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Decision-making models provide highway agencies with a plan for optimal decisions about mainte-

nance and repair activities. The objective of these models is to minimize the total expected cost of

maintaining a system of facilities incurred by an agency and the users over a given planning horizon.
Recent models take into account measurement error in the inspection process and optimize the

inspection schedule. Other state-of-the-art models include uncertainty in performance forecasting.

Our research develops a model that jointly determines when to inspect and what maintenance activity
to perform, while taking into account both uncertainty in the measurements and feedback in the
estimation of the deterioration rate. A computational implementation is performed in order to study

empirically the relative significance of uncertainties in the deterioration rate and the state of the

system.

1. INTRODUCTION

(1) Infrastructure management

Infrastructure management is the process through
which agencies collect and analyze data about in-
frastructure systems and make decisions on mainte-
nance, repair, and reconstruction (MR & R) of facil-
ities over a planning horizon. Bridge maintenance,
road improvement, and highway rehabilitation are
examples of MR & R activities.

In each period, usually every year, agencies face
two decisions for each facility in an infrastructure
network : to inspect or not, and which MR &R
action to perform, if any. In this role, they are
supported by Infrastructure Management Systems
(IMS) that provide them with tools to help them in
this three step process:

1. Data collection;

2. Performance forecasting ; and

3. Decision-Making.

Agencies base their MR & R decisions on perfor-
mance models that forecast the behavior of the
infrastructure facility under the effect of MR & R
actions and deterioration. Their objective is to
minimize the expected cost related to the facilities’
use and maintenance over the planning horizon.
This problem has been extensively researched and
is known in the literature as the Infrastructure

Maintenance and Repair problem.

(2) Scope

The focus of this paper is on decision-making at
the facility level. The methodology that we develop
can be used for each facility an agency is respon-
sible for, as long as it does not face any budget
constraint. In reality, agencies will operate under
budget constraints and level-of-service constraints,
in the context of a network of facilities.

The main motivation of this research is to exam-



ine the effect of relaxing the annual inspection
constraint, in the case of infrastructure under model
uncertainty. We develop a formulation that is built
upon recent developments in the application of
adaptive control (AC) schemes, i.e., decision-mak-
ing algorithms that explicitly account for uncer-
tainty in the performance models, see for example
Durango and Madanat (2002)%.
relax the constraint of annual inspection that is

Furthermore, we

typically imposed.

2. LITERATURE REVIEW

(1) The event chain in infrastructure manage-
ment

The columns in Table 1 explain how the event
chain, i.e., the management process, is captured in
IMS. Each row corresponds to a different type of
formulation. In the first phase, traffic, weather, and
ageing contribute to facility deterioration which is
represented as a stochastic process. MDP formula-
tions use a single model to represent the physical
deterioration process. On the other hand, AC formu-
lations and the proposed model capture the uncer-
tainty that exists in choosing a representation from
a set of possible deterioration models. The
approach is explained in Section 2.(4). An agency
observes facility condition at the start of each
period. Condition assessment may or may not be
error-free, depending on the inspection technology.
Given the measured state of the system, an agency
makes decisions concerning the actions to be taken
at the start of the period. The decision rule in state-
of-the-art IMS is to choose actions that minimize
the total expected cost. The actions include MR &

Table 1 Features of MR & R models

. Deterioration| Condition Decisions
Formulation .
Model assessment considered
MDP Certain True state MR & R
Joint . MR &R
Certain True state .
MDP Inspection
Latent . Measurement MR &R
Certain .
MDP errors Inspection
AC Uncertain True state MR &R
Proposed . Measurement MR & R .
Uncertain .
Model errors Inspection

R and inspection activities.

A review of existing research shows that, so far,
no model has been developed to simultaneously take
into account uncertainty in the choice deterioration
model and in the condition assessment process.

