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Pavement deterioration models provide useful predictions of distress initiation, for purposes of pavement

design and management. A common problem in modeling the initiation is the inappropriate treatment of

data censoring. If the censoring is not accounted for properly, the model may suffer from statistical biases.

In this paper, an analysis of pavement crack initiation data based on the duration modeling techniques is

presented. Duration models enable the stochastic nature of pavement crack initiation to be represented as

well as censored data to be incorporated in the statistical estimation of the model parameters. The results

show that the model predictions are more accurate than those obtained with the original AASHO model.
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1. INTRODUCTION

The planning of maintenance and rehabilitation
(M&R) for highway agencies involves the allocation
of limited resources to a number of pavements
within the highway network. This planning process
uses as inputs both measured and predicted highway
pavement performance indicators. Therefore, accu-
rate predictions of future pavement performance
indicators are necessary for efficient planning of
maintenance and rehabilitation activities.

The focus of this paper is the development of a
stochastic duration model for crack initiation. Sec-
tion 2 provides a review of previous research con-
ducted on cracking of asphalt concrete, including
the causes of cracking and the modeling approaches

that have been used. Section 3 formulates the model.

Section 4 presents the specification and results of
the estimation of the model parameters using a data
set from the American Association of State High-
way Officials (AASHO) Road Test ”. Section 5
concludes this paper.
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2. LITERATURE REVIEW

Pavement deterioration models relate indicators of
pavement condition to explanatory variables such as
traffic loads, age, and environmental factors. The
most common indicators of pavement condition are
surface distresses such as cracking, rutting, potholes,
etc. These surface distresses are caused by load,
moisture, temperature, construction defects or a
combination of the above.

Cracking performance depends on many factors,
including
e The thickness of various pavement layers;

The quality of the construction materials and

practices;

Environmental considerations, such as tempera-

ture and moisture; and

The axle loads and axle configurations to which

the pavement is subjected.

The focus of this research is on the statistical es-
timation of empirical models that relate field data on
crack initiation to explanatory variables representing



the pavement structure, traffic loading, and climate.
The AASHO Road Test was an accelerated loading
test experiment. A crack initiation model was de-
veloped as part of the test. The crack initiation
model uses traffic repetitions as the dependent vari-
able and pavement thickness and load type as ex-
planatory variables. Though the AASHO cracking
model’s functional form was relatively arbitrary, the
model has been widely accepted. It forms the basis
for most current pavement design procedures in the
- world today. The AASHO Road Test Report 5 pro-
posed the following crack initiation equation.

_ 4,(a, D, +a,D, +a,D, +a,)* L*

We (L1+L2)"’

)
where

Wc = number of weighted axle applications sus-
tained by the pavement before appearance of Class 2
Cracking;

D,, D,, D; = thickness of surfacing, base and sub-
base respectively, in inches;

L;= nominal axle load, in kips;

L, =1 for single axle configuration and 2 for tandem
axle configuration;

ai, az, as, as = coefficients that were assigned ear-
lier; and

Aj, Az, As, Ag=regression coefficients.

The AASHO model suffered from severe prob-
lems. These are discussed below. First, the analysis
did not account for censoring. The data are consid-
ered censored when cracking is not actually ob-
served. In the case in which the section had cracked
before the first inspection, the observation is left
censored, or if it had yet to crack at the last inspec-
tion, it is considered right censored. In the AASHO
Road Test, there were several sections that had not
cracked by the time the experiment ended, and these
constitute right-censored data. If censoring is not
accounted for correctly in the statistical estimation
of model parameters, the estimates can be expected
to be biased ?. Second, the model form was arbi-
trary. One specific problem is the variable (L, + L,),
which consists of the sum of two quantities with
different units. Finally, the coefficients, a; to a,,
were determined a-priori instead of being estimated
simultaneously with the other parameters. The pre-
determined parameters were used to compute the
Structural Number (SN) of the pavement. )

The Structural Number is related to the thickness
of flexible pavement layers through the use of layer
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coefficients that represent the resistance of the mate-
rial being used in each layer of the pavement struc-
ture. The following general equation for structural
number reflects the relative impact of the layer coef-
ficients (a;) and thickness (D,):

2

N

i=l

The estimated values of the coefficients, ai, as,
and a3, were: 0.33, 0.10, and 0.08 respectively.

The Queiroz-GEIPOT models * “ have separate
regression equations that predict crack initiation and
the rate of crack progression. The crack initiation
model used the number of equivalent single axles to
initiation as the dependent variable and the struc-
tural number as the explanatory variable. The equa-
tion for the crack initiation model is as follows:

log, N, =a + B log,,SN 3)

where

N, = the number of Equivalent Single Axle Loads
(ESAL) needed to initiate cracking;

SN = structural number; and

o, B= regression coefficients.

