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By its geometrical nonlinearity, the realization of a desired suspension structure depends on the
shape-finding procedure. In an actual suspension structure, cable members are usually combined
with bending members. For a beam-cable structure, in this study, the displacement method is

employed to deal with the structural equilibrium, but in which each cable member is treated as
the elastic catenary through a force-method computation. Thereafter an iterative scheme of shape
finding is developed for such a mixture of cable and beam members, which is based on the tangent
coefficients to change of the cable natural lengths on each updated equilibrium configuration.
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1. INTRODUCTION

The suspension bridge has a long history since
before the computational age. In the cable-stayed
bridge, from its earlier stage, the statically inde-
terminate forces have been estimated with the aid
of computers. In the recent discrete methods, the
static behaviors of such a beam-cable structure
can be known with a sufficient accuracy. On the
other hand, beyond those established ones, there
could be other suspension forms remaining to be
developed according to circumstances.

In principle, the configuration of a cable struc-
ture is known as a result of equilibrium analysis.
So a general suspension structure necessitates the
“shape-finding” procedure in its erection: to ful-
fill the design requirements, the equilibrium state
needs to be settled in variation of structural pa-
rameters such as the cable lengths. There have
been various approaches to that problem. 1)-9)
The force density method in Ref.4) is based on
one notable feature of a general network: once
the force densities (tension/length ratios) are as-
sumed in members, the discrete equilibrium equa-
tions become linear for the joint coordinates.
Through the linear solution, those force densi-
ties have a direct correspondence to the equilib-
rium shape, and so could be favorable parameters

in the shape finding. In Ref.6), after the same
parameters are employed, an arbitrary number
of requirements such as more than the variable
parameters are dealt with upon a suggested ob-
jective function through the optimization proce-
dure. Those existing methods are developed for
an assembly of straight cable and axial members.
But, in a usual suspended structure, the cables
are combined with column and beam members.
Practically, a pretensioned cable is represented
by the simple tension member. But, a long self-
weighted cable such as in a large-scale struc-
ture needs to be divided into several segments.
For the accuracy, the sag-embodied elements are
available: a shallow cable is described in the
parabolic profile ©& 10); and the catenary theory
can deal with a deeply hanging cable in one
segment. ®8-11),12) Ip either of them, the expres-
sion for tension components is implicit in terms
of its span coordinates. This compatibility con-
dition in each element has to be treated numeri-
cally, prior to the structural computations.
Because of its capability to various discrete
models, the displacement method is employed for
the present equilibrium computation of a beam-
cable structure, in which both the simple tension
element and the elastic catenary element are pre-
pared for each cable member. This study is to de-
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Fig.1 Catenary cable

velop a shape finding scheme for such a mixture
of cable and beam members, based on the tan-
gent coefficients of equilibrium quantities to the
variable natural lengths of cable and axial mem-
bers. The shape settlement is executed in com-
bination with the equilibrium computation: the
responsive equilibrium state is determined after
each correction of member lengths; and the next
correction is estimated tangentially upon that up-
dated configuration. The two structural itera-
tions are layered. In each of them, the fractional
correction technique7)78) is adopted so that in-
the-midst states are not thrown far away from an
expected correction path.

2. ELASTIC CATENARY ELEMENT

In the 2-D space, consider a uniform flexible
cable of natural length I, extension rigidity FA
and weight w per unit length. Firstly, as shown
in Fig. 1, let this cable be anchored at one end
to the origin of rectangular coordinates {, y }.
After material coordinate s is taken along its nat-
ural length, the configuration is here described in
the form {z(s), y(s)}.

When tensioned by {Tog, Toy } at s = 0, the
internal components under w into y-direction are

{To(s), Ty(s) }={ Toz, Toy —ws } . Submitted to

T(s)= 4/ Tu(s)? + Ty(s)?, differential element ds
is elongated to ds = (1 + T'(s)/(EA))ds; and,
by the flexibility, this d is laid in the same direc-
tion to { Tx(s), Ty(s) } . By those two, the spatial
components of ds is eventually written in terms

of {Tu(s), Ty(s) } :

(&} mlne e o

By the actual integration, we have

Tt .s
o(To;s) = %

\/T02$+T03+T0y }

Oz
+—1log
v { VT + (Toy — ws)? + (Toy — ws)

(2a)
Toys — %32
y(TO; 3) = —E—A——
1
L {\ﬁ}fm + T — \/Toi + (Toy — ws)z}
(2b)

in which {7pz, Toy } act as parameters in the
spatial curve. This expression is the so-called
“clastic catenary,” which has been presented by
Rough. 13)

Through relation {Tiz, Tiy } = {Toz, Toy —
wl}, either Ty or T} can be taken as the inde-
pendent parameters. By differentiating the above
(2) with respect to T (6T = 6Tp = 6T(s)), we
have the tangent flexibility matrix between x; =

z(Ty;1) and Ty :

{an}= | g } 3)

l
Qu = 7

1 To + Toy Tiy Toy
2 log (20w | 2ty SO Ly
+w{og<Tz+T1y>+ T, To (42)

Toz (1 1
= = — 7} —_— — — b
Quy = Qua ” (T() Tz) (4b)
I 1 (T, le)
e — —_g =z 4
Qu=gaty ( To T (4)

where To = 4/ T& +T¢ and Ty = /)% +T}5 .
So far as { Ti(s), Ty(s) }#{0, 0} in 0<s <, ma-
trix [Q(T)] is kept positive definite. ) If Ty =0
and —w! < Ty, < 0 (aline segment in { T4, Tiy }-
space), the cable has a point of { Tx(a), Ty(a) } =
{0,0}, and is bent back in a vertical hanging
(see Fig. 1). In this configuration, derivative ma-
trix [Q(T})] becomes singular into the direction
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normal to the line segment, 8z; / 8T}, — co . But,
function @;(T) itself is continuous over the en-
tire domain. By the symmetry of [Q(T})], dif-
ferential 0F = z)(T)0Ty, + y(T})8T;, is path-
independently integrable, and, by its positive def-
initeness, the resulting potential F(T) is properly
convez :

