生活質の定量化に基づく
社会資本整備の評価に関する研究

林良嗣1・土井健司2・杉山郁夫3

1フェロー会員 工博 名古屋大学大学院教授 環境学研究科（〒464-8603 名古屋市千種区不老町）
E-mail: yhayashi@genv.nagoya-u.ac.jp
2正会員 工博 香川大学教授 工学部（〒761-0396 高松市林町2217-20)
E-mail: doei@eng.kagawa-u.ac.jp
3フェロー会員 日建設計シビール 名古屋事務所長（〒460-0008 名古屋市中区栄4-15-32）
E-mail: sugiyama@nkkcn.co.jp

近年、社会資本整備に際しては費用便益分析法などの評価手法が定着しつつあるが、一方で市民が持つ多様な価値観を反映できる総合的な評価指標が必要とされている。費用便益の最終帰着先である市民生活の状態を測るための指標であるQuality Of Life(QOL)は、広範囲な分野をカバーする性質上、要因毎の評価を総合する段階で相互の累積性を避けて通れない性質を持つ。本論文ではQOLの5つの評価要素から説明し、これを市民の充足度に基づく計測する方法を提案している。その際、要因の重みと代替選択の推定により充足度の総合化を可能とし、加えて充足度の変化に伴う重みの補正機能を内包させている点に特徴がある。本研究ではこの方法を広域交通社会資本の評価に適用し、QOLのwith/without比較に基づく整備効果の計測を試みている。

Key Words: quality of life, citizens' satisfaction, stress, evaluation indicator, infrastructure planning

1. はじめに

成熟社会を迎えたわが国において、社会資本整備に求められる最も重要な役割は、市民生活の質すなわちQOLの向上である。今日の厳しい財源制約の下で、戦略的、選択的社会資本整備が必要とされる。そのためには費用便益分析等の経済効率性の観点からの評価のみならず、QOLへの貢献という観点からも社会資本の必要性や有効性が評価されるべき時期に来ている。社会資本整備に関わる多様な費用と便益を網羅的に捉えるとする費用便益分析は、個々の事業レベルでの自己完結的な評価方法である。しかし、そこへは追加的なストックの価値に焦点が置かれ、現状のストックの評価が十分になされていない。これに対してQOLに基づく評価は、現状の評価を重視し、その上でストック化社会の構築という目標に向けた達成度を評価するものである。そのためか、市民の意向レベルでの評価が重要であり、目標達成のための各種政策の全体整合性に関する視点が不可欠となる。

QOLは本来定量化に困難を含む定性的な概念とされ、評価の尺度として用いられた例は乏しい。しかしながら、1990年代から国際都市を中心として、自治体の政策目標の達成度を市民にわかりやすい社会指標を用いて測定するアウトカム評価やベンチマークス等の試みが見られる。そうした先行事例においては曖昧でわかり難い概念（a vague and elusive concept）とQOLの定義上の曖昧さを認めながらも、外的な環境の中で人々の幸福感、充足感、満足感を計るプロセスの重要性を強調している。QOLに関わる指標体系（indicators）の整備は、都市・地域づくりの主体形成という文脈においても進めて来ており、欧米の事例では、1)市民の視点で生活の質を計測している。2)評価が経済、社会、環境面を包括的にカバーしている。3)市民参加または市民説明を前提に生活者の質の改善度を計測している等の共通点が見られる。わが国においても、真に豊かな暮らしとは何かを主体的に考える動きが広まり、市民が政策目標の設定に関与する仕組みが指摘されてつつある。こうした動きに後押しが、目標の推進と達成度の測定のための指標づくりは自治体を中心として今後急速に進むと期待される。その延長上で必要とされるものは、これを政策運営にフィードバックさせるためのシステムづくりであろう。

本研究は、このようなシステムづくりを目的としている。まず、第2章で生活質に基づく評価方法QOLA（Quality Of Life Analysis）の位置付けと特徴について述べる。
次に、第3章ではQOLを構成する各種要素への個人の充足度および要素の重要度（重み）の定量化方法を示す。第4章では、充足度と重要度の調査概要およびQOLの推計計画を述べ、その後に、第5章にて政策運営への応用例として、社会資本整備の評価への適用方法を示す。

2. 本研究の特徴

(1) 本研究の位置付け

現在、市場財を対象とする事業評価は表-1に示すように貨幣価値評価法における費用便益分析法が中心となっている。費用便益分析法において事業が大規模でその影響が広範囲に及ぶ場合には、費用便益分析法における直接的な需要変化を考慮に加え、間接的な経済・社会的な波及効果が考慮される。経済波及効果の計測手法としては、費用便益分析法（CBA）が用いられる。社会的波及効果の計測には非市場財を対象とする場合が多く、直接的に費用便益分析法を計測できないため、1) シャドープロジェクト法、2) 代理的市場評価法（Hedonic Approach）、3) 仮想的市場評価法（CVM）やコンジョイント法が用いられる。

非市場財を対象とする非貨幣価値評価においては、これまで主として多基準分析（MA）が用いられてきた。一方、本研究で提案する QOLに基づく評価法（QCLA）は、方法としては表-1における非貨幣価値評価のうちの意識評価法に分類されるが、便益の最終帰着先である市民の生活の質の変化に着目することにより、市場財と非市場財を包括する形で整備便益を評価するものである。また、多基準分析においては評価基準の重みが効果計測とは別に外生的に与えられているが、本方法では効果計測の段階で推計された意識評価を、すなわち個々人の充足度やストレスに基づき、各評価の重みが決定されるという方法論的一貫性を有している。

(2) 本方法の特長

本方法の特長を以下に示す。

a) 分野を越えた整備代替案の比較が可能

便益や費用の最終的な帰着先である市民生活の質に より社会資本整備代替案を評価するため、全く異なる分野に貢献する社会資本整備代替案の評価が可能であり、価値尺度制約の時代における代替案の取捨選択に適した方法である。

b) ストック化がもたらす便益の評価が可能

成熟社会においては、所得の増加はそれほど見込めないが既存のストックから得る便益は増大する傾向にあり、市民生活の質を計測するには既存のストックから継続的に得ている便益を考慮することが必要である。本方法はこの機能を有している。

