連続繊維シート補強RC柱のじん性予測に関する力学モデル

上原子晶久1・下村 匠2・丸山久一3・新保学幸4

1 正会員 博(工) 弘前大学助手 工学部地球環境学科 (〒036-8561 弘前市文京町3)
E-mail: kami@cc.hirosaki-u.ac.jp
2 正会員 博(工) 長岡技術科学大学助教授 工学部環境・建設系 (〒940-2188 長岡市上富岡町1603-1)
3 フェロー会員 Ph. D. 長岡技術科学大学教授 工学部環境・建設系 (同上)
4 修(工) 副大林組広島支店 (〒730-0041 広島市中区小町1-25)

本論文は、著者らの開発した連続繊維シートで巻立て補強された鉄筋コンクリート柱部材のじん性予測法について述べるものである。本予測法は、実験において観察されたシート補強RC柱の変形・破壊様式を力学モデルにより表現したものであって、せん断ひび割れの発生・開口、およびひび割れを跨ぐシートの剥離を考慮している。検証の結果、提案予測法はシート補強RC柱のじん性を変形・破壊メカニズムと関連づけて予測できることが明らかとなった。また、感度解析の結果、シート補強RC柱部材のじん性には、シートの破断ひずみの影響が敏感に現れること、シートとコンクリートの界面剥離に関する特性はあまり影響しないことなどを明らかにした。

Key Words: ductility, continuous fiber sheet, retrofit, RC column, bonding, and delaminating

1. はじめに

連続繊維シートを用いた既設コンクリート構造物の補修補強は、適用実績の増加とともに、各種設計施工指針が刊行1〜9されるなど、学協会による技術の体系化が進んだ。シート補強部材の耐荷力やじん性など力学性能の主要な指標値に関して、実用的な算定方法がひとつとおり整備された。しかしながら、より優れた性能評価法の研究開発を継続的に行っているべきであるとは当然である。本研究は、シート補強コンクリート柱のじん性予測手法の開発を目的とするものである。

周知のように、構造物の耐震性能の向上を目的に補強を施す際、部材のじん性（変形性）が力学性能の主要な指標となっている。2000年に刊行された土木学会「連続繊維シートを用いたコンクリート構造物の補修補強指針」10には、連続繊維シートにより巻立て補強された柱部材のじん性率について、実験結果のデータベースをもとに作成された以下の算定式が掲載されている。

\[\mu_f = 1.16 \times \frac{0.5 (V_{w} + V_{w})}{V_{sw}} \times \left(1 + \alpha_0 \frac{\varepsilon_{km} \cdot \rho_f}{V_{sw} / (B \cdot z)} \right) + 3.58 \leq 10 \] (1)

\[\rho_f = \frac{2 \cdot n \cdot f \cdot S_f}{S_f / B} \] (2)

ここに、\(\mu_f \)は連続繊維シートにより補修補強された部材のじん性率、\(V_{w} \)はせん断補強鋼材を用いない棒部材のせん断耐力、\(V_{w} \)はせん断補強鋼材により受け持たれる棒部材のせん断耐力、\(V_{sw} \)は部材が現有曲げ耐力を達する時の最大せん断力、\(\varepsilon_{km} \)は連続繊維シートの終局ひずみ、\(\rho_f \)は連続繊維シートのせん断補強量比で式(2)に対する、\(\alpha_0 \)は部材のじん性率の算出に用いる係数（帯鉄筋によりせん断補強されている柱
図2 正負交番載荷を受けるシート補強RC柱の終局破壊性状

に対してはαₜとして帯鉄筋の弾性係数を用いる)，Bは部材の幅，zは圧縮合力の作用位置から引張鋼材団心までの距離（一般にd/1.15とする），ηₚは連続繊維シートの枚数，ηₜは連続繊維シート1枚の厚さ，Sₗは連続繊維シートのシート幅，そしてSₜは連続繊維シートの配置間隔である。