1 Ty + Toy
F(T)= —{T12 2%
() Qw{T0z10g<Tz+le

DT+ g { T+ (T - 1)) ©)

Consider joint ¢ and j to which cable element
(c) is attached, with their spatial positions be-
ing denoted by x; and x; . In the displacement-
method computation, those joint positions are
iteratively approximated toward the structural
equilibrium. On such momentary joint positions,
all the catenary elements have to be computed for
{Tiz, Ty }(c) corresponding to their span coordi-
nates, £ = «; —; . In this compatibility problem
of each element (c), a total complementary poten-
tial is defined by W*(T}) = F(T,) — 27T, and
the unique solution can be found numerically as
a point to minimize W*(T7;).12)

After the above force-method computation, the
tension components to span & are rewritten as a
displacement-method element into

{T }eo) (={Ts, T;})
= {(_TO:E’ —TOy)a (Tla:a le)} (6)

Matrix [Q(T")] is inverted into tangent stiffness
[k(T1)](c), and which is rewritten into the full
4 x 4 matrix [k(T}) ] between {6T;, 6T} and
{0z, dx;}. According to Ref. 14), the strain en-
ergy Ui, and the self-weight potential Vi¢) are
obtained as follows :

1 T2
Uy (Ty) (= A >

= ﬁ{T z+3 (13, - Tlg)}(m)

Vi (T, vi) <= - /(: wy(s) ds)

1
= —wly; —Tol - %(Tlle _TOTOy)

T To + Toy
202 g [ L0
+ 2w g<Tl+le

) + ToyTo

The work done by {T;, T;} during change
of {zi, ;} is stored into those Ue)(Ti) and

TR—T
Lwﬁl !
8

Fig.2 Isolated cable for increment 41

Viy(Ty, yi).  When joint 4 is fixed in the
space (see Fig.1), by the positive definiteness
of [E(T1)]() (kept from [Q(T7)]), the sum
Uey(T1) +V(¢)(T) is convex with respect to T7;.
In Sec.5, the equilibrium response to varia-
tion of the cable lengths will be argued to de-
velop a shape-finding procedure. With regard to
this structural response, an essential behavior is
seen in an isolated cable. As shown in Fig. 2, let
an infinitesimal increment 6! of natural length be
assumed in the catenary equilibrium, with span
coordinates {Z, ¥} being fixed. If the tension
components are unchanged, the cable is simply
lengthened at its fore end: according to Eq.(1)

[l (s ) BV e @

In the cable spanned to { %, 7}, those {dz;, dy;}
are offset by a simultaneous change of T'(s). In
addition to {0775, 6T1y }, the self weight is in-

creased by wdl :
0T(s) | _ f 6Tie 0 .
{ }—{6le}+{w}6l.const.
9

6Ty(s)
Applying this {dT,(s), 6T,(s) } to the flexibility
matrix, we have the compatibility equations

({2 )+(2 o)

e ma){m o= {o}eo

The responsive { 6T }(c) 1s eventually written as
follows :

5{T}(C) = {":b}(c) 6l(c) = { _:'Z? } 51(6)

(1)

vo=— (777 + 77 QT
{gy} (12a)

#i= = (7 + 57) QT

Ty

(2}
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Fig.3 Beam-cable structure

3. CONTINUITY RELATIONS
IN STRUCTURAL STIFFNESS

Consider a two-dimensional assembly of cable
and beam members, as shown in Fig. 3. The free-
dom of a beam joint is represented by its transla-
tional and angular coordinates in the space, X, =
{z, y, 0 }n, with the force components being de-
noted by Fip={ Fy, Fy, M }r,. At an intersection
of two or more cables, a joint of another class is
placed, which has joint position x;={ 2, y }; and
joint force Fy={ Fy, Fy };. Those joint positions
are collected into one column vector, { X } =
{Xl, oy XN, 2,00, CBI} (J=N+I) Ex-
cepting the constrained ones at the supports, we
have the variable components of { X s} listed into
another {dr} = {dy, dg, ---, dr}. The corre-
sponding joint forces are denoted by { F;} and
{ Fr}, respectively.

The spatial configuration of each element is
defined by its two joint positions: {X}] =
{Xm, X} for a beam element, and {x}) =
{ @, =;} for a cable element. The force com-
ponents into {X}[.; and {@}() are denoted by
{F}.) and {T}(c), respectively. Those element
positions are collected into their respective sets:
(X} ={X ) - {X e} and {z(0)} =
{{z}a), -, {z}¢y}. Similarly, {F(p} and
{T'¢)} stand for the element forces. Column vec-
tor {X g} and {@ ()} are related to {X s} in the

form

X} =1Sx{Xs}, {z@}=[5x{Xs}
(13)

where [ Sx| and [ S] are the continuity matrices,
consisting of 0 and 1.

As for the 2-D beam element, there have
been presented certain nonlinear discretiza-
tions. The stiffness relations developed in the
method of separation into rigid displacement

15)

and deformation >/ are employed in our elastic

tA beam element is attached to its two joints with cer-
tain fixed angles. In case the tangent angles at the both
ends of its axial line are employed in {X}[) rather than
the joints’ angular coordinates, no changes in other rela-
tions but {X g} = [Sx]{ X s} + {const. }.

finite-displacement analysis: the element force
{F}c)(= { Fm, Fr}), the tangent stiffness ma-
trix [ K ]j.) and the strain energy Uj,| are eval-
uated for an assumed {X}.j. In each cable
element, positioned at {z}(), the cable tension
{T}()(= { T}, T;}), the tangent stiffness [k](),
the strain energy U,y and the self-weight poten-
tial V() are obtained through the force-method
computation, Sec. 2.

In the structure, those element forces are accu-
mulated into the joint forces, namely

{Fs} = [SP{Fe 1} + [SFH{ T (o)}

Those [Sp] and [S§] are determined by the
element-to-joint continuity, and so are not inde-
pendent of the former [Sx] and [S%]: by the
contragredience

(14)

[Sp)=[5x]" and [Sp]=[Sx]"  (15)
Let the external forces into the {dr }-directions
be denoted by { Pr}. By extracting the corre-
sponding components out of { F';}, we have the
equilibrium equations for {dr } :

({Fr}=)[C"]{Fs} = {Pr}

where [CF] is a matrix of I' x (3N + 2I), con-
sisting of 0 and 1.