表-1　QOLに基づく評価法の位置づけ

<table>
<thead>
<tr>
<th>貨幣価値評価</th>
<th>非貨幣価値評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロジェクト 評価方法</td>
<td>費用便益分析 (CBA)</td>
</tr>
<tr>
<td>市場財</td>
<td>生活の質に基づく評価法 (QCLA)</td>
</tr>
<tr>
<td>市場財</td>
<td>需要予測技術</td>
</tr>
<tr>
<td>市場財</td>
<td>統合的市場評価法</td>
</tr>
<tr>
<td>市場財</td>
<td>仮想的市場評価法</td>
</tr>
<tr>
<td>市場財</td>
<td>コンジョイント法</td>
</tr>
<tr>
<td>市場財</td>
<td>質の計測技術</td>
</tr>
<tr>
<td>市場財</td>
<td>意識計測技術</td>
</tr>
<tr>
<td>市場財</td>
<td>重み付けなし</td>
</tr>
<tr>
<td>市場財</td>
<td>外生的な重み</td>
</tr>
<tr>
<td>市場財</td>
<td>内生的な重み</td>
</tr>
<tr>
<td>市場財</td>
<td>社会的便益</td>
</tr>
<tr>
<td>市場財</td>
<td>総合評価</td>
</tr>
<tr>
<td>市場財</td>
<td>総合的充足度 (幸福度) の向上</td>
</tr>
</tbody>
</table>

c) 価値観およびその変化の定量化が可能

本研究が扱う価値観とは、QOLの各要因に関する個々人の重みづけである。多基準分析法における重みは、AHP等を用いて重みづけを設定しているが、その直後に個人の価値観が明示されていないため、多基準分析方法で用いる総合評価値、その意味付けや尺度が曖昧であるとの指摘がある。したがって、総合的価値付けに基づく総合化に対して、Nijkamp and Biaisは“the use of weights is not strictly necessary”と見方を示している。これに対して、本研究で示す方法では、価値観の重視が異なり、かつその影響が時間的に変化するという個人の価値観の特性を反映できる点に特長がある。

以上のa)からc)の特長は、本方法が個人の充足度あるいはストレスを基本的な尺度と位置付け、さらに充足度レベル（あるいはストレス・レベル）が価値観に及ぼす影響についても考慮しているために保有している性質である。

以上の3点が差別化される点は、本研究の特長である。

(3) 評価枠の選定

わが国において、暮らしの豊かさを多面的に評価するようという試みは、1974年の国民生活審議会（社会指標 一よりよい暮らし美しい）等に始まる。その後、1985年の「国民生活指標」さらに92年の「新国民生活指標」において個人のライフスタイルに着目した指標づくしが進められ、生活の活動領域に沿って、「安心・安全」、「公平性・ささしさ」、「自由・選択権」、「快適性」という4つの生活評価枠を用いた評価システムが提案された。
一方、諸外国に目を向けた結果、例えば QOL の指標化において最も古い歴史を持つ米国フロリダ州のジャクソンビルでは、QOL を支える要素として、①教育、②経済、③自然環境、④社会環境（公平性）、⑤文化・レクリェーション、⑥健康、⑦行政、⑧モビリティ、⑨治安という九項目を挙げ、それぞれのインディケータとベンチマークを設定している。1985 年から始まるジャクソンビルの QOL プロジェクトを契機に、都市の成長管理や環境保護の動きも連動して全米各地でベンチマークシステム導入の動きが活発化した。12,13 その他の QOL を評価する概念および近年の政策評価との関係については中西・土井14を参照されたたい。

本研究では個人のライフスタイルに沿った新国民生活指標および米国のベンチマークシステムにおける評価枠に基づき、図-1 に示す 5 つの要素を評価軸として選定する。また、図中のインディケータ例は、4 章以降の分析で用いる具体例を記したものである。

(4) 価値観の変化の捉え方

QOL の特徴の一つは、評価者または評価者の属性が異なる状況に対する評価が異なり、かつその評価が時間的に変化するという点である。図-2 は双面の長方形が 1840 年時点での平均的的なイギリス人の一生を通じての生活時間、最前面が 2000 年の生活時間を見直している。中間の 2 つの図は 1965 年および 95 年の日本人の平均的な生活時間を参照データとして示したものである。

図-2 によれば、イギリスでは 1840 年から 2000 年までの 160 年間に寿命が 40 歳から 80 歳になったが、一生の間の労働時間はほとんど変化していないことが読み取れる。このことは、160 年前に比べて現在のイギリス人は約 40 年に相当する自由時間を手に入れたことを意味しており、労働以外の多様な活動ニーズの充足機会が与えられたことが示唆される。

価値観その変化に関わる既往研究としては、近年では経済心理学の分野において objective happiness, general satisfaction 等の概念が整理され、これらの時間・状況依存性についての研究が進んでいる。これからの社会心理学的な観点から労働者の必要を再構築しようとする試みであり、今後の様々な分野への応用が期待されている。しかし、これまでのところ政策評価への応用には至っていない。一方、本研究が扱う QOL は、厳密な労働効用概念に基づくものではないが、市民生活の質を代表的な要素のインディケータ群に限定した上で、各要素の充足度と要素の重みから生活の general satisfaction を簡便に計測しようとするものである。その際、インディケータと政策効果を連動させることができるため、QOL の政策評価への応用を可能としている。また、評価の際には、価値観の時間・状況依存性を、生活時間の変化に起因した重みの変化として表現している。こうした柔軟性が QOL の最大の特長である。

3. QOLAIによる生活質の定量化

(1) QOL の計測尺度

以上の評価軸を採用した上で、QOL の計測尺度を次のように定義する。

①QOLAIは市民生活の質を構成する各要素（評価軸）の充足度の総体として表される。
②各要素の充足度は、個人の思い描く理想状況に対する現実の達成度を、主観的に評価したものである。なお各要素の未充足度をストレスと定義する。
③各要素の充足度およびストレスは、個人の価値観に基づく適切な重みづけによって比較対比が可能である。
④重みと代替性を考慮した全要素の充足度の総合評価値によって、QOLの大きさを捉える。
これらの手続きに従い、本研究では、QOLを以下のようないか関数によって表現する。

\[QOL = Q(S_1, S_2, \ldots, S_m) = \left(\sum_{k=1}^{m} \lambda_k S_k^{[-\rho]} \right)^{-\frac{1}{\rho}}, \quad \sum_{k=1}^{m} \lambda_k = 1 \]

(1)