指針式（1）は，シート補強構造物の耐塑性能を具体的に算定できる実用的で簡便な方法を，はじめに提示したという点において重要な意味を持つ。図1は指針式（1）のパックデータとなった実験結果と指針式（1）による計算結果と比較を示したものである。このように指針式（1）は，実際のシート補強鉄筋コンクリート柱による正負交番載荷試験の結果をもとに作成されている性格上，適用範囲内でのデータに対しては高い精度を有していることがわかる。

しかしながら，物理的意味を持たない実験式であるので，適用範囲や発展性に限界がある宿命にある。

一方，構造物の挙動を予測する方法のうち，実験式の対極に位置づけられる方法は，現象の機構に立脚し，理論的に予測する方法である。シート補強構造物の耐塑性能に関し，これを最も理論的に実現する方法は，連続繊維シートに関する力学モデルを組み込んだ有限要素解析により，シート補強コンクリート構造物の変形・破壊現象を忠実に再現する方法であると考えられる。このような方法は，高い汎用性と広い適用範囲が期待される。しかし，まだ開発途上にあり，一般的な補強設計に実用されるには時間を要するとと思われる。

このような現状をふまえ，著者らは，コンクリートの付着に代表される連続繊維シート特有のメカニズムに立脚しながらも，比較的簡単な計算により，シート補強部材の耐塑性能を実用的なレベルで予測する方法の開発に取り組んでいる。簡便であるが発展性に乏しい実験式と，汎用性に優れると複雑な有限要素解析の中間に位置する性能評価法として，現時点では有効な方法であると考えている。これまでに著者らは，シート補強枠柱のせん断耐力の予測法を構築した10)。本論文では，これを発展させたシート補強枠柱材のじん性予測モデルについて述べる。本法は，連続繊維シートとコンクリートの付着・剥離機構とせん断ひび割れの形成が関連するRC柱のマクロな耐荷機構を力学モデルにより表現した柱材のじん性予測法である。既報13)において，その概要を述べたが，その後，細部の計算仮定，各影響因子の感度，計算精度について検討を重ね，改良を加えた。本論文では，それらを詳細かつ総合的に論じる。

2. じん性予測モデルの提案

(1) シート補強RC柱の耐荷機構に関する考察

著者らの開発したじん性予測モデルは，シート補強RC柱のじん性を支配する主要なメカニズムを実験的に見出し，これを簡便な力学モデルにより表現することを基本としている。

まず，連続繊維シートの種類，補強帯を実験変数とした統計的なシート補強RC柱の正負交番載荷試験(試験体の諸元などについては，著者－1を参照されたい)を行い，その結果とり，シート補強RC柱の破壊性状と終局変位との間，以下の定性的な傾向を見出した。

- 部材の終局変位は，せん断ひび割れが発生する領域の大小，およびシート剥離面積の大小と相関がある。図2せん断ひび割れとシートの剥離が広い範囲に及んで終局状態を迎える
試験体は終局変位が大きい。逆に、せん断びび割れが少ない段階でシートの破壊が生じ、終局となる試験体は終局変位が小さい。

- シートの種類が同一ならば、補強量（シートの厚さ）の大きい試験体ほど、終局変位が大きい。

（図－３）

- 部材の破壊過程は、せん断びび割れが初めに柱基部付近に発生し、その後さらに上部にせん断びび割れが発生する場合と、上部にびび割れが発生せずに最初のびび割れを跨ぐシートが破壊する場合と大別される。

- せん断びび割れは、試験体によって多少の差があるものの、約45度の角度で発生する。

(2) モデルの概要

(1) で述べた実験で観察された現象の特徴を、力学モデルにより表現する。部材に徐々に載荷した際の初期状態から破壊に至る過程を、せん断びび割れの発生・進展に着目し、図－４のようにモデル化することにする。

① せん断びび割れ発生前は、軸方向に一様な剛性をもつばかりとして振舞う。

② 荷重を増加させてゆくと、ある段階で柱基部に最初のせん断びび割れが形成される。せん断びび割れ発生後は、部材の変形の大部分がせん断びび割れの開口に起因することとなる。