We next consider the tangent stiffness for dif-
ferential 6{dr}. The variation of {X;} is
written as 6{X;} = [CF|T6{dr}. The dif-
ferential relations of the former (13), (14) and
(16) are apparent. Let the element tangent
stiffness matrices be collected into §{F|gj} =
(K[ ]0{X )} and 0{F (o)} = [k)|o{z0)},

where

(16)

K
[K[E]] = . (17a)
i [K]ie

RLI

[key] = (17b)

L . (ke

Then, by the chain rule, the tangent stiffness ma-
trix on freedom {dr } is written as follows :

6{Fr} =[Kr({dr})] é{dr}
[Kr]=[Cr][Sr][Kp][Sx][Cr]T
+[Cr1[Sp] k)l [Sk][Cr]T (18b)

(18a)

The total potential energy is given by the sum
of the elements’ strain energies, the self-weight
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potentials in cables, and the potentials of external
joint forces :

W{dr}) =3 Ui+ (U<c> + V<c>)
fe] ©

= {Pr}T{dr} (19)

4. ITERATION FOR EQUILIBRIUM

The characteristics of cable members are, of
course, reflected onto the equilibrium behavior of
their suspended structure. First, let a mere as-
sembly of the simple tension members be summa-
rized. The stiffness relations as a discrete element
are given in Appendix—A, together with the
compressive axial member. Since each tension
member has a clear domain of singularity, [ (=
V22 +52) < 1, the assembly also has certain
singular domains of {dr}, in general. But, in
the displacement method, such singular elements
do not necessarily mean the structural singular-
ity: so far as every free joint is chained through
tensioned members to one or more supporting
joints (anchored), irrespective of other slackened
members, the tangent stiffness matrix between
{Fr} and {dr} is kept positive definite.®) Only if
some free joints are left not anchored, the struc-
tural tangent stifness becomes singular. It is un-
der those circumstances that the assembly has a
semi-conver total potential with respect to {dr}.
The above sayings are true of the catenary ca-
bles also. However, as stated on its flexibility
in Sec.2, the singularity exhibited by a cate-
nary element is much weak: only into the normal
direction on a line segment of {Z, ¥}, namely
OT1e /0% — 0 for z=0 and —I(1 + wl/2EA) <
7 <1{14+wl/2EA). In such a case, its potential
U(c) + V(¢ still remains properly convezr with re-
spect to {Z, 7}, and so is the total potential of
their assembly, with respect to {dr}.

In our structure consisting of beam and cable
members, on the other hand, the total potential
energy is not convex at an arbitrary {dr}: the
structure could become unstable beyond its buck-
lings. The stability analysis on certain loading
paths is essential to estimate the load-carrying ca-
pacity. But, in a shape-finding analysis, the prin-
cipal loads are kept unchanged except for the ca-
bles’ self-weights. The equilibrium configuration
is settled through successive changes of the cable
lengths. After each change of those lengths, the
displacement-method computation is executed to
determine the corresponding equilibrium state.
Usually, desired in the shape finding is a sta-
ble equilibrium configuration. If equilibria in the
midst of the settlement are allowed to go across

the stability boundaries, the handling must be-
come much complicated. The execution of our
shape finding is confined to the extent where the
tangent stiffness [ Kp({dr})] is kept positive def-
inite.

Suppose the cable lengths are changed upon
a known equilibrium {dr}. The equilibrium is
shifted to another position, say {d p}E‘ From
the unbalanced joint forces, {Fr}(#£ {Pr}), es-
timated at {dr}’, the equilibrium computation is
started to find {dr}¥. With those renewed cable
lengths, it has been postulated that our struc-
ture has {dr} and {dr}¥ in one stable subdo-
main. The Newton-Raphson method seems suit-
able to such a local one-to-one between {Fr} and
{dr}. Indeed, provided they are located close to-
gether, {dr }E is attained without fail. But, when
{dr} has an actual distance to {dr}¥, the ap-
proximated {dr}’s in that method can be thrown
away beyond the one-to-one boundary.

For a consistent convergence to {dr}®, we here
employ the fractional correction method.7)12)
Consider the (i)-th cycle where error vector
{AFr}y (= {Fr}qy—{Pr}), tangent stiffness
[ KT ](4) and total potential W ;) are obtained for
{d p}(i>. By the Taylor’s expansion, the total po-
tential is written for increment A{dr} as follows :

W({{dr}y+A{dr}) = Wy + {AFr}(; A{dr}
+ 5 A{rYT K]y Afdr} + 0(Afdr}?) (20)

If the whole {AFr};y is put on the tangential
correction, namely A{dr}=—[Kp ]Zzl) {AFr} sy,

we have

1
AW = ~3 REy + 0({AFr} ) (21a)
Ry = AR, (KelG ARk, @

k2

mation of potential rise at {dr};y from the (rel-
ative) minimum at {dr}¥. But, unless {AFr}
is small enough, that decrease can be overcome
by the remaining terms.

Then, by the use of factor f(;y (0 < 0(;y < 1),
let a fraction of error {AFp};y be submitted to
the tangent correction :

{dr}y = {dr}gy — 0 [Kr1G) {AFrkq
(22)

Trivially, the resulting { Fr}(s41) is related to

{F]"}(i) and { Pr} in the form

{Frigisy = (1 =0 { Frigy + 0 {Pr}

+{0(0%))}

This 1/2 - R2,, is representing the first approxi-
(%)

(23)
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And, by the substitution into expression (20), we
have the total potential at {dp}(i_,.l) written as

4 2 2 3
Wiy = Wiy = (9’7)“)3@) +0(853))
(29)
For a small 6;) , as is seen in (23), the shift from
{ Fr} ;) is directed the more straightly to {Pr}:
that is, sequence {{Fr}oy, {Friy, -~} can
be kept close, to any extent, to the line segment
from { Fr} to {Pr}. At the same time, since
0 —62/2 >0 for 0 < 6 <1 in (24), inequality
Wiy > Wiigr)y is kept for such a small 0.

