベース材は大きな面外方向の変形を受け
ると剥離しやすく、今回のような曲げ試験には不向
きであるが、ひずみゲージが剥離しない範囲で曲げ
試験を行って、画像計測により求めたひずみと比較
した。なお、今回使用した塑性域ゲージは、鋼板の
単調引き試験において約15%程度までのひずみが測
定可能とされている。その比較結果を図-6に示す。
今回の画像計測における標点間距離は約2-3mmで
あり、ひずみゲージのゲージ長は10mmであるため、
画像計測値はゲージ測定範囲とほぼ同範囲における
ひずみの平均値とした。ひずみゲージにより測定で
きた範囲は概ね0.12〜0.15であるが、その範囲
内で両者はよく一致した。これより、大ひず
み領域においても画像計測を用いて十分な精度でひ
ずみが計測できるものと考えられる。本ひずみ
計測手法は標点が剥離しない限り計測が可能であり、
これまでに約25%程度のひずみを与えるにも標点が剥
離しないことを確認している。
3. 低サイクル疲労試験方法

疲労試験の流れを図7に示す。画像計測を用いたひずみ計測と板曲げ試験を連携し、き裂発生が予想される位置のひずみを制御することにより低サイクル疲労試験を行った。堀田ら15)によると、構造用鋼材はひずみ速度にさほど敏感ではないが、軸方向ひずみ速度が10^{-3}sec以上になると低サイクル疲労強度への影響があるといわれている。今回の試験では、数mmゆっくり変位させ（約10^{-3}〜4×10^{-3}sec程度）、その都度ひずみを計測したため、ひずみ速度の影響はないと考えられる。なお疲労試験は片振り試験としたため、試験体には長手方向に圧縮ひずみのみが作用する側と引張ひずみのみが作用する側が存在する。前後に圧縮側、後者は引張側と呼ぶ（図4参照）。

疲労試験中に記録した繰り返し数とひずみ履歴の関係の例を図8に示す。今回は、引張側のひずみ振幅が一定となるようにひずみを制御した。その結果として、圧縮側のひずみ振幅もほぼ一定となった。

なお設定したひずみ振幅は、素材試験体で0.02〜0.13、溶接接継試験体で0.02〜0.09である。

今回の制御方法ではそれぞれの側に平均ひずみが生じるが、過去の研究15)〜17)によると、平均ひずみは低サイクル疲労特性にほとんど影響しないといわれており、特に飯田ら17)は、平均ひずみが0.16の場合でもその影響はごく僅かであると述べている。したがって、今回設定したひずみ振幅では平均ひずみの影響は無視できると考えられ、本研究においても平均ひずみの影響は考慮していない。また、同試験中の繰り返し数と治具の変位の関係を図9に示す。変位は5サイクル目まで徐々に増加し、その後定常状態となっている。SM490は繰り返し硬化する鋼材であり、硬化現象は2サイクル目までが著しく、その後の変化はわずかであるとされており、この結果はこの傾向をよく表している。なお、変位・ひずみ関係が一定状態となった後は、ひずみ制御と変位制御は同じ意味合いとなるため、試験時間を短縮を考え、変位制御で試験を行った。
4. 疲労試験結果

本論文で記した記者とヒステリシスループの関係
を図10に示す。ここで：
\(\varepsilon_{\text{ps}} \): 全ひずみ振幅
\(\varepsilon_{\text{su}} \): 塩性ひずみ振幅
\(\varepsilon_{\text{se}} \): 弾性ひずみ振幅
なお、本研究で用いたような板曲げ試験では断面の
応力が測定できず。塩性ひずみ振幅、弾性ひずみ振幅を
区別できないため、全ひずみ振幅で結果を整理した。
以後、全ひずみ振幅をひずみ振幅と呼ぶ。