ここに、\(S_1, S_2, \ldots, S_m \)は要因毎の充足度を表し、\(\lambda_k \)は要因毎の重要度で、\(\rho \)は要因間の代替可能性を表すパラメータを表す。

式(1)は要因間の代替弾力性を一定としたCES型関数であり、各要素の充足度に関する一般化平均値を与えるものである。

以上に述べた概念のうち、充足度やストレスの定義はStoufferのものとの同義である。Stoufferは人々が抱く不満を、望ましい水準(aimed level)と実際に達成されている水準(achieved level)との相対的な格差に起因するものと位置付け、これを相対的剥削(relative deprivation)と呼んでいる。本研究でのストレスの定義はこの相対的剥削に相当する。なお、相対的なという言葉には準拠集団(reference group)との比較という意味がある。本研究では、個々人自らが所属したと考えられる規範的準拠集団の状態（すなわち理想状態）によってaspiration levelを定義し、それをベンチマークとした際のachieved levelを充足度、両者のギャップをストレスと定義している。

(2) 充足度と重要度の変化

前節の定義(2)のように、各要素の充足度は、状態指標であるインディケータXの水準に対する個人の主観的な満足度を表す。図-2に示すインディケータの中には、生活サービス機会に関するインディケータのように、その値の増加が充足度を増加させる方向に作用するものもあれば、失業率、犯罪率、被災率のように負の方向に作用するものもある。前者のケースにおいては、充足度とインディケータのつながりを以下のような関数関係で表現する。

\[S_k = S_k(X_k, L_1, C) = \beta_k X_k + \beta_k L_1 + \beta_k C \]

(2)

ここに、添え字kは要因、\(\beta_k \)は個人の年齢階層や性別等の個人属性を、\(\beta_k \)は地域固定性を表す。\(\beta_k L_1 + \beta_k C \)は意図的な増加に対する充足度の増加の非線形性を考慮したパワーバラメータである。上式において、各要素の充足度は他の要素の水準に依存しないという独立性を仮定している。

個人の価値観を表す重みkも、ライフスタイルの進行や環境の変化の中で変化はない。本研究では、こうした重視順の変動を考慮して、重みkを以下のようなモデルで表現する。

\[\lambda_k = \lambda_k(\eta_k r_k C, L_1, C) = \lambda_k \eta_k r_k C + \lambda_k \eta_k C \]

(3)

ここに、\(\lambda_k \)は個人属性によって要因kの重要度、\(\lambda_k \)は要因kに対するストレス、\(\eta_k \)はストレスの主観的認識度を表す。\(\eta_k \)は個々人の属性および地域固定性を表し、\(\eta_k C \)は一定の重視順を表す。\(\eta_k C \)は各要因が当事者としてストレスを感じる度合いを表している。

以下に示すように、本研究ではQOLに関わる価値観の変化を、ライフスタイルの進行に伴う個人属性の変化と共に、環境変化に伴うストレスの変化としてモデル化する。このとき、式(3)においては次式のように、ある要素に対するストレスの大きさが大きいほど、その要素の重要度が大きくなり、逆に社会資本整備等によって充足度が高まれば、整備後の重要度は低下すると仮定する。

\[\frac{d \lambda_k}{d S_k} \geq 0, \quad \frac{d \lambda_k}{d r_k} \geq 0 \]

(4)

一方、ストレスDS_kおよびその認識度\(\eta_k \)は重み\(\lambda_k \)には依存しないと仮定する。

式(2)から式(4)に基づき、社会資本整備の進展に伴う充足度、ストレスおよび重みの変化のシナリオを図-3のように描くことが可能である。ここでは、社会資本整備の進展の図表を、現在の発展状況、現在の活動基準および将来の可能基準順に設定して説明するものとする。

図-3(A), (B), (C)の3つのグラフにおいて、それぞれ左側の棒グラフが各要因の評価値を表し、右側の曲線(充足度曲線)はインディケータの水準に対応した充足度の値を表している。なお、充足度は、主観的認識度\(\eta_k \)を考慮した認識充足度\(\lambda_k \)として表され、ストレスも認識充足度\(\lambda_k \)として描かれている。これによって要因間の認識度に違いがある場合には、充足度曲線の立ち上がり位置が異なる状態として描かれている。また、特定の要因への認識の高まりは、その充足度曲線の立ち上がり位置の右方向への移動として表現される。
a) 現在の発展途上国の状態
経済活動機会（k=1）に対する充足度は低く（ストレスは高い）状態にある。このストレスの高さは、経済活動機会の重みが最も高い状態にあると考えられる。一方で、特に政治的に不安定な国を除いて安心・安全性（k=4）や環境負荷低減性（k=5）の重みは、認識の低さに起因して対応的に低い状態に留まると考えられる。
b) 現在の先進国
社会資本整備の進展により、生活サービス機会（k=1）や快適性（k=3）などの充足度が徐々に上昇する。充足度の上昇（ストレスの低下）は、これらの要素の重みを低下させ、その結果、安心・安全性（k=4）や環境負荷低減性（k=5）の重みが対象的に高められる。これと同時に、安心・安全性や環境負荷低減性への認識の高まりを反映して、これらの重みは生活サービス機会や快適性の重みと同程度にまで引き上げられると考えられる。

図4 社会資本整備に伴うQOL変化の計測プロセス

4. QOL関数の推定

1) QOLに関わる充足度調査と重要度調査の概要
本研究では、5つの評価軸に関する市民の充足度と評価軸の重みを抽出するために、東京、名古屋、大阪、福岡、札幌の5都市、およびその他の5都市においてアンケート調査を実施した。調査は2002年の6月から7月にかけて実施された。各地域毎の属性（性別・年齢層別）毎に無作為抽出により訪問し、調査票の説明後、留め置き回答形式にて408サンプルを収集した。被験者のプロフィールについては、3つの年齢層と男女の性別を重ねた6つのカテゴリーを設定しており、各地域のカテゴリー
両方にほぼ均等なサンプルが得られるように調査設計を行った。

a) 充足度 (S) の把握方法

各要素の充足度 S を被験者に直接尋ねても適切な回答を得難いことから、調査においては以下のような手続きでこれを尋ねた。
①インディケータに沿って各要素の現状値 (客観値) を記入。
②現状値をベースに、許容しうる最低限の値を記入。このときの充足度を 0 と設定。
③現状値をベースに、達成したい理想状態の値を記入。このときの充足度を 100 と設定。
④許容最低限の値と理想状態の値との範囲の中で、現状への充足度を 0 ～ 100 で自己評価。