(2) Performance forecasting: Markov Deci-
sion Process (MDP) formulations
MDP address the issue of uncertainty in facility

_ deterioration forecasting. A finite set of states, S, is

used to represent facility condition, and the deterio-
ration process is represented by transition probabil-
ities :

A a)=Pr(Xen=jlX:=1i, A.=1), Vi, j at (1)
where :

X . state of the facility at the start of ¢

A: © action applied during ¢

1,7 . elements of S

a : element of a (finite) set of available actions #

The transition probabilities can be derived from
empirical data. Several approaches to estimate the
probabilities are reported in the literature. One that
uses statistical estimation and time series data is
found in Carnahan et al. (1987)® and Olsonen
(1988)'. Another is proposed by Madanat (1991)'®
and is based on a performance model and the
mathematical properties of Markov Chains.
Madanat and Wan Ibrahim (1995)'2 describe how
Poisson regression and, more generally, negative
binomial regression can be used to estimate the
probabilities. These methods are statistically sound
and recognize the discrete representation of condi-
Finally, Mishalani and Madanat (2002)'®
develop a stochastic duration-based method to esti-

tion.

mate the probabilities, which specifically takes into
account the effect of causal variables, and recog-
nizes the correlation between successive identical
states. ’

The Markovian assumption implies that the prob-
ability of a transition between any pair of states
only depends on the condition at the start of the
period and the action applied during the period.
The assumption that deterioration is stationary/
time-homogeneous implies that the transition prob-
abilities are constant over time. Among other
things, this means that deterioration is independent
of facility age. In this case, 75=ny, V.

The MDP for the problem of finding optimal



MR & R policies for infrastructure facilities is usu-
ally formulated as a dynamic program (DP). The
objective value function is defined as the expected,
discounted cost until the end of the horizon. The
cost incurred during each period includes both the
user costs and the cost of applying MR & R actions.
The solution gives a set of actions for each period
and every possible state of the facility.
The primary assumptions of this model are:
® The true state of a facility is observable ;
® The evolution of the system depends only on the
previous state and the last action (Markovian
assumption) ; and
® Inspection are performed annually.
MDP formulations inherently fail to:
® Include the possibility of a flexible inspection
schedule ;
® Account for uncertainty in the inspection proc-
ess; and
® Incorporate information about the physical
deterioration process'
Those methods extend to the network mainte-
nance problem fairly easily through a linear pro-

gramming (LP) formulation. Several adjustments

are necessary in the context of infrastructure net-
work planning. The agency conducts centralized
planning under budget constraints. The decision
variables are the fractions of the network in each
condition state to which given actions should be
applied. Transitions are formulated as constraints
of the LP, according to the Chapman-Kolmogorov
equations. This mathematical programming imple-
mentation has been applied to the Arizona Pave-
ment Management System (Golabi et al., 1982) 9.
The incorporation of joint decisions that includes
inspection and MR & R activities is relatively
The DP objective function
depends on three variables: time, state, time since

straightforward.

last inspection was performed. This issue has been
investigated by several researchers, such as Klein
(1962)? and Mine and Kawai (1982)'®. Neverthe-
less, these models and their variations fail to
account for uncertainty in the measurement process.

In the remainder of this section, we discuss Latent

'In practice, agencies update their deterioration model by
using the observed transitions. A failure to account for this
updating in the DP formulation results in suboptimal policies.

MDP formulations and adaptive control formula-
tions in more detail.

(3) Uncertainty in the inspection process and
unconstrained inspection decision-making :
Latent MDP formulations

Research by Humplick (1992)® has shown that
there are significant measurement errors in existing
infrastructure inspection technologies. Measure-
ment errors can lead to the selection of inappropri-
ate actions when a policy specifies different actions
for the true condition and the measured condition.
A second limitation of traditional MDP formula-
tions is the lack of systematic methodology for
inspection decision-making. Traditional methods
for inspection scheduling are ad hoc and subjective ;
see for example Shahin and Kohn (1981)1®.