（1）き裂発生状況

素材試験体、溶接継手試験体ともに、き裂は引張
側、圧縮側の両側から発生した。画像計測面とき裂
の位置関係を図11に示す。板幅方向についてのき
裂発生位置は、引張側、圧縮側で異なっており、引
張側では板の側面（画像によりひずみを計測した
面）から、圧縮側では板幅中央部からき裂が生じた。
ただし、ひずみ振幅0.02の溶接継手試験体に関して
は引張側からき裂が発生せず、圧縮側においては試
験体の長手方向中央部の他にHAZ付近からも発生し
た。圧縮側に生じたき裂例を図12に示す。多く
のき裂が板幅中央部に発生していることを確認でき
る。また破断位置は図13に示すように、どの試験体も
長手方向の試験体中央部である。

（2）破面観察

ひずみ振幅0.09、0.05のときの破面図14、15に
示す。図14は素材試験体の、図15は溶接継手試験
体の破面である。前述のように、引張側は板側面か
ら、圧縮側は板幅中央部からき裂が発生している。
圧縮側では板幅方向に数個の微小き裂が発生し、
それらが合体することで進展する様子を確認できる。
また、ひずみ振幅が大きい場合は段差を伴って進展
している。

5. 有限要素解析

今回の疲労試験においては、引張側では画像計測
によってひずみを計測した板側面からき裂が発生し
たが、圧縮側では板幅中央部から生じたため、き裂
発生位置でのひずみを計測できていない。そこで、
有限要素解析を用いて板幅方向のひずみ分布を確認
した。

（1）解析方法

有限要素解析には解析プログラムMARCを用いた。解
析モデルの例および境界条件を図16に示す。解析
モデルは試験体および治具の対称性を考慮して、
1/4モデルとした。解析に用いた要素は8節点点からなる3次元要素であり、最小要素サイズは0.5×0.5×1.0mmである。境界条件としては、対称軸となるy軸上、z軸上の変位を拘束し、ピンの中心部にあたる位置でz方向の変位を拘束した。荷重は実際の試験と同様に、試験体中心線から7mm偏心させた位置にy方向の強制変位vとして与えた。解析モデルの母材部の鋼種はSM490Aであり、その機械的性質はミルシート値を参考にした。溶接部に関しては、実際に対称試験を行っていないため、今回は溶接部の降伏点をSM490Aの20%増しとして仮定した。構成則はパイルニア型とし、二次勾配はヤング係数の1/10とした。また、硬化則は移動硬化則とした。

(2) 解析結果
a）長手方向のひずみの分布
例として素材試験体（TYPE-3）、溶接継手試験体（TYPE-4）に40mmの変位を与えたときの、引張側、圧縮側における試験体長手方向のひずみの分布を、図-17に示すように座標をとり、図-18、19に示す。図-18は素材試験体の、図-19は溶接継手試験体の解析結果である。図中の実線は板側面（画像計測面）の、破線は板幅中央部の解析結果である。また、実は解析と同様の変位を与えたときの画像計測値である。画像計測では基点および基点の間の平均的なひずみを計測しているため、基点間の中央の位置にブロックした。板側面における解析値は画像解析値とよく一致しており、解析により実際の疲労試験をよく再現できていると考えられる。また引張側では板側面の方が、圧縮側では板幅中央部の方が大きな絶対値のひずみが生じており、き裂発生位置と同様の傾向を示している。

b）応力の多軸性の影響
今回の試験では引張側と圧縮側でき裂発生位置が異なった。板側面と板幅中央部では塑性拘束の違いにより、応力多軸性の強さも異なっている可能性が
ある。応力多軸性が低サイクル疲労強度に与える影響については大南ら18)、大路19)の研究があり、それによれば多軸応力下においても、次式で求められる八面体せん断ひずみ誘起に基づく等価ひずみで低サイクル疲労強度を整理することができるとされている。そこで、有限要素解析結果からこの等価ひずみを算出し、検討を加えた。

\[\varepsilon_{eq} = \frac{3}{2\sqrt{2}} \varepsilon_{oct} \left(\varepsilon_x - \varepsilon_y \right)^2 + \left(\varepsilon_y - \varepsilon_z \right)^2 + \left(\varepsilon_z - \varepsilon_x \right)^2 \right)^{1/2} \]