b) 重要度 (λ) の把握方法

既存の方法である、直接重みを尋ねる方法およびAHPにおいては、重みが被験者ごとの回答データに基づき推定されるため、個人間の対比や集約が困難である。本研究では、個人間で対比可能な重みを得るために、属性カテゴリー別（性別・年齢層別）に回答データをブールイングし、統計的手法により重みを推定するものとする。具体的には、図-2に示す5つの評価軸相互の代替弾性性を考慮した重みの推定を意図している。そこで、「全体として現状の満足を維持するという条件の下で、一つの評価軸が十分に充足される場合に、他の評価軸の充足度を各々どれだけ下げられるか」という形式の質問により、評価軸の充足度の補償関係を尋ね、各要素の重みを要素間の代替パラメータ p を同時に把握する方法を考察した。この点が、要素間の相対的な重要性のみを尋ね、重みを決定するAHPとは異である。

c) 調査結果から見た要素別充足度の現状

調査地域別に、要素別の充足度を示したものが図-5である。最も充足度が高い項目は生活サービス機能に関する百貨店数48.9%であり、次に生活サービス機能43.7%および非営業時間62.8%がこれに続く。一方、最も充足度が低い項目は自宅での日常生活61.9%である。また、地域間の充足度の分散が最も大きいものは自宅での日常生活であり、逆に最も小さいものは自宅での日常生活である。全項目の単純平均において最も充足度が低い地域は地方圈K市17.4%であり、自宅での日常生活62.8%および地方圈B市59.0%がこれに続く。なお、地域別に見ると、年齢層では65歳以上の高齢者が、また性別では女性が相対的に高い充足度を示している。

(2) QOL関数の推定方法－重みと代替弾性性の推定－

式(2)に示した充足度関数の推定に際しては、被説明変数を現況充足度とし、これをインディケータの現状値、被験者間の年齢層ダミー変数、性別ダミー変数および地域ダミー変数によって説明する線形回帰モデルを用いた。パラメータの推定値は補足図1-bに示す通りである。パワーバラメータおよび係数パラメータは全インディケータについて期待された符号を示している。

次に充足度関数の現況再現性を、モデル推計値と現
図-6 要素毎の充足度関数の現況再現性

次に式(1)のQOL関数の重みλ_kと代替パラメータρの推定に際しては、以下のようないーTaylor展開に基づく近似式を用いる。

$$QOL(S) = \left(\sum_{k=1}^{m} \lambda_k S_{0k}^{-\rho} \right)^{1+\rho} \sum_{k=1}^{m} \lambda_k S_{0k}^{-(1+\rho)} S_k$$

$$= QOL(S_0) + \sum_{k=1}^{m} \lambda_k S_{0k}^{-(1+\rho)} S_k$$

上式において、S_{0k}は現状での要素kに関する充足度を表し、S_{0}はその周辺での任意の充足度の値である。現状S_{0} = (S_{01},...,S_{0m})と同じQOLをもたらす仮想的な状況S = (S_{1},...,S_{m})が想定される場合、すなわちQOL(S) = QOL(S_0)が成り立つ場合、式(5)から以下のような関係が導かれる。

$$\sum_{k=1}^{m} \lambda_k S_{0k}^{-(1+\rho)} (S_{k} - S_{0k}) = \sum_{k=1}^{m} \lambda_k S_{0k}^{-(1+\rho)} \Delta S_k = 0 \quad (6)$$

ここに、ΔS_k = S_k - S_{0k}であり、各要素の充足度の現状からの変化量である。

上式を用いて、特定の要素mの変化量とその変化を補償する他の要素kの変化量との関係は次のように表現される。

$$\Delta S_m = \sum_{k=1}^{m} \frac{\lambda_k S_{0k}^{-(1+\rho)}}{\lambda_m S_{0m}^{-(1+\rho)}} \Delta S_k = \sum_{k=1}^{m} c_{nk} \left(\frac{S_{0k}}{S_{0m}} \right)^{(1+\rho)} \Delta S_k \quad (7)$$

式(7)を非線形回帰式と見立てれば、パラメータc_{nk}およびρの推定値を得ることができる。重みパラメータの推定結果を表2に示す。まず、全属性での推定結果を見ると、経済活動機関、快適性、環境負荷低減性の順に重みが高く、安心・安全性および生活サービス機関の重みは相対的に小さいものとなっている。年齢階層別に見ると、65歳以上の高齢者ではその他の年齢層よりも
表-2 QOLの要因の重みの推定結果

<table>
<thead>
<tr>
<th>QOLの要因</th>
<th>金属性での推定値</th>
<th>40歳未満</th>
<th>40〜64歳</th>
<th>65歳以上</th>
<th>40歳未満</th>
<th>40〜64歳</th>
<th>65歳以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>経済活動機会</td>
<td>0.247</td>
<td>0.233</td>
<td>0.232</td>
<td>0.264</td>
<td>0.230</td>
<td>0.230</td>
<td>0.261</td>
</tr>
<tr>
<td>生活サービス機会</td>
<td>0.171</td>
<td>0.145</td>
<td>0.196</td>
<td>0.148</td>
<td>0.180</td>
<td>0.232</td>
<td>0.186</td>
</tr>
<tr>
<td>快適性</td>
<td>0.234</td>
<td>0.242</td>
<td>0.154</td>
<td>0.291</td>
<td>0.271</td>
<td>0.183</td>
<td>0.320</td>
</tr>
<tr>
<td>安全・安心性</td>
<td>0.121</td>
<td>0.158</td>
<td>0.193</td>
<td>0.123</td>
<td>0.085</td>
<td>0.120</td>
<td>0.050</td>
</tr>
<tr>
<td>環境負荷低減性</td>
<td>0.227</td>
<td>0.224</td>
<td>0.225</td>
<td>0.173</td>
<td>0.234</td>
<td>0.236</td>
<td>0.183</td>
</tr>
<tr>
<td>合計</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