It is not until factor f4)’s are actually specified
in a sequence that formula (22) is accomplished.
The fractional corrections are steady for smaller
0(4), but the rapidity of convergence comes from
larger ones. If ;) are fixed to one fraction
such as 1/2, theoretically, the whole correction
is not attained in a finite iteration. Since prod-
uct 0(;y{AFr} ;) is submitted to the tangent cor-
rection, it is rational for factor f(;) to be taken
larger with decrease of error {AFr} ;). We have
mentioned quantity R;) in relation to the total
potential. That R(;y defined by (21b) is a norm
of vector {AFr} ;) weighted by [Kp](_i:l) , and so
scalar 0(;yR;y stands for vector 0\ {AFr} 4y
We now generate factor f;y such that ;) Ry is
kept constant, but to the extent 0y < 1:

foR 0y
0;y = mi 1
= min [ 1L

in which fg is a quantity called “basic correction
factor,” initially assumed within 0 < 6p < 1.

A descent in the total potential means that
{dr}(it+1y is relatively improved from {dr}y-
But, those differences might become nwmerically
invisible on the final cycles in approaching to
{dr}¥; for, as is seen in expression (21), W; 11y~
W;y is consisting of the quadratic and higher
terms of {AFr};y. On the contrary, the scalar
R(;) has an increasing accuracy near the solution.
As well as the descent in potential, the shifted
{dr}(iy1) is required to stay in the same one-
to-one domain with {dr}y: for an insufficient
00, {dr}(i+1) can be thrown beyond the stabil-
ity boundary; or can be dropped into the singular
domain, in case of the simple tension members.
Thus, after each correction (22), {dr}(iy1) is ex-
amined for the following two :

(25)

A) det[K]“] (i+1) >0 (26&)
Ry < Ry for 9(,-) =1 (26Db)

If A) or B) is not true, the last {dr} ;1) is aban-
doned. With a renewed correction factor, the iter-
ation is resumed from the previous (% )-th: for our
0(:y generated by Eq.(25), the basic 69 is changed
into a smaller one such that 0y is halved, namely

0 _ Oytase B
Onew — 2

Ro) 27)

Requirement A) is for {dr};’s to be con-
fined to a stable subdomain, in which the
convex W({dr}) and the norm R({dr}) are
bounded from below. By the other B), se-
quence { Wioy, W1y, -+, Wiy } and { B(r41),
Riria2y, - } are kept monotone-decreasing.
Hence the sequence is convergent.

The convergence comes mostly from R(;y — 0.
But, if the sequence {dr};) is kept by the tan-
gent coefficients to cut right across the stability
boundary, factor 0y is halved repeatedly. This
0o~ 0 leads to a trivial convergence, {dr}(iy1)—
{dr}(iy— {0}, but the limit of {dr}(;) is to a
boundary point of the stable subdomain, not to
{ar}®.

Strictly speaking, the above A) is not sufficient
to keep {dr};)’s within one stable subdomain. If
two eigenvalues are turned negative in [ K] ;) —
[KTr](it1) > the sign of det [ K] does not change.
When the iteration is started with a relatively
large 6, it can happen that another equilibrium
than {dr}¥ is attained as the result of Ry —0.
(This convergence is excluded if the eigenvalues
are observed instead.)

Let the line segment from {Fr} to {Pr} be
expressed by {Fr(p)} = (1—p }{Fr} +p{Pr}
(0<p<1). To this {Fr(p)}, there exists a cor-
responding equilibrium curve {dr(p)} continued
from {dr} . Provided the entire {dr(p)} is lying
in a stable subdomain (det{Kp({dr(p)})]>0
for 0<p<1), theline {Fr(p)} is closely followed
by {{Fp}(o), {Fp}(l), e } with a smaller 6,
and so the solution {dr}¥ is approached by our

{{dr}y; {dr}ay -}

5. SETTLEMENT OF EQUILIBRIUM
CONFIGURATION

The following shape finding is preceded by Ref.
8), in which the essential scheme is developed for
an assembly of the simple tension members.

(1) Tangent coefficients

Suppose the cable natural lengths are infinites-
imally changed on an equilibrium of our sus-
pended structure. In order to derive the struc-
tural response, firstly, we assume that the free
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joints are fictitiously fixed at their preceding
equilibrium positions. As for an isolated cable
spanned between two fixed points, we have ob-
tained the response of tension components to
a differential increment of its natural length,
Eqgs.(11) and (12) of Sec.2. Those expressions
for our cable elements are collected into a matrix
form :

H{T(c)}rixea = [ ¥ ()] 9{ ()}
{1!’}(1)

(28a)

(Y] = (28D)

{%}e)
{ eyt = {8y, hgy, -+ 5 Oy} (28¢)

in which subscript “Fixed” means a quantity on
the temporary joint positions.

By continuity relation (14) and (16), the above
0{T}()’s are superposed on the joints :

5{Fr}pixea = [CT ][ SF] 6{T(C’)}Fixe;i

Those dF,’s are reactive forces to the fictitious
constraints. The free joints are now released:
by the use of the structural tangent stiffness
[Kr({dr})], the incremental equilibrium equa-
tions for the joint displacements are written as

[Kr]6{dr} +[CT][SF [ %)) 6{ L} = {0}
(30)
Thus we have the structure’s own response to
(5{ l(C’)} :
X} =[Sxs({kcyD16{l)}

[Pxs]=
—[CFI K7 [CF)[SE] [%(0y] (31b)

(29)

(31a)

where 6{dr} in Eq.(30) has been rewritten into
the freedom of {X ;}.

In addition to §{T'}(;) Fixed , the tension com-
ponents of each element (¢) have been changed by
the joint displacements: at its fore end (s =1)

(o} =~ (G = ) feemor
{3 }{8])
QT ({ o }j“{ iy })

For {6z, éy}; and {0z, dy};, their 2xC submatri-
ces are extracted from the coefficient matrix (31
b) with notation [®x]; and [Px];, respectively.