③ シート補強量が小さい場合、第一せん断びび割れを跨ぐシートが破壊条件に達し、終局となる。

④ シート補強量が大きい場合、③は起こらず、第一せん断びび割れより上部の領域に第二せん断びび割れが形成される。その後の部材の変形は、両せん断びび割れの開口によりもたらされる。

⑤ さらに載荷すると、せん断びび割れを跨ぐシートが破壊条件に達し、終局となる。

(3) 定式化と計算方法

提案モデルの計算フローを図－５に示す。モデル化された試験体の変形性状を図－６に示す。

a) せん断びび割れ発生前

せん断びび割れ発生前は、部材を弾性はりとみなしして応力解析を行う。断面の曲げ剛性は、通常の鉄筋コンクリートの曲げ理論に基づいて算定する。

b) せん断びび割れの発生

せん断びび割れの発生条件は、曲げモーメントにより規定する。

\[
M_c = V_c \times a
\]

\[
V_c = 0.2(V_c' - p_d)^{11/4}(d/1000)^{11/4} \times (0.75 + 1.4((a/d)) \times B \cdot d
\]

ここに、\(M_c\)はせん断びび割れ発生モーメント、\(V_c\)は斜めびび割れ発生荷重で二羽らが提案した式(4)ににより算定する。\(a\)はせん断スパンの長さ、\(p_d\)はコンクリートの圧縮強度[N/mm²]、そして\(p_d\)は軸方向鉄筋比[%]である。シート補強部材のせん断びび割れ発生荷重に及ぼすシートの影響は、まだ十分に明らかにされているので、本研究では式(4)においてシートの影響を考慮しないこととする。なお、同じ仮定に基づき、シート補強枠部材のせん断耐力を十分な
精度で算定可能であることを確認している。ノリ

部材中のある断面で式(3)が満たされると断面の
断面を起点に45度の角度で斜めひび割れが発生す
ると仮定する。本研究で対象としている柱の場合、
柱基部において式(3)のせん断ひび割れ発生条件が
最初に満たされることになる。せん断ひび割れが柱
基部を起点に45度で発生する傾向は図-2の実験
結果にも見られる。

せん断ひび割れが横断している区間は、それ以降
弾性はりではなく、ひび割れの先端を回転中心とし
た剛体回転により変形をモデル化する。残る区間は
引き続き弾性を仮定する。なお、柱の変形の
大部分が、せん断ひび割れ発生区間の変形によるもので
のであるので、弾性変形の計算精度は部材全体の変
形の計算結果にあまり影響を及ぼさない。
さらに載荷を続け、弾性はりの区間において再び

\[V = V_c + V_r + V_f \] (5)
ここに，V_r はコンクリートの負担するせん断力，V_t はせん断補強鉄筋が負担するせん断力，V_r は垂直筋シートが負担するせん断力である。コンクリートの負担するせん断力 V_t は，既報 12) では斜めひび割れ発生荷重に等しい一定値とした。本論文では，まず V_t を一定値として計算した結果を示すが，第 3 章では，これを変形状態の関数とした場合についても検討する。せん断補強鉄筋の負担するせん断力は，せん断補強鉄筋が降伏していると仮定して，既往の算定式 10) により算定する。

ひび割れを跨ぐ垂直筋シートの剥離の進行，およびシートの負担するせん断力 V_t は，シート補強桁部材のせん断問題に関する研究において，著者らが開発した計算法 10) を用いる。本法は，一軸引張付着試験より導出した垂直筋シートとコンクリートの保付着構成モデル 11) を用いて，シートの剥離進展解析を行う方法である。この計算方法の詳細は既報 10) に記したので，本論文では割愛するが，手順の概要を以下に述べる。

図-5 に示した計算フローの，せん断ひび割れ発生後の計算の部分が相当する。まず，せん断ひび割れの回転角 ρ を与える。各断面におけるせん断ひび割れ幅は，回転角 ρ の関数として表される。このひび割れ幅を適宜条件として，その断面におけるシートの剥離状況の解析を行うことにより，その断面におけるシートの引張力が求まる。このようにして求めたシートの引張力により部材全長にわたって総和をとることで，最初に与えた回転角 ρ に対するシートのせん断力 V_t を求めることができる。

d) 破壊条件

著者らが行ったシート補強 RC 柱の正負交番載荷試験 13) では，いずれの試験体も最終的にはシートの破壊によって終局を迎えた。提案モデルでは，せん断ひび割れを跨ぐシートの破壊をもって，部材の破壊を判定することにする。剥離進展解析の結果，シートのひずみが評価されるので，これが破壊ひずみに達するかどうかにより，シートの破壊を判定する。