The purpose of the LMDP is to account for uncer-
tainty in the inspection process and allow MR & R
decision making in each period-not only when an
inspection is performed. This entails the violation
of a basic assumption of the MDP methodology :
perfect information about the state. Therefore, the
technique of state augmentation for DP, described
by Bertsekas (1995)", was used by Madanat and
Ben-Akiva (1994) V.
taking into account the fact that at any point in

This technique consists in

time, the decision-maker knows the history of the
past actions taken and observed states. In the
LMDP, the measured state is related to the true
state of the facility by measurement probabilities.

Under the state augmentation technique, the state
of the system in ¢ takes into account all the informa-
tion available to the decision-maker, since the start
of the planning horizon. This is summarized into an
information set I, V¢. This set includes at any
point in time the information about previous actions
and observations, i. e,

L={L, Ay, -, Xeo, Aey, X} (2)

I represents the initial information available at
the start of the planning horizon, and X, is the
observed/measured condition at ¢. The set can also
be defined recursively as Ir={li-1, A1, X;}. This
shows how the evolution of the information set
follows a Markovian process :

Pr(Ze|h, Ay, -, Xica, Accz, Xec))=Pr(L|L-) (3)

Formulating a dynamic program with a state-
space that corresponds to the information set consti-



tutes a natural extension of the framework de-
scribed earlier. This is done by considering the
conditional distribution of states for each informa-
tion set. The probability that the facility is in state
X: given I is denoted Pr(X.|I,). The vector of
probabilities for each state is denoted P. [ ;. This
vector is referred to as the information set or as the
sufficient statistic.

Under these assumptions, the measured state is
now only probabilistically related to the true state.
The distribution of the measurement relative to the
true state is known and depends on the technology
used. Although only the observed state is available,
forecasting models are still based on the true state.

The model assumes the availability of the follow-
ing measurement probabilities :

e=Pr(X,=klX.=j, C;=c),Vec,j, kit (4)
where C. is the technology used to measure and ¢ is
an element of the set of available technologies C.

Measurement probabilities can be derived empiri-
cally using measurement error models. Such models
relate infrastructure performance to specified indi-
Commonly used indicators in the field of
pavement management are the Pavement Condition
Index (PCI) as detailed in Shahin and Kohn
(1981)'® and Present Serviceability Index in HRB
(1962) ™. In the remainder of this paper we will only
consider the PCI scale. Madanat (1991)!? derives a
relationship between the true value of an indicator

cators.

and its measured value using a given technology. It
assumes normality in the error distribution and
ignores bias in measurement error. Humplick
(1992)® shows that biases can be statistically esti-
mated, so they are neglected in this model, since
they can be corrected for.

The DP formulation is implemented in the follow-
ing manner : at the at the beginning of the planning
horizon, the agency determines an initial informa-
tion vector according to its beliefs about the state of
the facility. The state vector is then updated for-
ward in time, according to Bayes’ Law, taking into
account :

® The previous information vector ;

® The forecasting model ;

® The measurement made at the start of the

period ; and

® The measurement error model.

At each stage of the DP problem, the decision

variables are now whether to inspect or not, and
MR & R action to perform.

The DP solution is in the form of a policy, i.e.,
{A(L), -, Ar(I7)}, where T is the length of the
planning horizon, and A(l)EAXC , V¢.

LMDP models address the issue of uncertainty in
the inspection process and allow flexible joint
inspection and MR & R decision making, but :

® They do not allow for uncertainty in the the

choice of deterioration models; and

® They fail to take into account possible feed-

back from observations to improve the perfor-
mance models.

The following section describes AC formulations,
which address both limitations. The LMDP formu-
lation has been extended to the network level by
Smilowitz and Madanat (2000)!7.