図-7 各要素の重みとストレスとの比率（性別）

快適性の重みが高く、安心・安心性や環境負荷低減性の重みが低い値となっている。40〜64歳の年齢層では安心・安心性と生活サービス機会の重みがその他の年齢層より高く、その一方で快適性の重みが低くなっている。性別ではそれぞれほど大きな違いは認められないので、女性の方が男性に比べ生活サービス機会や快適性により高い重みを持っていることが、この方法によって読み取ることができる。なお、以上の推定においてはパラメータ推定に用いたサンプル数の制約から、式(3)に示した重みの地域性は無視している。

(3) 重みの構造

Frijters[7]らは時間的充足度（momentary satisfaction level MSL）という概念を用いて、生活に関わる総体的な充足度（general satisfaction）を時間的充足度の重み付け和として表現している。この際、充足度レベルと時間に依存した重み（memory weight）を以下のように与えている。

\[
\lambda_i = \lambda_{it}(MSL_{it}, t), \quad \int \lambda_i \, dt = 1 \quad (8)
\]

上記において、連続時間tの代わりに活動k別の消費時間 T_k を、さらに時間的充足度MSLを代わりに活動別の平均充足度 S_k あるいは平均ストレス DS_k を用いれば、以下のような離散的な表現に書き直すことができる。

\[
\lambda_{kt} = \lambda_{kt}(DS_{kt}, T_{kt}), \quad \sum_k \lambda_{kt} = 1 \quad (9)
\]

図-8 一日の中での各要素の活動消費時間

活動消費時間 T_k を式(3)に示したストレスの主観的認識度 R_k の代理指標として用いるならば、式(3)および式(9)から次のような重みの構造モデルが導かれる。

\[
\lambda_{kt} = \frac{T_k \lambda_{kt}}{\sum_l (T_l \lambda_{lt} + \eta^*_l L_{il})} = \frac{S_k + \eta^*_k L_{ik}}{\sum_l S_l + \eta^*_l L_{il}} \quad (10)
\]

ここで、DS_k = S_k および \eta^*_k = \eta^*_k およびである。

次に、この構造モデルを検証するために、要素毎の重みの推定値とストレスとの比（\lambda_k / DS_k）を算定した。その結果、快適性が最も大きな値を示し(0.71)，生活サービス機会(0.56)，経済活動機会(0.49)，環境負荷低減性(0.44)，安心・安心性(0.19)という数値が得られた。これらの値は金属性の値である。さらに快適性の値を1と基準化し、他の要素の値を性別に算定した結果が図-7、年齢階層別の算定値については補注[8]の図-17に示す。
経済活動機会、生活サービス機会および快適性の 3 要素については活動場面を具体的に想定できることから、一日の活動消費時間を算定し、\(\lambda_k / D_k \) の大きさと対比することができる。

経済活動機会、生活サービス機会および快適性の 3 要素については活動場面を具体的に想定できることから、一日の活動消費時間を算定し、\(\lambda_k / D_k \) の大きさと対比することができる。

図-8 は平成 13 年生活基本調査 \(^{20}\) で把握された、通全体での一日生活時間の平均的な構成（選択体）を示している。男女ともに 15 歳以上の年齢層を対象とした数値である。これより、男性の場合には経済活動機会に関わる生活時間は 408 分、生活サービス機会は 417 分、快適性は 557 分と算定され、快適性を 1 と基準化すれば生活サービス機会は 0.75、経済活動機会は 0.73 となる。

これらの数字は図-7 の比率と非常に近接しており、\(\lambda_k / D_k \) と活動消費時間の関係は強い相関関係が伺える。なお、図-8 では家族単位での生活時間を考え、生活サービス機会の家事・介護・育児・世帯に関しては女性側から男性側に情報が伝達される結果、男性側の認知度が高まると考え、女性側の時間を男性側に算入している。

安心・安全性や環境負荷低減性に関わる認識度は、活動場面の想定が難しい上に、地域や環境により差異が大きく考えられる。しかし、環境負荷低減性と安心・安全性に関する認識度が他の 3 つの要素のそれより低いかという傾向が存在する（図-7）に、定性的には適和感なく受け容れられるものと言えよう。

以上の重みに関する分析結果は、ストレス認識という行為を介して、活動消費時間が価値観に影響することを示唆している。社会資本の整備が進めば、市民の充足度やストレスが変化するだけでなく、ストック化社会のなかで活動消費時間の構成にも変化が生じる。したがって活動消費時間の変化をさらに伴う価値観の変化は、社会資本整備がもたらす最大長期的な効果に属する。この効果を中心に示された図-9 は、次の 2 つのメカニズムを表したものである。

①活動消費時間の变化に伴う重みの変化
②充足度やストレスの変化に伴う重みの変化

上記のうち、①は Frijters \(^{19}\)らが示した時間的充足度と総合的充足度との関係に基づき、認識時間が長い充足度あるいはストレスなど、総合的充足度(QOL)に強い影響を及ぼすことを示したものである。一方、②は Brickman and Campbell \(^{20}\)や Kahneman \(^{21}\)が指摘する充足のトレドミル効果 (trickle-down effect) を示している。

なお、①のような長期的な効果を把握するためには、過去のストック化の過程でのライフスタイルの変化に関する時系列分析や、ストック化段階の異なる地域間でのクオッセクション比較に基づき、活動消費時間の変化シナリオを示す方法論が必要となる。また、トレドミル効果、重み \(\lambda_k \) をストレス \(D_k \) とあわせて充足度 \(S_k \) の関数となっている式(10)の構成に起因している。さらに、このことは、要素の充足度の増加は必ずしも QOL を増加させるというわけではないと示され、非単調性をもたらす。この性質は補充(10)に示すように \(\rho \) の値にも依存している。

図-10 対象地域での QOL の推計値

(4) モデルに基づく QOL 値の推計

以上に推定された QOL 関数および充足度関数を用いて、調査対象地域の QOL 値を推計した結果が図-10 である。この QOL 値は要素別充足度を示した図-5 の次元別情報を 1 次元情報へと集約・総合化したものである。QOL 値は地域毎および 6 つの属性カテゴリごとに推計されており、図中には全体性平均値と最大値、最小値の範囲が示されている。

平均QOL値の平均は60ポイントの周辺に分布しており、全域地域のばらつきは約9ポイントである。また、3大都市圏のQOL値は比較すると、東京圏3名古屋圏と大阪圏の関係が読み取れる。地域間の都市は物理的な施設数なら