(1)

ここで、\(\varepsilon_{oct} \): 八面体せん断ひずみ

\(\varepsilon \): 全ひずみ (x: 板幅方向, y: 長手方向, z: 板厚方向)

\(\varepsilon_{eq} \): 等価ひずみ, \(\nu \): ポアソン比 (=0.5)

長手方向のひずみと等価ひずみの比較の例を図-20に示す。これは素材試験体において40mmの変位を与えたときのものであり、引張側は板表面の、圧縮側は板端中央部の解析結果である。図中の実線は長手方向のひずみの分布であり、破線は等価ひずみの分布である。なお、座標は図-17に示すようにとっている。図より、板幅方向の位置によりず等価ひずみは長手方向のひずみほとんど一致しており、本載荷方法では応力の多軸性の影響は板幅方向の位置によらず小さいものと考えられる。

以上の結果より、長手方向のひずみ振幅を用いて疲労試験結果を整理した。また、圧縮側から生じたき裂に関しては、解析結果から求めた板端面と板幅中央部のひずみの比を用いて、そのひずみ振幅を補正した。

6. 疲労試験結果の整理

(1) 素材試験体

a) き裂発生寿命

素材試験体におけるき裂発生寿命と長手方向のひずみ振幅の関係を図-21に示す。なお、圧縮側のひずみ振幅に関しては解析結果を用いて補正している。ここではき裂発生寿命は、試験中、試験体表面をルーペで観察し、約0.5mm程度のき裂を確認したときの繰り返し数とした。計測した線は、西村・三木15)、中込・李16)、二瓶ら20)による砂時計型におけるき裂発生寿命・ひずみ振幅の提案式であり、次式のようなManson-Coffinの関係式である。

\[\varepsilon_{wa} = \varepsilon_{pa} + \varepsilon_{wa} = C_p \cdot (N_c)^{k_p} + C_q \cdot (N_c)^{k_q} \]

(2)

ここで、\(N_c \): き裂発生寿命, \(C_p, C_q, k_p, k_q \): 定数

それぞれの研究におけるき裂発生寿命は、西村・
三木は0.3mm程度、中込・李は0.1mm程度、二瓶らは0.5～0.8mm程度のひずみを発見したときと定義している。また、西村・三木、中込・李の提案式はひずみ振幅0.1以下のデータから、二瓶らのものは0.01以下のデータからそれぞれ求めたものである。図より、試験体のタイプによる疲労強度の違いはあるが、試験体の形状によらない試験結果となっている。また、本研究のき裂発生の定義、設定ひずみ振幅が同程度である西村・三木の提案式と比較すると、引張側、圧縮側ともよく一致している。

従来より板曲げの疲労強度は板厚計型試験体のような軸力による疲労強度と比べ同程度、もしくはやや高くなるといわれている21）。その原因は明らかでなく、また両者の強度の差も研究者20～23）によりばらついているが、今回の結果をみる限り疲労強度の差はほとんどない。これは従来の板曲げ試験で用いられていたゲージによるひずみ計測法よりも、画像計測によりき裂発生位置のひずみを高精度に測定できたことによると考えられるが、詳細は不明である。しかし、素材に関して従来の試験結果と同じ結果が得られたということから、本システムのひずみ計測手法およびひずみ制御の精度は十分であることが確認できたといえる。

b）破断寿命

素材試験体における破断寿命と長手方向のひずみ振幅の関係を図23に示す。なお、ひずみ振幅は引張側、つまり画像計測により計測したものである。破断寿命は、試験体が完全に破壊したときの繰り返し数とした。図中に西村・三木、中込・李が提案した破断寿命・ひずみ振幅の提案式（式3）も併記した。

\[\varepsilon_{\text{sa}} = \varepsilon_{\text{sa0}} + \varepsilon_{\text{sa}} = C_p \cdot (N_f)^{-k_p} + C_e \cdot (N_f)^{-k_e} \] （3）