(4) Uncertainty in performance forecasting :
Adaptive Control formulations

The models described in the preceding sections
rely on one deterioration model specified with a
single set of transition probabilities for performance
forecasting. Yet Carnahan (1988)2 acknowledges
that those models are subject to significant uncer-
tainty particularly in the exogenous factors and are
often updated in the course of operations by the
agency. Hence the need to include inter temporal
feedback and performance model updating in the
original planning process. )

Current research on the application of AC to the
MR & R problem has focused on the characteriza-
tion of performance forecasting by deterioration
models, for example Durango and Madanat
(2002)%. As the information about the physical
deterioration model is uncertain, it can be described
by a discrete probability mass function over a finite
set of models. The mass function is denoted §.=
{Q1, -+, QF), where ® is a set of models that can be
used/combined to represent the physical process.
The elements of the vector represent the probability
assigned to the event that deterioration is governed
by each of the models, i.e,, Q/=Pr(Y=v|I,). Yisa
random variable that represents the physical deteri-
oration process.

Durango and Madanat (2002)® use state augmen-
tation to account for the uncertainty in choosing a

deterioration model. The augmented state at the



beginning of each period is defined by the true state,
X, and the beliefs about the deterioration model,
summarized in each vector @.. Two AC formula-
tions were presented : closed-loop (CL) and open-
loop feedback (OLF). The CL formulation includes
Bayesian updating in the argument of the objective
function, i.e, it captures the value in learning about
deterioration. In contrast, the OLF formulation
ignores future updating, i.e., it only exploits avail-
able knowledge about deterioration. Neither formu-
lation allows for flexible inspection schedules or
accounts for measurement errors.

A network level version of the AC MR & R for-
mulation is presented in Durango (2002)%. A dis-
tinctive feature of this model compared to other
network level formulations is the classification of
the facilities into groups according to their deterio-
ration model. This allows for the generation of a
MR & R schedule according to the state and the
deterioration class of each facility. The results
show that convergence of the beliefs about the
model for each group of facilities is achieved. this
study has further demonstrated that the benefit from
targeting the action to be applied jointly to the class
of deterioration model and the state increases as
budgets are tighter.

3. FORMULATION

(1)

The proposed formulation combines the Latent

Notation

MDP with the adaptive control formulations. This
requires adjustment of the information sets and of
the belief vectors. This is done as follows:
L=1_,A, C, X}, YVt (5)
The sets include the measured state and the technol-

ogy used. The belief vectors must be updated to fit -

this information structure. They are denoted

Q.z(cz, Xz, Py r[t—l, Az—l).

(2)

Figure 1 provides the reader with a summary of

The decision-making framework

the main decision making steps that are accounted
for in the DP formulation that we present in this
section. The first event at the beginning of each
period is the usage of the facility, which implies a

user cost that is a function of the true state of the

Usage Observe Updating Decision- || Deteriorati
making on
1. Model
A -
X K Q X
& 1 Cu
2. State Y
fAIN
!
A J
User Cost Inspection
Cost
MR&R
Cost

Figure 1 The decision making framework

facility. Then an inspection can be made according
to the decision made in the previous period, which
increases the information available to an agency.
With this information, the agency can update its
beliefs about the deterioration model and about the
the state of the facility. Decision-making involves
the choice of action to perform during period ¢, as
well as whether to inspect or not at the beginning of
t+1-note that period’s ¢{+1 inspection cost is ac-
Inspections reveal information
about the current condition of a facility.

crued during ¢f.
In turn,
this reveals information about the deterioration
process, and about measurement errors associated
with the technology. Weather, traffic and ageing
produce changes in condition before the start of the
next period.

Prior to presenting the formulation we describe
assumptions related to performance models, mea-
surement errors, and costs.