63
5. QOLに基づく社会資本整備の効果分析

(1) ケーススタディの概要

3章の図4に示した計画プロセスに従い、仮想的な社会資本整備を例として、QOL尺度による効果分析を試みる。ここでは、図10に示されたQOLの東西格差の影響に資する政策として、東京～大阪間を一つの経済圏および生活圏として結ぶ超高速鉄道の整備を想定し、以下のようないくつかの条件を設定する。

a) 分析の前提

現在2時間30分で結ばれている東京～名古屋～大阪間をその半分の所要時間で結ぶ超高速鉄道が整備され、3大都市およびそれらの間に停車駅を設ける地方都市（K市）が、一つの巨大都市圏へと統合される。

b) 整備の影響

沿線の都市圏が互いの経済活動機会および生活サービス機会を共有することが可能となる。整備によって追加的な機会も誘発されうるが、単純化のため整備の前後で機会の増減は変化しないと仮定する。なお、整備の影響レベルについて、以下の2ケースを設定する。

ケース1: 東京〜大阪間が一つの経済圏・生活圏として全都市で同じ機会を共有する。

ケース2: 東京〜K市、名古屋〜大阪が別々の経済圏・生活圏を形成し、各々の中で機会を共有する。

教育機会と医療機会を例として、沿線都市圏での生活サービス機会の現状と、各ケースでの整備の影響を示したものが図11である。

影響の範囲

超高速鉄道利用のメリットは時間減便性が高いと考えられるから、3大都市圏の中心駅およびその間の中間停車駅から30分圏を超高速鉄道の利用圏域とし、これを整備の影響が及ぶ地域の範囲とする。

人口分布の固定

QOLの変化による世帯や企業の立地変化は考慮せず、整備の前後で人口分布は変化しないと仮定する。

なお、当該鉄道の利用に伴う費用の影響を考慮するため、可処分所得から運賃負担を、非通勤時間から交通所要時間に差し引いた。これらの費用は利用の頻度やODの想定によって異なる。こうした需要要因については本研究の枠組みでは扱わず、別途実施された需要予測の結果を用いた。

(2) QOL尺度による整備効果の計測

超高速鉄道の整備のQOL値を及ぼす影響を地域別に、集計的に捉えたものが表3である。ここではケース1と2との推計結果を示しているが、影響レベルの高いケース1においてより大きなQOL値の増加が示されている。ケース2においては、名古屋および大阪の伸びが2〜3%にとどまっているのに対し、ケース1ではこれらの都市圏の増加率は10%前後の数値を示している。

次に、ケース1におけるQOL値の地域分布の変化を捉えたものが図12である。これより、地方圏K市および
大阪市において、1人当たりQOL値で6〜7ポイント、変化率で約11%の増加が示されており、他地域の伸びに比べて相対的に大きな値となっている。沿線都市圏全域での伸びが3ポイント（変化率で5%）強である。

図-13はこうしたQOL変化の要因分析を示したものである。このレーダーチャートは、生活・活動機会および生活サービス機会の各要因に起因したQOL値の変化を示しており、大阪市およびK市においては教育機会や医療機会の改善によるQOL値の向上が顕著に読み取れる。大阪市やK市でのQOL値の増加は、主として東京圏に存在する多様な機会を共有できることによる効果である。

一方、東京都区部に着目すると、娯楽観光機会等の増加に認められるものの、所得機会の減少も見られ、トータルとしてQOL値はほとんど変化しない。所得機会の減少は、大阪等の他都市圏に機会が奪われることを意味している。それのみならず、社会資本が既に高い水準で整備されている地域においては、新しく整備される社会資本によるQOL値の伸びは小さくなるという傾向が捉えられている。なお、図-13に示した変化率は特定の属性、ここでは15〜39歳の男性に関するものであり、属性によってその大きさや傾向は異なってくる。表-2に示すように生活サービス機会の重みが相対的に高い40〜64歳では、図-13の変化率は全体的に高くなる。また、この年齢層では医療機会（特定機能病院数）への充足度レベルが低い傾向にあることから、医療機会に関するQOL値の増加率がより顕著である。

以上は、整備効果をQOL値の変化として表裏し、これをマクロレベル（表-3）、都市レベル（図-12）および個人レベル（図-13）での影響へと分解して計測したものである。

(3) 重みの変化によるQOL値の変化

整備によってQOLの各要素の充足度およびストレスに変化が生じる場合、価値観を表す重みにも変化が生じる。図-14は特定の属性カテゴリー（15〜39歳の男性）を対象に重みの変化を示したものである。図中の補正前重みは整備前の元々の重みを、補正後重みは整備後の重みを表し、折れ線グラフの値は整備の前後での変化を示している。これを見ると、生活サービス機会や経済活動機会の重みが減少し、相対的に快適性、安心・安全性、環境負荷過度性の重みが増加していることが読み取れる。

こうした変化は、各都市での生活サービス機会や経済活動機会の改善に伴う充足度の上昇が、時間と共に低下するというトレンドを表したもののである（4章...
なお、トレドミル効果の要因として、a) 環境への価値（hedonic treadmill）と b) 個人の努力の指標の変化（satisfaction treadmill）の 2 つのメカニズムが指摘されている。

図-15 は、こうした重みの変化を内包させた QOL 値の変化を、図-13 と同様な要素別に示したものである。重みの低下を反映して図-15 での QOL 変化は図-13 のそれよりも小さな値となっている。また、図-16 は重み補正の前後での地域別の QOL 変化を示している。補正後の値は各地域とも 2〜3%の減少となっており、東京都区部においては顕著な QOL の減少が観られた。QOL のある要素が改善されても、充足状況への慣れに伴い、改善後の個々の評価は低下すると考えられる。以上に試験された重み補正後の QOL 変化率の減少は、長い時間スケールでの評価の低減を実現したものである。

6. むすび

本研究では、国内外のインディケータ整備やベンチャーメーカーのシステムを構築した上で、5 つの代表的な評価軸に基づく QOL の定量化を試みた。具体的には、充足度のモデル化と評価軸の重みおよび代替性を考慮した統合化により、現状の地域間の QOL の差異を表現すると共に、社会資本の整備が QOL の地域分布や個人ごとの要素構成に及ぼす影響を捉えた。この方法は、社会資本整備を含む公共政策の有効性を、費用と収益の比較基準である市民の視点から捉えるものであり、説明性の高い評価を可能としている。