ここで \(N_f \) : 破断寿命, \(C_p, k_p, C_e, k_e \) : 定数

今回の試験体は、破断面で一様なひずみ分布の砂時計型試験体とは異なり、板厚方向のひずみ分布は変化しており、また両者の破断面の断面積も異なっている。さらに、今回の場合では複数のき裂が発生している。このようなひずみ分布や断面積、き裂発生状況が異なる両者の結果を一概に比較することはできないが、今回の試験結果は過去のデータと同じような傾向を示している。

（2）溶接維手試験体

a）き裂発生寿命

突合わせ溶接維手試験体に本試験システムを適用し、そのときのき裂発生寿命と長手方向のひずみ振幅の関係を図24に示す。なお、圧縮側のひずみ振幅は解析結果を用いて補正してある。併記した線は西村・三木の提案式、すなわち鋼素材におけるき裂発生寿命とひずみ振幅の関係である。△は引張側の溶接金属部から、△は圧縮側の溶接金属部から、△は圧縮側のHAZからそれぞれき裂が発生したものである。どのひずみ振幅においても、き裂発生寿命は母材のそれと比較すると低く、その低下率は母材で約50%程度であり、溶接によりき裂発生寿命は著しく減少することがわかる。

一般に溶接部、特にHAZは母材と材料特性が大きく異なり、じん性が低下することなどが知られている。したがって、溶接部の低サイクル疲労強度を評価する上で、HAZの疲労強度についても十分に検討しておく必要がある。今回の試験でHAZからき裂が発生したのはひずみ振幅0.02の場合の1体のみであるが、その疲労強度は溶接金属のそれをさらに下回っている。しかし、1つのデータのみであり、HAZの疲労強度を明らかにするまでには至っていない。
今後、試験体形状を改良し、さらに検討していく必要があると考えている。

b) 破断寿命
溶接接合試験体における破断寿命と長手方向のひずみ振幅の関係を図-24に示す。なお、ひずみ振幅は引張側のものとした。図中に西村・三木による提案式、ならびに鋼素材のものも併記した。今回の結果、溶接試験体の破断寿命は母材のそれよりも減少していることがわかり、寿命で約40%程度低下している。したがって、溶接により破断寿命が著しく発生寿命と同程度減少し、溶接部の低サイクル疲労強度に与える影響は非常に大きいと考えられる。

7. まとめ
本研究では、画像計測を用いたひずみ制御低サイクル疲労試験を開発した。そのシステムを用いて数値実験体と溶接試験体を対象として低サイクル疲労試験を行い、試験システムの妥当性の確認、および溶接による低サイクル疲労強度への影響について明らかにした。以下に本研究の成果をまとめめる。

- 構築したひずみ計測手法により求めたひずみと計測面近傍に粘着したひずみゲージの出力値を比較し、ひずみ領域において十分な精度で計測できることを確認した。なお、画像を撮影し、ひずみを計算するまでの要する時間は約60秒であった。
- き裂発生位置は、引張側においては板厚面、すぐなわち画像計測により計測した面であり、き裂発生位置とその箇所におけるひずみ振幅の関係を捉えることができた。また圧縮側では、画像計測によりひずみを計測していない板厚中央部からき裂が発生した。
- 有限要素解析を用いて板厚方向のひずみ分布を確認すると、き裂が発生した位置でひずみが最大となった。
- 圧縮側のひずみ振幅に関してはFEMにより補正し、それにより疲労試験結果を整理した。その結果、素材試験体では板厚と過去のデータとよく一致し、本試験システムにより低サイクル疲労強度を評価できると考えられる。
- 本試験システムを突合わせ溶接接合試験体に対して適用した。その結果、ひずみ振幅範囲においても、き裂発生寿命および破断寿命は素材のものを下回った。寿命において前者では約50%，後者では約40%低下した。