(3)
a) Transition probabilities

The transition probabilities are used to forecast
the effect of each action on the true state of the
facility. A set of transition probabilities is specified
for each of the (stationary, Markovian) deteriora-
tion models. The transition probabilities depend on
true state, the action selected and the deterioration
model being used and are denoted :

a{a)=P(Xin|Y=r, X;=1i,A), V7, i,j,a (6)
b) Measurement error

Parameter specification

The notation for representing measurement error
is the same as the one presented for the Latent MDP
formulation. The inspection decision is represented



by a choice between two types of technology : one
with the measurement precision associated with
each inspection technology, and the other with a
measurement error of infinite variance. The model
can accommodate a set of different technologies.
However, in the computational study presented in
Section 4 we reduce the choice to a binary deci-
sion: (C:=1 for inspection and C:=0 for no inspec-
tion). C:=0 refers to a technology where for each
state the probability of measuring any state is
uniformly distributed. That is,

& =Pr(X. =kl X, =, c¢=0)=ﬁ, Vikt (7)

where |S | denotes the cardinality of the set S. This
case, where every condition state is equally likely to
be observed regardless of the true state, is shown to
be equivalent to not inspecting in Madanat and
Ben-Akiva (1994)V.
zero.
c¢) Cost

We define g(X., A:, C:+1) as the generic cost in-
curred during period ¢ associated with activity A.

The associated cost is set to

on a facility in state X, and choosing to use inspec-
tion technology C:+1 at the beginning of next period.
We consider a cost structure that includes compo-
nents for user costs, inspection costs, costs associat-
ed with MR & R activities, and a salvage cost at the

end of the horizon. The salvage cost is denoted s(z),
ViES.

(4) Dynamic programming formulation

We consider a finite horizon formulation for the
problem with a discount factor of . The length of
the planning horizon is 7. The formulation of the
facility-level joint inspection and MR & R problem
consists of the objective value function definition,
the recursive formula, and a set of boundary condi-
tions. The information available at the start of ¢
consists of P: [ I, and @.. The first vector summa-
rizes the information about the current facility

QI=Pr(Y=7|I.)
=Pr(Y=7|lio, Aier, Ce, X2)

condition. The second vector captures the beliefs
about deterioration, which in turn determine an
agency’s predictions about future condition. The
formulation is presented below.
a) Optimal Objective Value Function and
Recursive Formula

The optimal objective value function, f{P: [ 1,
Q.), VP.['L, @, t, represents the minimum expect-
ed, discounted cost until the end of the planning
horizon given the information. It corresponds to:

g(i, Ar, Cor)+
H'ZVE.?QOI

we e ZTOTM) Bearian | (8)
EkES €.
SelPon Tl @)

In the recurrence relation, , represents the dis-
count factor. The expression is helpful in under-
standing why the inspection decision for f+1 is
made in ¢ : the inspection in £ +1 directly influences
the information vector Pisi [ Zi+1, which is used in
the recursive computation of the objective function
in period # and the measurement probabilities €.
b) Boundary Conditions

The boundary conditions for the problem are
presented below. They are used to assign the sal-
vage cost for the facility at the end of the planning
horizon (start of period 7+1).

fr+1(PT+1 r[nx, §r+1)= _ESPI(XTH= i|11+1)5(i),
e

VPT+I rIT+l, §T+l
(9)

¢) Updating Beliefs about Deterioration

Finally, we describe how the beliefs about deterio-
ration, §., V¢, and the information sets, I., V¢, are
updated in each period. The updates reflect how an
agency’s beliefs about deterioration and about the
true condition change to account for periodic mea-
surements of a facility’s condition.

After a measurement at the start of ¢, the beliefs
about deterioration are updated as follows:

Pr()?tl Y=7’, It-l, At—l, Cz)'PI‘( Y:7’|Iz—1, Az—l, Ct)

T ez Pr(X Y =5, Ir1, Ac_t, Ce: PH(Y =8| Y =5|Ts1, Ac-r, C1)
As P(Y=v|I,_1, Aior, C)=Pr(Y =7»|I,-))= QI-1, we can write:
PI’(X:! Y=7’, ]¢_|, Az-x, Ct)Qtr—l