以上の結果を a) ～f) に示す。

a) 評価の柔軟性と説明性：客観指標としてのインディケータの変化、主観指標としての充足度の変化。なお、価値観が内包した QOL の変化という 3 つの尺度で、社会資本整備の効果を二段階に合計的に計測することを可能とした。これにより、分析者のニーズに応じた評価の柔軟性と説明性を担保した。

b) 評価対象の多様性：本方法では、QOL の定量化のための計測プロセスと代替案の評価プロセスが分離されている。したがって、一都 QOL 関数および充足度関数が決定されれば、インディケータの数値に代替案の情報を反映させるだけで、任意の代替案の評価が可能である。また、代替案の変更にも柔軟に対応できるため、計画作業の時間的制約の緩和にも資する。

c) 客観的な重みの決定方法：既往の多基準分析等の評価手法においては、主観的価値付けプロセスの曖昧さが問題視されていた。これに対して本研究では個々の充足度を QOL の基本尺度に据え、かつストレス・レベル（未充足度）に依存した重みの決定方法を導入することにより曖昧さを排除した。

d) 現在の価値観の特徴：QOL 関数の推定結果において、経済活動機会の重みが金属化では 0.25 程度にとどまり、快適性や環境負荷低減度の重み 0.23 との間には大きな差が認められた。この結果は、人々の価値観の生産に関わる基本的帰求からより高次な帰求へと移行しつつあることを示しており、統計数理研究所「日本人の国民性調査」等の既往の分析結果と一致した傾向を示す。

e) 優先順位変化の予測方法：社会資本整備に伴うストレス・レベルの変化、およびそれによる重みの変動を適応することにより、今後のストック社会に向いた価値観の変化をサントリーオを予想するための基礎的方法を示した。これにより、充足度の不透明性を考慮し、効率的な社会資本の整備順序を検討することが可能であることを確認した。

f) 社会資本整備の QOL への影響：生活サービス開発の広域改善をもたらす交通整備を対象としたケーススタディを実施し、社会資本が既に高い水準で整備されている地域においては、新たに整備される社会資本による追加的な QOL の伸びは小さく、反対に現状の整備水準が低い地域ほど追加的な QOL の伸びは大きいという性質が確認された。

一方、本稿において未着手の課題は以下の通りである。

①社会資本整備に伴う QOL の空間分布の変化は、人口や経済体の立地に影響を及ぼし、その結果を受けてさらに QOL が変化するという間接効果の存在が想定される。ケーススタディにおいては、
うした間接効果が考慮されていない。
2 社会資本整備によりインディケーターが複合的、相
互関連に変化する場合には、そのインディケー
タの動向を予測する方法論が必要とされる。
3 充足度は相対的なものであるため、地域の指標の
分散が大きい場合には地域の平均的充足度が低く、
反対に分散が小さい場合には充足度が高いと予想
される。こうした相対性あるいは関係性を考慮し
た充足度の表現も必要とされる。
4 社会資本の種類により、QOL への影響範囲は異な
ると考えられる。したがって、波及効果を空間的
なインディケーターの分布として表現した上で、そ
らを包括する空間に対する QOL の計測が望まれ
る。
5 本研究では、社会資本整備が重ねに影響を与える
場合の QOL の変化についても分析を行った。しか
し、社会資本整備に伴うストックの進展に加え
個人のライフステージの進行や地域の社会構成の
変化が価値観に及ぼす影響を考慮した、政策、計
画およびプロジェクト評価の方法論については今
後一層の検討が必要である。

謝辞：本研究を開始するに際して、Michael Wegener 教授
(2003 年まで Dormand 大学、その後 S&W Urban and Regional
Research) には、QOL を用いた評価の重要性に関する貴重
なご意見をいただきます。また、東京工業大学 上田孝行
助教授および東北大学 林山泰久助教授には、便益評価
の観点から QOLA の位置付けや得失に関する大変有益
なご指導をいただきます。 JR 東海旅客鉄道株式会社 森
下忠司氏には、ケーススタディ実行に際して貴重なアドベ
イスをいただきます。名古屋大学大学院 真田健史君およ
び香川大学 中西仁美さんには文献調査およびデータ整
理など大変であるが大変な仕事を担当していただいた。
深く感謝の意を表したい。