なお，既報 10) において，シート補強棒部材のせん断耐力算定法を検討した際には，実験事実に基づき，部材の破壊モードとして，シートの破壊とコンクリートの圧縮破壊の二種類を考慮した。しかし，シート補強柱の正負交番載荷の場合は，現段階では，破壊モードが明確にコンクリート圧縮破壊モードであることが確認できるデータが無いので，当面シートの破壊のみを考慮することにした。

先述したように，シートの補強量等の条件によっては，第一せん断ひび割れを跨ぐシートが破壊条件に達する以前に，第二せん断ひび割れの発生基準が満足される場合がある。複数のせん断ひび割れが発生する場合でも，最終的にはシートの破壊により部材の終局状態となる。

e) 終局変位およびひずみ性率

部材の載荷点の終局水平変位は，以下により算定する。

\[
\delta_s = \delta_v + \delta_w + \delta_w
\]

ここで，δ_v はせん断ひび割れの開口による水平変位，δ_w はせん断ひび割れの発生していない区間の変形による水平変位，δ_w は主鉄筋のフーチングからの伸長による水平変位である。

各変位成分は，以下のように計算する。せん断ひび割れの開口による水平変位 δ_v は，ひび割れの開口を剛体回転によりモデル化することにより評価する。

\[
\delta_v = (\delta_1 + \delta_2 + \ldots + \delta_n) + \delta_n = \sum \delta_i + \delta_n
\]

ここで，δ_n は n 番目のせん断ひび割れの剛体回転による水平変位，δ_i はせん断ひび割れの発生していない弾性区間の剛体回転による生じる変位である。n はせん断ひび割れの個数であり，本論文の計算例では 1 または 2 である。δ_n, δ_n は以下のように定める。

\[
\delta_n = 2h \sin \left(\frac{\rho}{2} + \rho(n-1) \right) \sin \frac{\rho}{2} + h \cdot \sin(n \cdot \rho)
\]

\[
\delta_n = (a-n \cdot h) \sin(n \cdot \rho)
\]

ここで，h はひとつのせん断ひび割れ区間の長さであり，以下の式により表される。

\[
h = \frac{B}{\tan \theta}
\]

ここで，θ はせん断ひび割れの発生角度であり，45 度とする。

次に，せん断ひび割れの発生していない区間の変形による水平変位 δ_w は，弾性解釈により評価する。

\[
\delta_w = \frac{V \cdot (a-n \cdot h)}{3EI} \cdot \cos(n \cdot \rho)
\]