The World Bank’s Highway Design and Mainte-
nance (HDM) models®” predict the initiation and
progression of various pavement distresses such as
cracking, rutting, raveling and roughness. Each dis-
tress model includes a number of expl‘anatory vari-
ables such as age, traffic, design parameters, envi-
ronmental factors and other distresses. A probabil-
istic parametric duration model represented crack
initiation, where the dependent variable is the prob-
ability distribution of the time to cracking. The ba-
sic concepts of probabilistic duration models will be
described in section 3 of this paper. The HDM-III
crack initiation model used a hazard function, A() of
the following form:

- -1
h(t)= yexp(— W)t (4)

When ¥ < 1, the hazard function is decreasing
through time; when Y= 1, it is a constant; and when
Y > 1, the hazard function is increasing. In the
analysis of crack initiation, the parameter Y is re-
placed by a linear vector function of explanatory
variables x, p = x’f.

The resulting model for prediction of expected
cumulative traffic loading to crack initiation is:

TE 4, = B] SNP: eh 7 5



where

TE -z, = mean cumulative traffic loading at initiation
of narrow cracking (in millions of ESAL);

SN = structural number;

SY = SN*/(1;,000YE,), where YE, is the annual

traffic loading (in millions of ESAL/lane/year); and
B:. Bo. B; = regression coefficients.

Several deterioration models reviewed above in-
clude separate equations for distress initiation and
progression. Most crack initiation models were de-
veloped without accounting for censoring, which
may introduce bias in the parameter estimates.

Madanat et al ® applied a structured econometric
method for developing deterioration models of
pavément crack initiation and progression. A model
system consisting of a discrete model for distress
initiation and a regression model for distress pro-
gression was developed. The estimation sample for

the progression model is self-selected, as it contains

a disproportionately large fraction of weaker pave-
ments, because they are more likely to have already
started cracking (they have lower initiation times).
This selectivity bias was corrected by using Heck-
man's sequential procedure. Madanat and Shin K
extended this research to account for unobserved
heterogeneity in the panel data set, using random-
effects specifications in both the discrete and con-
tinuous models.

3. MODEL FORMULATION

(1) Stochastic duration models
Let T denote the time to cracking of a pavement in
a test experiment. 7 is a random variable that takes
values in (0, «). Its continuous distribution is speci-
fied by a cumulative function F(z) with a density
function f{#). The cumulative distribution function
is
FO)= [ f(s)ds=Prob(T <) (6

The probability that the pavement cracks after ¢ is
given by the survival function,

S(t)=1-F(t)=Prob(T > 1) (7)

Since we collect data at specific times, and we
know the condition of pavements at these times, the
hazard rate is a more useful function than the cumu-
lative density function or the survival function. The
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probability that a pavement cracks in the next small
interval, Ar, given it lasts at least until time ¢, is
given by

glt)=Problt <T <t +AtIT 21) (8)

The hazard function, A(#), which is the instantane-
ous rate of change of g(7), is defined as:
Prob(t <T <t + At1T 21¢)
Ar

&)

The hazard function quantifies the instantaneous
risk that the pavement sections crack at time 7. The
cumulative (or integrated) hazard function is ex-
pressed as .

H(t) = J:h(u)du

The density function, the survival function, and
the hazard function are all related;

he) = £(t)

s(t)

The following relationships between these func-
tions also hold:

10)

an

H(t)=-10gs () 12)

and

= -7

s(z)

Right censoring of the data occurs when the test
ends at time C, before all pavement sections have
failed. For each section i, we either know T}, if T; <
C, or that 7; > C, in which case the time to cracking
for pavement i is censored. The time recorded is
min (T;, C;) together with the censoring indicator

13)

variable 5,., which is a dummy variable that takes

the value O if the observation (pavement section) is
censored and 1 otherwise.

The full likelihood function is obtained by multi-
plying the respective contributions of values of den-
sity function f for uncensored observations and val-
ues of survival function S for censored observations.
In the presence of right censoring the likelihood for

all observations in a sample of size nis ¥ :

=117 (':)gs(t.-)ﬂi:[[f(t,)]s" [s@)]* 4

To estimate the parameters of the distributions, we
maximize the log likelihood function,



L=logi =3 {5,108l (e, )]+ (1~ 5, ogls (¢ )} (15)

Upon choosing a particular distribution, we can
substitute the appropriate expressions for the density
function and the survival function.