Fig.4 Chord force

The substitution leads to the variation of tension
components written in terms of the independent

(5{ l(C)} H
0Ty (e) = P1(e) Olo)
+[Ql ([2x]5 - [2x]:) 8{ Uy} (32)

For the later expansion, let this result be given a
short notation : '

0Ty = [Pl 6{ Uy}

or

) :
(o) |, kot ()

In a sagged cable, the chord force given by

T = Tjq - 7&@4—@1 (33)
can be employ as a tensile member force (see
Fig. 4). Differential 6T'* is written as

1 TieT

6T* = — 06T}, + Jiy(—géfwrfcég)

z 1z2
By substituting the preceding results, we have
&T* for our element {c) :

* l~ Tl Y
0Ty = (5(45%)(0) + j;

(=, 2)([22; = [9x0) ) Sk} (39

When the magnitude of tension at s = [ (or =
0) is chosen instead of the chord force, by the

differentiation of T} = ,/ Tl%: + Tli , we have

T

T
6Ty(e) = Tl, [21](y {lcy} (35)

(2) Shape-finding scheme

In our shape finding, the objective values are
prescribed to certain equilibrium quantities se-
lected from among
(a) spatial coordinates of joints,
(b) spatial components of cable tensions, and
(c) magnitudes of cable tensions.
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So the preceding {X,}, {T ()} and {T(’é)} (or
{Ti(¢)}) are appointed to the above (a), (b)
and (c), where we have formulated their tan-
gent coefficients to change of the cable lengths.
The individual subjects taken from those vec-
tors are listed into a set Y ={¥1, Ya, ---, Y5 },
with their required values being denoted by Y*.
To realize Y* in the structural equilibrium, to
the same number S, we specify the active ca-
ble members which have variable natural lengths.
Their lengths are collected into another z =
{21, z2, --+, zg }. Thus our problem is reduced
to solve Y (2) = Y~ for . In Appendix—B, it
is indicated that our shape-finding becomes more
practicable if the objective values are set on linear
combinations of the above equilirium quantities.

Through the equilibriumn computation, Sec. 2
to 4, the functional relation Y (z) is known nu-
merically. By collecting the relevant coefficients
from Eqgs.(31), (32), (34) and (35), we can have
the derivative matrix, [0Y (2)/8z]. The equa-
tion Y (2) = Y* is now prepared to be iterated
upon the tangent coefficients. However, as is well
known, the shape-finding problem has its own dif-
ficulties: an arbitrary Y™ is not necessarily real-
izable; and, even for a possible Y*, we are faced
with which members to be taken active. This
feasibility problem for a general cable structure
seems quite difficult to be clarified. But, once a
specific structure is presented to us, we can de-
duce its possible equilibrium shapes to a certain
extent. From this view point, it is here assumed
that Y* is lying in a realizable range for our z.

The stiffness relations of our cable elements are
quite nonlinear: for instance, the longitudinal co-
efficient in stiffness [k(T)) ] (= [Q(T) ](_c;) is
comparable to EA/l for I > I, but becomes much
smaller for [ < I. That matrix can even be singu-
lar as stated in Sec.2. Thus, similarly to the
equilibrivim computation, the full correction of
error vector Y — Y™ on the tangent coefficients
can yield an excessive change of 2. The method
of fractional correction is conceptually valid to
the present problem also, but, in practice, it is
necessary for vector Y — Y™* to be transformed
into a suitable scalar. The function Y (z) does
not have its own potential. The absolute value
|Y — Y™ | might be considered as an alternative.
But, this numeric magnitude is inadequate as a
physical quantity; for, first of all, it is a mixture
of dimensionally different components, i.e. trans-
lational and rotational coordinates of joints, and
cable tensions.

We here consider an energy-based conversion
of Y - Y". The differences are existing in an

equilibrium {dr}¥*. With no regard to the equi-
librium conditions, first, the free joints listed in Y’
are thrust to their objective coordinates, and the
member {orces are shifted accordingly. Next, in
those cable elements which are prescribed in Y™,
the relevant tension components or magnitudes
are replaced by the required values. Those dis-
turbed member forces are accumulated into the
unbalanced joint forces, say {AFr}S(= {Fr}® —
{Pr}). Finally, in the same way to Eq.(21b), the
magnitude of vector {AFp }S is estimated by

RS = \{AFP}ST (K P~ {AFF}S  (36)

in which [K]® is the tangent stiffness matrix
at the preceding equilibrium {dr}®. Immedi-
ately after this estimation of RS, the structure
is brought back to {dr}®.

The fractional correction method is now exe-
cuted from an initial 2o(= 2(g)), with a basic
factor g assumed within 0 < agp < 1. Suppose
the (j)-th cycle where AY(;y(= Y(;) — Y™),
[0Y/0z] ;) and R?M are evaluated on the equi-
librium {dp}l(aj) for z(jy. The formula of frac-

tional correction is written as
-1

oY
i1y = By — [—} AY; (37)
(3+1) (5) ()| 5% G (4)
where the current a(;) is generated by
a()RS
(4)

After the change of cable lengths to z(;11), the
responsive equilibrium {dp }%“J 41y is computed in
the displacement method, Sec. 4.

To the line segment Y(£) = (1-&)Yp+ Y™
(0 < ¢ <1), there is considered a correspond-
ing z(£) continued from zq, where Yy = Y (2¢).
For the convergence to Y, function Y (z) is re-
quired to be a one-to-one on the entire path, i.e.
det [dY/8z] # 0 for 0 <€ < 1. In the present
non-potential problem, the magnitude of vector
difference Y(;y — Y™ is estimated by the scalar
R? iy Thus, the resulting equilibrium after each
correction (37) is observed for the following two :

Y
A) Sgn.(det |:a—z (]+1>>
= sgn. (det {‘;—Z]m) (39a)

S S
B) R{;.. <R} (39b)

If A) or B) is not true, the factor « ¢ is regarded
still too large. To resume the iteration from the
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previous 2y , similarly to Eq.(27), the basic cor-
rection factor is changed into
o %) false R?j)
Onew = ——5— g
(0)

Differently from the equilibrium problem, it
is not always the case that a solution 2z* ex-
ists for a required Y*. When iterated for an
impossible Y*, the derivative matrix [§Y /0z]
comes to be singular with a repeated reduction
of @p. On such a nearly singular [9Y/0z],
the correction (37) yields a large change of z.
Even if the equilibrium is obtained for those ca-
ble lengths, factor ag will be halved further for
violating the requirement A) or B). After such
extreme changes of z, it can usually happen that
the equilibrium is driven out of the stable do-
main. Our displacement-method computation is
unable to pursue an equilibrium beyond the sta-
bility boundary.