ここで，E はコンクリートの弾性係数，I は鉄筋の集
表-1 検証に用いた実験データ

<table>
<thead>
<tr>
<th>出典</th>
<th>素材種類</th>
<th>延伸 弾性力</th>
<th>延伸 弾性力</th>
<th>有効 断面</th>
<th>せん断 面積比</th>
<th>有効 サンプル幅比</th>
<th>コンクリート</th>
<th>せん断補強筋</th>
<th>連続補強筋シート</th>
<th>実験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>新保ら12</td>
<td>焼結</td>
<td>529</td>
<td>600</td>
<td>540</td>
<td>4.4</td>
<td>32.2</td>
<td>400</td>
<td>0.62</td>
<td>320.8</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>アラミドI</td>
<td>529</td>
<td>600</td>
<td>540</td>
<td>4.4</td>
<td>30.7</td>
<td>400</td>
<td>0.62</td>
<td>320.8</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>アラミドII</td>
<td>529</td>
<td>600</td>
<td>540</td>
<td>4.4</td>
<td>30.7</td>
<td>400</td>
<td>0.62</td>
<td>320.8</td>
<td>0.03</td>
</tr>
<tr>
<td>試験田12</td>
<td>焼結</td>
<td>1901</td>
<td>600</td>
<td>534</td>
<td>2.8</td>
<td>35.2</td>
<td>372</td>
<td>1.49</td>
<td>337.0</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>アラミドII</td>
<td>1901</td>
<td>600</td>
<td>534</td>
<td>2.8</td>
<td>40.8</td>
<td>372</td>
<td>1.49</td>
<td>337.0</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>アラミドI</td>
<td>1901</td>
<td>600</td>
<td>534</td>
<td>2.8</td>
<td>38.6</td>
<td>372</td>
<td>1.49</td>
<td>337.0</td>
<td>0.08</td>
</tr>
<tr>
<td>高橋ら12</td>
<td>焼結</td>
<td>160</td>
<td>400</td>
<td>350</td>
<td>3.4</td>
<td>40.0</td>
<td>348</td>
<td>0.83</td>
<td>380.0</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>アラミドII</td>
<td>160</td>
<td>400</td>
<td>350</td>
<td>3.4</td>
<td>38.3</td>
<td>344</td>
<td>0.83</td>
<td>380.0</td>
<td>0.23</td>
</tr>
</tbody>
</table>

合断面をコンクリートの断面に換算して求めた断面2次モーメントである。

終局時の主鉄筋の伸しによる水平変位δ_wは、既報121では考慮していなかったが、本論文では、石橋らが提案した式14により評価することにする。

$$\delta_w = \frac{a[0.83 - 0.054(D/\phi) + 0.015(D/\phi)^2]}{d - x_{ny}}$$

ここで、Dは主鉄筋の中心間隔、ϕは主鉄筋径、そしてx_{ny}は終局時における圧縮緑から中立軸までの距離である。

一方、部材のじん性率μは以下の式で定義される。

$$\mu = \frac{\delta_w}{\delta_y}$$

ここで、δ_yは主鉄筋降伏時の截荷点変位であり、以下の式により求める。

$$\delta_y = \delta_{m} + \delta_{pe}$$

ここで、δ_{m}は主鉄筋降伏時の弾性変形による截荷点変位で、通常の鉄筋コンクリートの曲げ解析法により求める。δ_{pe}は降伏時における主鉄筋の伸しによる水平変位であり、終局時の伸しが高と同様に、石橋らが提案した式14により評価する。

$$\delta_{pe} = \frac{a[0.70 - 0.054(D/\phi) + 0.017(D/\phi)^2]}{d - x_{ny}}$$

ここに、x_{ny}は降伏時における圧縮緑から中立軸までの距離である。なお、主鉄筋降伏時の截荷点変位δ_yについては、終局時水平変位δ_wの算定方法とは異なり、せん断ひび割れの間隔による水平変位を考慮しない。これは、提案モデルにおいて、せん断ひび割れ発生前は、せん断を弾性とみなして各変位成分を計算していることによる。また、シート補強後の部材において、主鉄筋降伏時に発生する実際のせん断ひび割れの間隔量は、無視できるほどに小さく、水平変位への寄与分は少ないと解釈している。

3. じん性予測モデルの検証

提案計算モデルは、シート補強後のじん性を予測することを目的に開発したものであるが、簡便なながらも現象のメカニズムを立脚した構造物の応力解析の体裁をとっているため、変形のみならず、荷重、破壊形態が原理的に計算結果として得られる。以下に、提案モデルによる計算結果の精度を特徴について検証する。