(2) The Weibull hazard model

Though the hazard function h(?) could be constant
over time, there are many situations in which it is
more realistic to suppose that A(2) either increases or
decreases over time. A flexible form for such a haz-
ard function is given by

h(t)=ap™ (16)

where o and 7Y are positive constants. The hazard
function given by Equation (16) is called the
Weibull hazard function with parameters o and 7.
The parametric model that follows the Weibull haz-
ard function is called the Weibull model. Note that
h(y) increases when Y > 1; decreases when Y < 1; and
is constant when Y= 1.

The Weibull distribution function obtained from
Equation (16) is:

t>0

F(t)=1—exp(—_[;h(s) ds) t>0
=1-exp(-as) an
Its density function is:
f(t)=ayexp(-as’) >0 (18)
The survival function is thus:
S(e)=1-F(t) = expl- az7) 19)

If a vector of explanatory variables x is observed
with the duration data, the Weibull hazard function
is written as:

He,x, B )=ty

_ _-YxB, v
=e =y’ (20)

where p = x B. Then, the distribution function, den-
sity function, and survival function are as follows:

Fle,x, B)=1-expl-e7s7)

- (21)
7t E’E)= eﬂfg%"‘em(— e’”—”t’) (22)
$(e)=expl- e 7227 (23)

The parameters ¥ and B of the model can be esti-
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mated by maximum likelihood. In the Weibull
model, the expected time to crack initiation is given

by (9):
Elfx]= efr(l + %J

= efgl‘(l + —1-]
Y

where the gamma function, I'(z), is defined as
r(z)= Fwle™aw

(24)

(25)
forz>0.

Because the model is not a linear regression model,
there is no obvious equivalent to the conventionally
reported standard error.

4. MODEL SPECIFICATION AND ESTI-
MATION RESULTS

(1) Model specification
The AASHO Road Test Data were used for devel-

opment of the pavement cracking initiation model.
We have a total of 252 observations (test sections).
The number of sections that had cracked by the end
of the test was 185. The remaining 67 observations
were censored (i.e., cracking had not occurred yet
by the time of the test). The model shown in this
section used right wheel path cracking as the de-
pendent variable. The variables included are:

e avt: number of accumulated load repetitions in
the traffic lane before crack initiation (the de-
pendent variable);

D,: surface thickness in inches (1 to 6 inches);
D,: base thickness in inches (0, 3, 6, and 9
inches);

Dj: sub-base thickness in inches (0, 4, 8, 12, and
16 inches);

LOAD: nominal axle load (in kips); and

TYPE: single dummy variable, 1 for single axle
and O for tandem axle.

We estimated a Weibull model using two different

model specifications. Our first specification (Model

1) was a modified version of the original AASHO

model, which was presented earlier (equation 1).

The function Y (of the hazard model in equation 20),

using this first specification, is shown below:

K= By + BD+BiDy+ BD s+ BL+BAL+Ly) (26)
where L, and L, are defined after equation (1). Es-



sentially, this is similar to the AASHO specification,
with the predetermined coefficients of the structural
number in equation (1) replaced by parameters to be
estimated.

Our second model specification improved on the
original AASHO specification, which is problematic
because it assumes that the effects of L, and L, are
separable and additive. This is physically unrealis-
tic for two reasons. First, it assumes a constant rate
of substitution between axle load and axle type,
which is inconsistent with pavement engineering
knowledge. Pavement engineers typically use
nonlinear equations to convert between single and
tandem axle loads. Second, the specification in-
volves an addition of two variables with different
units (L, is in units of kips while L, is in units of
axles).

Our improved specification accounts for the dif- .

ference in the effects of a single axle and a tandem
axle of equal load through the use of interaction
terms. The function W in the hazard model with the
improved specification (Model 2) is:
u= Bi+B.Dr+BiD+ BDs+ BTYPE*LOAD+B(1-
TYPE)*LOAD @7
Note that we use two interactive terms for LOAD
and TYPE: the first interactive term is
BsTYPE*LOAD and the second interactive term is
Bs(1-TYPE) *LOAD. In this specification, B is the
effect of 1 unit of a single axle load, while B is the
effect of 1 unit of a tandem axle load.

(2) Estimation results

It is expected that an increase in pavement layer
thickness increases the time to cracking of the
pavements, and that an increase in axle load, of ei-
ther type, will decrease the time to pavement crack
initiation. The effect of the surface layer should be
greater than the effects of the two unbound layers,
and the effect of the sub-base should be the smaliest.
Moreover, the effect of single loads should be
greater than that of tandem loads. The dependent
variable in the model is hazard rate, not the time to
cracking of the pavements, so the parameters should
be interpreted accordingly.