Once a cable structure is presented to our
shape finding, an unconsciously imposed Y™ is
not likely to be attainable. But, a preliminary
inspection makes it possible to array admissi-
ble objectives and active members. So far as
det[0Y /0z] # 0 on the aforesaid path z(¢),
our sequence {Y(()), Yoy, +++} computed with
a small enough ag is kept close to Y (&) =
(1-&)Yo+ £ Y™. The difference of ;) from so-
lution z* is represented by the scalar RS iy So, in
addition to the above one-to-one between Y and
z, function R5(2) is required to be monotone-
decreasing on the entire 0 < £ < 1. In its defini-
tion, R5(z) seems to embody this monotonicity
considerably, unless tangent stiffness [ Kp(z)]F
has enormous changes on z(£).

(40)

6. NUMERICAL EXAMPLES

(1) A cantilever supported by deeply
hanging cables

The cantilever shown in Fig. 5 has elastic mod-
ulus 20600kN/cm?, area 63.53 cm? and moment
of inertia 1600cm? of cross-section, and weight
per unit length 0.5kN/m. After segmented into
five elements of length 10 m, the joints are guyed
to another joint fixed at {z, y} = {30, =15}m
with catenary cables of E = 15700kN/cm?, A=
45.24cm? and w = 0.364kN/m. Initially, an
equal length ! = 30m is assumed to all the ca-
ble members. Shown in the figure is the equilib-
rium configuration for those cable lengths with
the beam weights being lumped at their joints,
which is computed from the joint positions in-
dicated with broken lines. The process of our
fractional correction method is shown in Fig. 6,

NORMALIZED ERROR

-0.50

-1.00

1.00
0.75
0.50

0.25

COR. FRCTOR

0.00

0 5 10 15 20 25 30 38 4041
CYCLE

Fig.6 Convergence to the initial equilibrium

in which “normalized” means that the outermost
value in each line is scaled to +1. Started with
09 = 0.25, the basic factor is changed twice to
0.0625 for a long-distant equilibriumn state with
the deeply hanging cables.

From the above equilibrium state, the cable
lengths are computed so that the lumped beam
weights are precisely upheld by the cable tensions,
ie. le(l),\,(4) — 5 and le(5) — 2.6kN. The
convergence process from basic factor ag=0.065
is indicated in Fig. 8, and the equilibrium shape
is settled as shown in Fig.7: the achieved ca-
ble lengths are I() = 25.2294, l5) = 18.1368,
l(3)=14.9998 , l(4y=18.1366 and l(5)=25.4390m.

(2) A vertically suspended girder

The girder shown in Fig.9 is divided into
eight elements of length 10m, and which are
assumed to have elastic modulus 20600 kN /cm?,
area 1200 cmm? and moment of inertia 2667000 cr*
of cross-section, and weight per unit length

9.24kN/m. E = 19620kN/cm?, A = 22.04 cm?

35(359)



Fig.7 After settlement of cable lengths

and w=0.1697kN/m are given to the main-cable
clements; and F = 15695kN/cm?, A = 3.50 cm?
and w = 0.02698kN/m, to the hanger cables.
Cable joint 10 and 18 are fixed at {z, y} =
{0,-20} and {80, —20}m, and beam joint 1
and 9 are supported by horizontal rollers at height
y = 0. At the beginning of computation, the
joints are located at z=0, 10, ---, 80m on level
y=0, —20m, and where the initial cable lengths
are assumed by their joint-to-joint distances.

The objective conditions for all the 15 cables:
the beam joints are required to be on height
y = Om, with the cable joints staying at z =
10, 20, -+, 70m; and, in the chained (1) to (8),
the degree of sag is specified by y=—4m at the
center joint 14.

When computed as the catenary elements, the
shape finding was not successful. This result
comes from the following: in the initial equilib-
rium, all the hanger cables are (nearly) in the sin-
gular state, that is, are almost in vertical hanging
with the joint-to-joint distances less than their
member lengths (see Fig.1). Our displacement
method can deal with such a singular state in
equilibrium computation.u) But, in the shape
finding, the tangent coefficients to variation of
their natural lengths become quite different in
quality (far small) from the ordinary configura-
tions. The tangent correction by (37) with a usual
agjy yields an extreme change of cable lengths
such as to negative values.

Next, the same shape finding is executed for the
simple tension members. Since the hanger cables
come to be slackened toward the initial equilib-
rium, a vertical roller support is added to joint 5
to stabilize the girder. This equilibrium state is
shown by the broken lines in Fig.9. As stated in
Appendix—A, the slackened cable lengths found
in a structural equilibrium are immediately re-
placed by the spatial joint-to-joint lengths, and
the tangent approximation (37) is continued for
the objective values. In this shape finding for
ap=0.2, the convergence of R? i) is obtained as

o:RS ATy x:Ty@)
+: Ty ¢ Ty
0:Ty®)
0.00
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Fig.8 Convergence of the shape finding

shown in Fig.10. Shown in Fig.9 is the result-
ing equilibrium configuration. The achieved cable
lengths and their tensions are listed in Table 1.
This result is followed by the shape computation
as the elastic catenary elements: after only one
full correction (ap = 1), the structure is shifted
within the same allowable error 10~ (kN-m)/2
for RS. Those quite small changes are invisible
in the decimals of Table 1 (chord force T* of a
catenary cable corresponds to axial tension T of
a straight cable).