=5 s Pr(X I V=s, Loy, Arr, COQ



where P(X,=k|Y=7,I._1, Ai_, Ct)
= Pl’(Xt:let:j, Y:7’, Iy, Asey, Ct)- (10)

j€s
Pr(X¢=_j| Y:7’, 1y, Az—h Cz)
= 2 fjclzl' 2 Pr(thjl Y=7’, Xz—l':l', At—l)

jes =
-Pr(X..1=i|I,-)
= 2 ejclz' 2 7r,;',-(At-1)Pr(X¢q=i|L-1)

jE€ES €S
Thus, given X:=k, Q7 can be written as:

Ses efRies i A )Pr( X 1=l )
S22 ES €iDies A )Pr(Xe 1 =1ll: 1)

(12)
Note that when the decision is not to inspect, the

(11)

beliefs about deterioration are not updated. Indeed,
no additional information is available to the deci-
sion-maker.
d) Updating the beliefs about facility state
After updating the beliefs about deterioration, a
decision-maker revises the components of the
sufficient statistic that represents facility condition
as follows:
Pr(X.=jl|L.)
= g}ﬁPr(thjl Y=r, I.)Pr(Y=r|I)

=3 Qr Pr(Xt:jl Y=r 1 At—l, C:)ejck’
reR ¢ EIESPT(Xt:ll Y=7”, ]t—l, At—l, Ct)Gfé

— 2 Qr- zies ”i;(At—l)Pr(Xt—lzZ.|It—l)€jclg
reR ¢ 2ES Eies ﬂirl(At—l)Pr(Xt—l:Z.|It—l)€lclz‘

(13)

4. COMPUTATIONAL STUDY

(1) Input Parameters

We present a computational study in the context
of pavement management with a planning horizon
of 15 years and a discount rate 0=59%, where a=
1/(1+p). AsinCarnahan et al. (1987)%, we assume
that pavement condition is represented by eight
states, each representing 12.5 points on the PCI
scale of 100. State 1 represents a failed pavement
and state 8 represents a pavement in excellent
condition. The agency can choose from the follow-
ing MR & R actions: (1) do-nothing, (2) routine
maintenance, (3) 1-in overlay, (4) 2-in overlay,
(5) 4-in overlay, (6) 6-in overlay, and (7) recon-
struction. The costs of applying MR & R actions
and the user costs are taken from Carnahan et al.

(1987)® and Durango and Madanat (2002)%. The
salvage costs are used to enforce the restriction that
the facility must provide adequate service until the
end of the planning horizon. All costs are presented
in Table 2.

We consider three deterioration models: (1)
slow, (2) medium, and (3) fast. Each model being
characterized by a set of seven transition probabil-
ity matrices (one for each action). The models are
taken from Durango and Madanat (2002)® and are
such that :

® The effect of MR & R actions on transitions is

assumed to follow a truncated normal distribu-
tion with the mean depending on the action and
the model and the variance depending on the
model ;

® Actions are less effective in improving pave-

ment condition under faster deterioration
models ; and

® Faster deterioration models have higher vari-

ance in forecasting.
The means and standard deviations of the effects of
actions are presented in Table 3. The transition

Table 2 Costs ($/lane-yard)

Pav. Maintenance & Repair Actions

State| 1 2 3 4 5 6 7

User
Costs

1 0.00 | 6.90 |19.90]21.81|25.61}29.42|25.97| oo

2 0.00 | 2.00 110.40(12.31|16.11|19.92|25.9725.00
3 |0.00]1.40 8.78]10.69|14.49|18.30|25.97(22.00
4 0.00]0.83 | 7.15( 9.06|12.86(16.67|25.97|14.00
5 10.00]0.65| 4.73| 6.64[10.43|14.25125.97| 8.00
6 [0.00]0.31] 2.20| 4.11{ 7.91]11.72|25.97} 4.00
7 |0.00][0.15| 2.00) 3.91| 7.71{11.52125.97| 2.00
8 |0.00]0.04| 1.90| 3.81| 7.61(11.42(25.97| 0.00

Table 3 Means and standard deviations of action effects on
change in pavement condition

Deterioration Model :
Slow Medium Fast
Std. Dev. 0.30 0.50 0.70
Action Mean Effects

1 —0.25 —-0.75 ~1.75

2 0.50 0.00 —0.50

3 1.75 1.00 0.25

4 3.00 2.00 1.00

5 4.25 3.00 1.75

6 5.50 4.00 2.50

7 8.00 6.00 4.00




probabilities are presented in Durango (2002)%.