参考文献
1) 浦邊英一，前川義男，杉浦邦雄，北根安雄：板鋼・溶接大震災実験第4回～鋼板の被害と耐震性，土木学会誌，Vol.80，No.7，pp.54-62，1995。
2) 亀野昌弘，岸上信彦，小野剛史，森川克己，三木悟：三木リブ付き鋼構造物橋脚部の超低サイクル疲労挙動，構造工学論文集，Vol.44A，pp.1281-1288，1998。
3) 三木千寿，四谷利雄，穴見健之：鋼製橋脚ローメン隅角部の地震時脆性破壊，土木学会論文集，No.591/I-43，pp.273-281，1998。
4) 例えば，飯田国広：圧制御低サイクル疲労，溶接学会誌，Vol.37，No.6，pp.542-559，1968。
5) 亀野昌弘，三木悟弘，鶴野新二：鋼製橋脚隅角部の低サイクル疲労挙動，土木学会論文集，No.563/I-39，pp.49-59，1997。
6) WES-1101：溶接構造用金属材料及び溶接金属のひずみ制御方法による低サイクル疲労試験法，日本溶接協会，1979。
7) 金多川，甲津好行：鋼構造溶接接合部の低サイクル疲労強度に関する実験的研究（その1），日本建築学会論文報告集，No.313，pp.30-38，1982。
8) 町田進，的場正明，高橋明志，西村健次：ホットスポット応力基準による疲労強度評価（第2報），日本造船学会論文集，Vol.170，pp.705-721，1991。
9) 飯田国広，高木秀，永井英寄：9%Ni鋼母材および溶接金属の低サイクル疲労強度の変化，日本造船学会論文集，Vol.138，pp.403-409，1975。
10) 酒井隆哉，松浦真一：画像計測を用いたひずみ制御の低サイクル疲労試験システム，電気中央研究所報告，U00068，2001。
11) 小茂村洋，清水真男：極低サイクル疲労における延性低下挙動とその支配要因について，日本機械学会論文誌（A編），Vol.57，No.544，pp.2879-2883，1991。
12) 亀田健記，小茂村洋，清水真男：極低サイクル疲労におけるManson-Coffin則の適用性と累積損傷，日本機械学会論文集（A編），Vol.53，No.491，pp.1178-1185，1987。
13) 桑村隆，山本恵美：三軸応力状態における構造用鋼材の延性き裂発生条件，日本建築学会構造系論文集，No.477，pp.129-135，1995。
14) 堀田知行，村村聡次郎，石黑隆義，石井伸幸，関口達：鋼材の圧制御低サイクル疲労強度推定に関する研究（第1報），日本造船学会論文集，Vol.124，pp.341-353，1968。
15) 西村俊夫，三木千寿：構造用鋼材のひずみ制御低サイクル疲れ特性，土木学会論文報告集，No.279，
A STUDY ON LOW CYCLE FATIGUE STRENGTH OF WELDED JOINTS BY MEANS OF TESTING SYSTEM WITH IMAGE ANALYSIS

Kazuo TATEISHI and Takeshi HANJI

Low cycle fatigue strength of welded joints was investigated by means of newly developed fatigue testing system in which image analysis technique was applied to measure the strain of specimens. It was validated that the strain measured by the image analysis was almost equal to measured value by strain gauge, and the low cycle fatigue strength of steel plate without welding was in good agreement with the results reported in former researches. After verifying the testing system, fatigue tests were carried out on welded joint specimens. The test results indicated that the low cycle fatigue strength of welded joints was much lower than that of plain material, and fatigue life was reduced by half.