Table 1 presents the results of the Weibull model
using the first specification. The t-statistics show
that each variable is a significant explanatory vari-
able of crack initiation at one percent significance
level. Furthermore, it can be seen that the

Table 1 Parameter Estimates for Model 1

Variable Coefficient t-statistic
Constant 7.22 154
Di 0.706 8.95
D2 0.255 9.78
D3 0.172 7.43
L2 3.33 9.43
Li+Le -0.180 -12.7
Y 1.08 16.4

coefficients have the correct signs, which confirm
our a priori hypotheses. The ratio of the estimated
resistance of the asphalt concrete to that of the base
is less than 3, which is lower than what was ob-
tained in the original AASHO model. On the other
hand, the ratio of the estimated resistance of the
base to that of the sub-base is about 1.5, which is
higher than what was obtained in the original
AASHO model. The estimated value of the parame-
ter Y is close to 1.0, which seems to indicate a rela-
tively constant hazard rate in terms of load repeti-
tions.

Table 2 presents the results of the Weibull model
using our second specification. Again, the t-
statistics show that each variable is a significant ex-
planatory variable of crack initiation at one percent
significance level. Again, it can be seen that the
coefficients have the expected signs.

The ratios of the estimated resistances of the three

. layers are close to those obtained in the original
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AASHO model. The results indicate that the asphalt
concrete layer is about 3.1 times more effective in
reducing the rate of crack initiation than the base
layer, and the base layer is about 1.3 times more
effective than the sub-base layer. The AASHO re-
sults indicated that the asphalt concrete layer is
about 3.3 times more effective in reducing crack
initiation than the base layer, and the base layer is
about 1.3 times more effective than the sub-base
layer ",

The coefficients of the two interactive load terms
indicate that a tandem axle load of 1.85 kip has the
same effect on crack initiation as single axle load of
1 kip. These relative magnitudes are consistent with
pavement engineering knowledge. Finally, note that
the estimated value of the parameter v is greater than
one, indicating an increasing hazard rate with load
repetitions.

The Survival function and the cumulative hazard



Table 2 Parameter Estimates for Model 2

Table 3. RMSE of the Mean Predicted Axle Load Repetitions to

crack initiation

Variable Coefficient | t-statistic
Constant 10.9 60.4 AASHO Model 1 Model 2
D, 0.783 115 3.09 E+5 2.57 E+5 1.60 E+5
D, 0.253 12.6
133 0'1291) 12(175 model. The results are shown in Table 3. The en-
TYPE*LOAD 023 = tries in the table are the RMSE of the predicted
(1-TYPE)*LOAD -0.124 -18.8 . . . .
¥ 139 175 mean time to cracking in units of axle load repeti-

N
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Figure 1 Survival Function
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Figure 2 Cumulative Hazard Function

function computed at the means of the explanatory
variables are shown in Figurel and Figure 2. The
unit of duration at the x-axis is number of accumu-
lated load repetitions.

The prediction accuracies of the three models
(AASHO, Model 1 and Model 2), for the sample of
observations used in estimating the parameters,
were compared by computing the Root Mean
Squared Error (RMSE) of the mean axle load repeti-
tions until crack initiation, as predicted with each
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tions. It can be seen that Model 1 achieves about
20% improvement in the prediction accuracy over
the original AASHO model, while Model 2 is 50%
more accurate than the AASHO model. In other
words, for this data set, about 20% improvement in
prediction accuracy can be attributed to the contri-
bution of rigorous statistical method (stochastic du-
ration techniques) while about 30% improvement
can be attributed to the contribution of an improved
model] specification.

5. CONCLUSION

In this study, an analysis of the pavement cracking
initiation data collected during the AASHO Road
Test was conducted. This analysis is based on the
use of probabilistic duration modeling techniques.
Duration techniques enable the stochastic nature of
pavement failure time to be evaluated as well as
censored data to be incorporated in the statistical
estimation of the model parameters. Due to the na-
ture of pavement crack initiation, the presence of
censored data is almost unavoidable and not ac-
counting for such data would produce biased model
parameters.

The main advantages that distinguish this stochas-
tic duration model from the original AASHO model
are as follows. First, the duration model explicitly
recognizes the stochastic variations in the pavement
cracking initiation process. Second, the stochastic
duration model accounts for the fact that some of
the data are censored. . Third, all the parameters of
the model were estimated simultaneously. There-
fore, this model is statistically more efficient than
the AASHO model. Fourth, our specification was
more realistic than that used in the AASHO model,
in that it did not assume that the effects of axle type
and load were separate and additive. Finally, the
predictions obtained with our hazard rate model,
using our improved specification, were about 50%
more accurate than those obtained using the original



AASHO model.
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