If an inspection is performed, the agency is said to
have “perfect state information”. That is, we ignore
measurement error in this study, i.e., e={1if k=; ;
0 otherwise}. This assumption was made to reduce
the number of parameters and simplify the interpre-
tation of the results. Asin Madanat and Ben-Akiva
(1994) ! the inspection cost is assumed to be
$0.065/1ane-yard. Although this does not reflect the
actual cost of the assumed error-free process, it is
only used for comparison purposes.

(2)

Figures 2 and 3 compare the expected costs when

Expected cost

the physical process corresponds to the slow or fast
model, respectively. The initial information set in
these cases is set such that: P [51=1(0,0.1,0.1,0.2,
0.4,0.2,0,0). For the case of “slow” initial beliefs,
we set the belief vector to @,=1(0.8,0.1,0.1). That
is, a probability of 0.8 is assigned to the event that

70 1

60 A

w
(=
1

S
<
s

$ per lane-yard

fast no slow

Figure 2 Expected costs for slow deterioration

70

$ per lane-yard

fast no slow

Figure 3 Expected costs for fast deterioration

the physical process is governed by the slow model,
0.1 to the medium, and 0.1 to the fast model.
Similarly, for “fast” initial beliefs we set the vector
such that: @:=(0.1,0.1,0.8). We also consider an
initial belief vector that corresponds to a case of
high model uncertainty. This case is labeled “no”
which stands for the non-informative initial beliefs
@:=(0.3, 0.4, 0.3). In our study we set the initial
pavement condition to state 5.

As expected, in both instances-whether the deteri-
oration is slow or fast, when the initial beliefs
“match” the physical process, the expected cost is
the lowest. The expected costs are higher in Figure
3 than in Figure 2 because it is costlier to maintain
a pavement that deteriorates faster. An interesting
result is that the non-informative initial beliefs are
the worst in both instances: it seems counter-
intuitive to have lower expected cost when the
initial beliefs about the model are incorrect. Similar
qualitative observations can be found in Durango
and Madanat (2002).

An explanation can be found in Figure 4, which
presents the result of a simulation performed
according to the optimal policy given by our formu-
lation. As above, the initial beliefs about the state
are PL[1=1(0,0.1,0.1,0.2,0.4,0.2,0,0). The true
initial state is assume to be 5. The physical deterio-
ration process is assumed to be governed by the fast
model. The beliefs assigned to the fast model in
each period, @}=Pr(Y=3|l,), are averaged over
1,000 simulation runs. We plot the trajectory of the
average over the planning horizon.

The average @} converges much faster when the
initial beliefs are “slow”, i.e., wrong, than when they

are non-informative. Therefore, actions taken in

12 3 4 5 6 7 8 9
Period

10 11 12 13.14 15

Figure 4 Probability assigned to fast model



the non-informative case cannot be as close to
optimality as those taken when the initial beliefs are
wrong. Hence the higher expected cost when the
initial beliefs about deterioration are more spread
out.

The faster convergence of the beliefs in the wrong
case compared to the non-informative case can be
explained qualitatively by the contrast between the
observations and the expectations. This contrast is
augmented by the action taken in both cases: when
the initial beliefs are wrong, i.e., “slow”, the MR &
R actions taken will be mild compared to the non-
informative case. Therefore, worse states are more
likely to be observed. Such unexpected outcomes
provide feedback that leads to drastic and prompt
revision of the beliefs in the wrong case. Quantita-
tively, this contrast is expressed by the weight of the
“slow” model in the denominator of the Bayesian
updating formula being equal to zero.