補足
[1] アメリカではオレゴン州、ジャクソンビル市、シダルト市、
オレゴン州、ニュージージー州、ミネソタ州、キングカウ
ンド、フェニックス市、ニューヨーク市、台湾台北市、フ
ィリピンのオロンゴナ市、国際機関としては国連人間住居セ
ンターがこうした指標を有している。3
[2] こうしたインディケーターの整備やベンチマークシステムへ
の取り組みは米国に限られたものではない。たとえば、ニュ
ージージー州の取り組み「サステナブルスティートプロジェクト」
はオランダの事例から学んだものであり、1999 年、
ニュージージー保護財団がオランダの環境計画(NEPP)の視
察を行っている。視察団は、オランダでは一世代でサステ
ナビリティを達成するためにゴールを設けており、企業
や市民の協力を得ていること、また社会の様々な場面に合う
ようにベンチマークを設けていることなどを学び、帰国後
「サステナブルスティートプロジェクト」に着手している。
[3] 社会資本ストックに支えられた QOL 要素として、「安心・
安全性」、「自由・選択権」および「快適性」に着目する。
さらにこれに社会経済および環境に関する要素として「社会
活動機会」および「環境負荷低減性」を加え、図 2 に示す
5 つの評価基準を採用する。なお、図中の「生活サービス機
会」は「自由・選択権」を具体化した評価基準である。
[4] ここで示す現状については、被験者個人の属性値と都市単位の属
性値という 2 つのタイプがある。前者は可処分所得、住居
面積および非倫時時間であり、被験者自身の属性値の記
入を依頼した。一方、業者については、調査対象都市の現
状統計データを参照値として示した上で、被験者が自地
域の値を選択するか否かに依頼した。なお、各インディケー
タの定義と単位は以下の通りである。
・可処分所得：実収入 - 税金等非消費支出 - 住居支出
(家賃・設備除修繕費) - 土地地価税金返戻額(単位:万円)
・失業率：完全失業者数/就業人口 + 完全失業者数(単位:%)。
・一人当たりの情報発信量：各メディアの情報発信者 1 年総
に送り出された情報のセカンド/人口(単位:情報/人)
・1 時間圈内にある百貨店数：百貨店数
・1 時間圈内にある特定機能病院数：大学病院等、高度な医
療技術と医療設備（集中治療室、透析対応施設、CT スキャンなど）を備え、高度かつ診療科目が 10 以上あ
る総合的な医療に対応する病院の数
・日帰り観光地数：日帰り区域内にある大規模な遊覧地、テ
ープパークおよび保養温泉地の数
・1 時間圏内にある大学数：国公立の 4 年制大学数
・住宅面積：延床面積（単位:㎡)
・1 週間の非務労時間：148 - 1 週間の就業時間 + 通勤の通
勤時間 - 1 週間の就業日数)（単位:時間）
・1 人当たりの緑地面積：都市公園面積 / 人口（単位:㎡/人）
・人口 1 万人当たりの交通事故件数：(単位:件数万人)
・人口 1 万人当たりの火災件数：(単位:件数万人)
・人口 1 万人当たりの犯罪発生件数：(単位:件数万人)
・自動車 1 台が受ける都市圏飲酒自用車保有台数：
市街地面積 / 自動車保有台数（単位:万台）
・資源化率：資源化ゴミの量/ゴミの総量(単位:％)
以上の指標値のデータソースは次の通りである。
(1) 可処分所得：家計調査年報 2000、総務省統計局
(2) 情報発信量：平成 12 年度情報流通センサス、総務省
(3) 百貨店数：全国大型百貨店調査 2002、東洋経済
(4) 特定機能病院数：慶応医学部 HP
http://www.hog.med.koai.ac.jp/nnari/iyoryokaku/kotobukish.htm
<table>
<thead>
<tr>
<th>経済活動機会（k=1）</th>
<th>生活サービス機会（k=2）</th>
</tr>
</thead>
<tbody>
<tr>
<td>可処分所得</td>
<td>失業率</td>
</tr>
<tr>
<td>推定値</td>
<td>t値</td>
</tr>
<tr>
<td>パワーバラメータ</td>
<td>0.506</td>
</tr>
<tr>
<td>係数パラメータ</td>
<td>1.428</td>
</tr>
<tr>
<td>年齢</td>
<td>39</td>
</tr>
<tr>
<td>年齢</td>
<td>40-64</td>
</tr>
<tr>
<td>年齢</td>
<td>65-</td>
</tr>
<tr>
<td>性別</td>
<td>男性</td>
</tr>
<tr>
<td>性別</td>
<td>女性</td>
</tr>
<tr>
<td>快適性（k=3）</td>
<td>安心・安全性（k=4）</td>
</tr>
<tr>
<td>住居面積</td>
<td>非暴露時間</td>
</tr>
<tr>
<td>推定値</td>
<td>t値</td>
</tr>
<tr>
<td>パワーバラメータ</td>
<td>0.271</td>
</tr>
<tr>
<td>係数パラメータ</td>
<td>17.81</td>
</tr>
<tr>
<td>年齢</td>
<td>39</td>
</tr>
<tr>
<td>年齢</td>
<td>40-64</td>
</tr>
<tr>
<td>年齢</td>
<td>65-</td>
</tr>
<tr>
<td>性別</td>
<td>男性</td>
</tr>
<tr>
<td>性別</td>
<td>女性</td>
</tr>
</tbody>
</table>

図17 各要因の重みとストレスとの比率（年齢階級別）

68
QOL = \left(\frac{\sum_{k=1}^{m} \lambda_k S_k^{-\rho}}{\sum_{k=1}^{m} S_k^{-\rho}} \right)^{-\frac{1}{\rho}} = \left(\frac{\sum_{k=1}^{m} \lambda_k S_k^{-\rho}}{\sum_{k=1}^{m} S_k^{-\rho}} \right)^{-\frac{1}{\rho}}

\left(1\right)

以上の式において、各要素の充足度Skの増加は必ずしもQOLを増加させない。すなわち、充足度Skの増加は重みλkを低下させることになるが、これに伴い次式の括弧内の符号が負となる場合、QOLの値は減少することになる。

\frac{\partial QOL}{\partial S_k} = \frac{\lambda_k - \frac{1}{\rho} \frac{\partial \lambda_k}{\partial S_k}}{S_k^{\rho}} S_k^{-\rho}

\left(11\right)

この括弧内の符号は次式のように表される。結合、当該要素の重みλkが1/ρよりも大きい場合にはのみ、その要素の充足度Skの増加がQOLを増加させることが示される。

\text{sign} \left(\frac{\partial QOL}{\partial S_k} \right) = \text{sign} \left(\frac{T_k}{S_k} - \frac{1}{\rho} \frac{T_k}{S_k} \right)

\left(12\right)

なお、本研究でのρの推定値は1.27であり、上式の符号は常に正となる。

[12] 計数統計研究所による「日本人の国性調査」によれば、子供に「お金が一番大切と教える」のに「賃金」と答ええた人の割合は1953年では全世代で60〜70%であったのに対して、1998年では60歳以下の世代では10〜40%に減少している。

参考文献
3) (財)建設経済研究所: 「都市機能評価・ベンチマークス検討調査報告書」，2002.
4) 東京都: 「東京構想2000－千客万来の世界都市をめざして」，第5章東京都政策指針，2000. など
9) 国民生活審議会：「第5次国民生活審議会総合政策部会調査委員会報告」，1975.
http://www.safeo.go.jp/zenbun/kokuseihin/spc05/houkoku_b/spc05/houkoku_b-L_1.5.html
10) 国民生活審議会：「第10次国民生活審議会総合政策部会調査委員会報告」，1986.

（2003.1.6 受付）
EVALUATING INFRASTRUCTURE PROJECTS BY MEANS OF MEASURES OF THE QUALITY OF LIFE

Yoshitsugu HAYASHI, Kenji DOI and Ikuo SUGIYAMA

Evaluation methods such as Cost Benefit Analysis based on demand forecasting have been used conventionally, but it is necessary to come up with a flexible framework of policy evaluation that is more responsive to quality of life of individuals. We develop a methodology of QOLA that can a) measure individual’s satisfaction of fundamental five elements, b) quantify the weight of each element and elasticity of substitution among elements, and c) represent QOL as general satisfaction. The weight of each element is endogenously determined depending on satisfaction level and its perception time. As a case study, this methodology is applied to evaluate the impacts of intercity transport infrastructure.