(3) A cable-trussed bridge

The cable-trussed bridge shown in Fig.11 is
made with the use of compressive axial members,
namely (5), (7), (12) and (14). The girder has
area 0.2784m? and moment of inertia 0.1618 m*
of cross-section, elastic modulus 20600kN /cm?
and weight per unit length 32.15 kN /m , which is
divided into Z[l}z l[g] =16 3 l[z] Zl[7] 220, l[g] =
li61=23 and ljg=Ij5=15m. Tower member [9]
has length 20m, elastic modulus 20600 kN/cm?,
area 0.0672m?, moment of inertia 0.006656 m*
and weight per unit length 5.17kN/m, which is
rigidly connected to the girder at joint 5 instead of
to the ground. E =15700kN/cm? A=57.9cm?
and w=0.466 kN/m are assumed to cable mem-
ber (1), (4), (8) and (11); and E = 15700,
A= 32.57 and w = 0.262, to the remaining ca-
ble members. Those cable members are treated
as the elastic catenary. £ =20600, A =288 and
w=2.218 are for axial member (5) and (12); and
E =20600, A= 160 and w = 1.232 for (7) and
(14). Joint 5 is hinged to the ground at the ori-
gin of {z, y }-coordinates, and joint 1 and 9 are
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Fig. 9 Initial and settled equilirium shapes of a suspended girder
1.00 Table 1T Result of shape finding
g cable I () | T ()
ui g.50
E ° 5RS<1'> (1) (8) | 12.1940 | 576.07
& 0.00 N (2) (7) | 11.1661 | 527.45
g o %YCLE 3 4 8 6 7 8 (3) (6) | 10.4275 | 492.52
-0.50 (4) (5) | 10.0387 | 474.14
(9) (15)| 12.9717 92.58
1200 (10)(14) | 7.9816 92.51
(11)(13) | 4.9900 92.47
(12) 3.9933 92.45
{.00
é 0-78 Fig.12. In the settled equilibrium shape (see
& 050 Fig.11), the disagreements of the respective Y
g 0-25 from Y} are less than 107 m, and the beam
< 0.00 : , 2 - y : - p bendings are correspondingly negligible for their
7

CYCLE

Fig.10 Iteration process for the simple tension members

kept on y=0 by horizontal rollers.

Initially, joint 2 to 8 are placed on y =0 with
no elongations in the beam elements; and joint
12, 11, 10, 13 and 14 are just above joint 3, 4,
5, 6 and 7 on height y= —20, respectively. The
spatial distances between those joint positions are
assumed to the cable and axial members as their
initial lengths. Released from those joint posi-
tions, the equilibrium configuration is obtained
as indicated by broken lines in Fig. 11, where the
deflections at the beam joints are yo=ys="7.64,
y3=y7=9.75 and y4=y¢=3.18cm.

The followings are required for the 14 variable
member lengths: the beam joints are kept ex-
actly on y=0; the cable joints are positioned at
height y11 =y13=—16 and y12=y14 = —10m;
and the compressive axial members are inclined
with diagonal proportion 1 : £ 2. Those require-
ments are listed specifically in Table 2. The
convergence process for ag = 0.1 is shown in

self-weights lumped at the joints. The attained
member lengths, and the chord and axial forces
are given in Table 3.

7. CONCLUDING REMARKS

The “elastic catenary” was formulated more
than a hundred years ago, but which had been
held from practical utilization until the computa-
tional age. The force-method treatment for the
compatibility can be extended directly to an as-
sembly of those catenary members. ) But, the
displacement method is employed for our struc-
ture compounded of cable and beam members,
in which the fractional correction method is ap-
plied to the layered numerical problems, namely,
for the compatible tension components in each
catenary cable and for the structural equilibrium.
Those equilibrium computations are based on an-
alytical treatment of the nonlinearity exhibited
by the consisting members: the convergence to
solution is secured for a convex potential prob-
lem, so except for the structural instability.

The present shape finding for a beam-cable
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Fig. 11 Initial and settled equilirium shapes of a cable-trussed bridge

Table 2 Requirements in the shape finding

Y, Ys* (m)
Y] = Y2 0.
Yo = y3 0
Y3 = y4 0.
Yy = ye 0.
Ys = yr 0
Yo = ys 0.
Y7 =yn —16.
Ys = y12 —10.
Yo = y13 —16.
Yio = y1s -10.
Yii= 213 —x4-0.5y11 +0.5y4 0.
Yio = x19 — 23— 0.5y12 + 0.5y3 0.
Yi3= z13 —z¢+ 0.5y13 — 0.5y¢ 0.
Yia= z14 —x7+0.5y14 — 0.5y 7 0

structure is developed from the preceding one
for a mere assembly of straight cables. 8 In
that extension, no fundamental difficulties are
encountered beyond the structural complexity.
This is indicating a potential capability of the
displacement-method system.  The objective
state is approached also by the fractional tech-
nique. Even in a non-potential problem, if an ad-
equate scalar is available for the deviation, that
iteration can be applied for the solution exist-
ing in a one-to-one correspondence. The present
shape finding is a problem of simultaneous alge-
braic equations with quite nonlinear behaviors of
each catenary element. In that iteration scheme,
there might be considered other additional tactics
for amore persistent achievement over their tight-
ened and slackened states. On the other hand,
the shape determination for the straight tension
members yields a steady convergence owing to the
simple treatment of their relaxation (Appendix—
A), and from which the computation could be
continued as the catenary cables, if necessary.
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Fig.12 Iteration process of the shape finding

Table 3 Settled member lengths and chord/axial forces

Cable and Compressive Members (in kN, m )

(¢) length chord/axial force
(1) (8) 23.2810 2433.3
(2) (9) 20.8367 1060.4
(3) (10) 17.9907 1047.5
(4)(11) | 24.9418 1931.4
(5)(12) 17.8916 -1015.8
(6) (13) 21.8732 1356.0
(7)(14) | 11.1814 -322.3

Beam Members ( in kN )

[e] axial force | [e] axial force
(1][8] 0.0 | 12]{7] —871.6
(3] [6] ~1943.1 | [4][5] | -3556.4
9] -3996.9
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APPENDIX A.
SIMPLE TENSION MEMBER AND
COMPRESSIVE AXIAL MEMBER