(3) Value of information

A primary objective of this research is to under-.

stand the relative role of uncertainties in condition
assessment and in choosing a deterioration model.
In order to investigate the effect of uncertainty in
the initial set of beliefs @ and P, r11, we conducted
a case study where P [1,=(0,0,0,0,1,0,0,0) and
P [1,=0(0,0.1,0.1,0.2 0.4,0.2 0, 0). The initial
uncertainty about the model can be high, in other
words @1=1(0.3, 0.4, 0.3), or low. We only consid-
ered the effect of decreasing uncertainty about the
model in the correct direction, i.e., Q= (0.8, 0.1,
0.1) when the physical process is governed by the
slow model, and @ =(0.1, 0.1, 0.8) when it was
fast. -

Figure 5 and Figure 6 present the expected costs
for the slow and fast models, respectively. The As
represent the expected benefit of moving in the
direction of the arrows. The double-lined arrows
indicate the largest expected benefit in each case, if
we start in the upper right corner of the figures, i.e,,
when both initial uncertainties are high.

We observe that a reduction in initial uncertainty
always results in a decrease in the expected cost. If
the physical model is fast, there is more value in first
decreasing the uncertainty about the state as can be
seen in Figure 6. This is because the beliefs about
the model converge faster when the physical process

Expected Cost in $/ lane-yard

Model
Uncentainty
A 4=13.49
38.32 51.81
High 1 —
4=21.76 A=25.01
2=9.74
Low
- 1706 €—— 2630
I I L4 State
Uncertainty
Low High
Figure 5 Relationship between expected cost and sources of
initial uncertainty : Physical process=slow
Expected Cost in $/ lane-yard
Model
Uncenainty
4 A=19.81
43.96 63.77
High 1 4ﬁ
2=0.03 2=9.80
A=10.04
Low
- 4393 d———— 5397
{ I » - Suate
Uncertainty
Low High
Figure 6 Relationship between expected cost and sources of
initial uncertainty : Physical process=fast
is fast.

Assuming that the agency is initially in a situation
where it has high uncertainty about both the model
and the state, Figure 5 shows that when the actual
model is slow, reducing first uncertainty  about the
model brings more value, whereas Figure 6 recom-
mends a reduction in state uncertainty as the first
step. If we consider that the physical process is
hidden from the agency a cautious {maximin) strat-
egy vis-a-vis the value of information consists of
reducing the uncertainty about the state first.

In ‘practice, agencies have fairly advanced mea-
surement technologies, whereas they rarely have
accurate and precise sets of performance forecast-
ing models. It can be concluded from the above
figures that the incorporation of improved perfor-
mance forecasting models, that reduces the uncer-
tainty about deterioration, in the planning process
always provides value. '



5. CONCLUSIONS

This paper has presented an inspection, MR & R
model that explicitly allows for a flexible inspection
schedule, takes into account measurement error,
and includes feedback from measurements to
improve the characterization of the deterioration
process.

The results show that the least expected cost is
observed when the initial beliefs about the deterio-
ration model are correct, which is an intuitive
result. Yet, the case of non-informative initial
beliefs leads to the highest expected cost. The
computational study clarified the role of the conver-
gence of the beliefs about deterioration. We there-
fore recommend that an agency should not initialize
the implementation phase with the probability of all
the models being equal. Even a wrong initialization
would lead to smaller expected cost.

Finally, as the proposed model accounts for both
state and performance model uncertainties, it was
possible to determine the relative value of decreas-
ing each source of uncertainty. Results showed that,
if an agency is assumed to have high variance in
both initial beliefs about the model and the state, a
cautious recommendation is to decrease uncertainty
about the state first (by adopting a better inspection
technology).

The scope of this research was intentionally lim-
ited to the facility level MR & R problem. An imme-
diate extension is to see how the problem translates
to the network level with budget constraints. The
issue of implementation and “real-time” control can
also be investigated in this context.
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