In cable element (c), let the distributed self-
weight be lumped into halves wl/2 at its both
ends. When spanned to {Z, §}, this straight
cable is lengthened by

AZ(:LZ) =+/22 452 =1

With its no resistance to compression, the tension
vector T’ is written as follows :

{z1=7{3}

E—lA—A[ for Al >0

(41)

(42a)

T= (42b)

0 for Al < 0

Consider joint 7 and j to which element (c) is
attached: & = x; — x; and {m}(c) = {:Bi, :Bj}.
As shown in Fig. 13, the joint forces, {T'}() =
{T;, T}, are here defined after inclusion of the
lumped self-weights :

{% }i:_g{g }_{w?ﬂ} (43a)
{% }j: g{g}_{w?ﬂ} (43b)

Accordingly, the element potential is given by the
sum of the strain energy and the self-weight po-
tential :

53

T2 wl
By differentiating the above relations with re-
spect to &, we have the tangent stiffness matrix :

0T = [ k(&) (o) 0 (452)
(Bl =[ku(@)]g+[ke@)] 45b)
- EA | zz 7y
[Bale = 7 { g @7% ] (45¢)
[EG](CF% —Zz T sa)

If Al < 0, zero matrix stands for both [k ps | and
[kc]. Through 6% = x; — dx; and 0T = 6T; =
—~8T;, those [ k], [kym| and [kg] are rewrit-
ten into the 4 x 4 matrices, [ k |y, [k ](c) and
[kc](c), respectively.

Fig.13 Straight cable

With substitution of (42b), the quadratic form
of matrix [ & |(,) can be developed into

2 =T % .

61y (= 52" [k ], 02)
EA
l_—3(§;55:+g]637)2

= +§(6a“:2+6z72) for Al 0 (46)
0 for Al < 0

So far as tensioned (Al > 0), matrix [ k J(o) i
positive definite; and becomes singular into the
circumferential direction at limit \/Z2 + 32 — .
In the circular domain of Al < 0, this tension
element is singular into any directions.

Similarly to Eqgs.(11) and (12) for a catenary
element, we now consider the tangent coefficients
to variation ! of natural length with & being
fixed. From Eq.(42b), 6T = —EAI/I2. 4l for
Al > 0. We have the differentiation of Egs.(43)
written as

T = (oot = { 41 bl (472)

[
J

v b Lo

TR

When the simple tension elements are active in
the shape finding, it can happen that some of
them are slackened ( Al<0) in the passing struc-
tural equilibria. Their tangent coeflicients have
no validity any more. As a counter treatment, we
have their natural lengths replaced by the spatial
joint-to-joint lengths (Al = 0), prior to the si-
multaneous approximation of all the cable lengths
upon [9Y (z)/0z], Eq.(37).

When the incompressibility for Al < 0 is elim-
inated, we have the correspondent relations for
the usual azial-force element. For simplicity, let
the same notations such as {T'}() be employed
even for those compressible members. In the do-
main of Al < 0, this element is not singular, but
unstable: in Eq.(46), 62I(c) < 0 for §Z such that

276z =0.

(47b)
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APPENDIX B.
FOR PRACTICAL SHAPE FINDING

In Sec. 5, the components selected among vec-
tor {X }, { Ty v} {T(*C)} and {7} c)} are indi-
vidually subjected to their objective values. But,
those conditions are not sufficient for an actual
structure: for instance, some cable tensions con-
nected to a joint might be required to offset their
horizontal or vertical components to each other;
and some free joints are, to be located on the same
height. With no difficulty, the capability of our
shape finding is much widened by imposing the
objective values on linear combinations of those
equilibrium quantities :

Yi =C11Y1I1+012Y1'2+ R +C1K1Y1’K1

Yo=Ca¥, + - +Csk,Y/ g (48)

YS : CS 1Y‘5111 + oo + CSKSY.SI’KS

where Y/, ’s are the direct components taken from
the above {X;} to {Tj(c)}; and Csp’s are rel-
ativity constants. The tangent coefficients be-
tween Y and z are obtained in the same way:
[0Y/0z] = [C][0Y'/8=]. In the iterative com-
putation, the first Y], is treated a little differ-
ently from others in each Y,: when error vector
AY;y = Yy — Y " is found on the ( j)-th cycle,
scalar R? i) by Eq.(36) is calculated for those un-
balanced joint forces which result from the shift
of only Ys'l(j)’s :

_AY )
Csl ’

In our fractional iteration upon the tangent
coeflicients, the member lengths in 2z are im-
proved along by the linear path Y (&) = (1 —
&YYo + £Y*. Even if the initial Yj has a long
distance to Y™, we expect the objective state
to be attained in so far as det[Kp(¢)]F > 0
and det [0Y/0z] # 0 on the exact path z(¢)
(0 <¢<1). However, in principle, our struc-
tural analysis has a difficulty in handling finite
strain states: when subjected to finite deforma-
tions, the beam elements can easily become un-
stable. The discretized beam elements themselves
are prepared not so much for finite strain states
as for finite displacements: the stiffness relations
by the separation method 15) can deal with any
large displacements (as a rigid body), but are
still a disputable approximation for finite defor-
mations. So the equilibrium states corresponding
to the exact (&) are required to stay in a range
of relatively small strains. In our actual compu-
tation, those small-strain states are kept by the

s

fractional corrections with a sufficiently small «g .
But, to convert error vector AY ;) into the scalar
R? ;y» once in each cycle (7), the structure can
be deformed extremely by the aforesaid shift of
Y/, Gy By the use of a factor such as the previ-
ous a(;_1) taken in z(;_1) —> 25y, we can have
R%., also for a small disturbance: Y/, ( j>’s are
shifted for a fractional a(;_1)AY(;) instead of
by (49), that is

AYs ()

TeG-nTE, (50)

I
5105y = Ya1(5)

and, from the resulting {AFF}? ;) » error R? 3 for
the total AY ;) is estimated by

5 - 1 E-1

Ry = G VEART LK Ay,
(51)
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