(1) じん性率

図-7に提案モデルによるシート補強 RC 柱のじん性率の計算値と実験値との比較を示す。実験データは、既往の研究131、151～171によるものである（表-1）。これらのデータは、終局時にシートが破断しているものを選定し、主鉄筋の破断が先行したデータ、シートが終局時に破断していないデータは除外した。なお、ここで用いた全てのデータは、図-1で指針式(1)の検証に用いた実験データとは異なるものである。表-1中の最大荷重とじん性率の実験値は、正負の相対平均値である。
図-7より、提案モデルは実験値の概略を予測し得るものので、算定精度が低いケースも見られる。特に、シート補強材が少ない範囲で、実験実験結果を過小評価している（図中において点線で囲んだ点）。これらは、計算結果では、シートの剥離が生じる前にシートが破断する（図-7）と判定されている。しかし、当該データを収録した論文15、17によると、実際にはこのような現象が発生しなかったと判断できる。このように、提案モデルによる計算結果は、実験結果と整合しないところも見られた。特に、炭素、及びアラミドIよりも破断ひずみが大きいアラミドIIで実験値を過大に評価している。これにより、提案モデルの場合は、シートの破断ひずみの大きさが計算されるじん性率に大きく影響しているためである。このことについては、本論文5章に著した各種要因の感度解析で詳細に述べられた。しかしながら、全体としてシート補強率が大きくなるにつれじん性率が大きくなる傾向は提案モデルによって現れている。

図-7と同じデータに対して、指針式(1)でのじん性率を算定した結果を図-8に示す。これらのデータには、連続繊維シートの弾性係数と補強材に関して式(1)の適用範囲外のもの（図-8において実験値に囲んだ点）も含まれているが、ここでの検討例では、著しく算定精度を損なうことはなかった。図-9にこれらの実験データと指針式(1)の適用範囲の関係を示す。

(2) 破壊性状
定式化の際に述べたように、提案予測モデルは、せん断ひび割れの発生と開口、シートの剥離を考慮することにより、シート補強RC柱のじん性を予測する仕組みとなっていることが特徴である。このことが実効性を持つかどうかを検討するため、図-10に計算で得られたせん断ひび割れの発生状況とシートの剥離領域を示した。

実験結果（図-2）と比較すると、計算結果は実際の破壊性状の傾向を良好に再現していることがわかる。すなわち、せん断ひび割れが少なく、シートの剥離領域が小さい段階で終局に至った試験体ではじん性が小さくひび割れとシートの剥離が広範囲に及んだ試験体ではじん性が大きい傾向が計算結果に現れている。

このことが提案予測モデルの最大の特徴であり、これに成功した時点で、提案モデルの大筋の妥当性は確認できたと考えている。

(3) 最大荷重
図-11に最大荷重の実験値と計算値との比較を示す。全体として、提案モデルによる計算値は実験値よりも過大であると言える。これは、本論文で用いた実験結果では、曲げによる主鉄筋の降伏が生じ
ており、それ以降荷重がほとんど増大していなかったためである。提案モデルでは、シート補強工材のせん断耐力算定法をベースにしているため、曲げによる主筋筋の降伏で最大荷重が決まるケースを想定していない。提案モデルでは、水平変位が大きくなるに従って、せん断ひび割れの回転角が増加する。その結果、回転角の関数であるシートの負担するせん断力が増加し、終局水平変位時には提案モデルで評価される最大荷重が、実際の曲げによる降伏荷重を過大に評価してしまうのである。

以上の推察を裏付けるため、図-11に曲げ降伏荷重の計算値と実験値との比較を示した。計算値は、曲げ理論に基づく断面解析によるものである。両者は良く一致している。

以上より、じん性補強された RC 柱のように、曲げによる主筋筋の降伏が生じる場合には、提案モデルでは最大荷重を正しく予測できないことが明らかとなった。メカニズムに即応した力学モデルを目標にする以上、観測できることではないと考えられる。しかし、提案モデルは部材のじん性の予測に主眼を置くものであるので、このことは致命的な問題ではないと考えている。

4. じん性予測モデルの改良

(1) 主筋筋の伸し出し

既報では考慮していなかったが、本論文では、降伏時と終局時において、主筋筋の伸し出しによる水平変位の寄与分を考慮している。このことがじん性の算定精度にどの程度影響するかを検討する。

図-12に提案モデルにおいて主筋筋の伸し出しを考慮した場合と、考慮しない場合、それぞれのじん性の実験値と計算値との比較を示した。実験データは表-1に示したるものである。主筋筋の伸し出しを考慮しない場合には、全体的にじん性が過大に評価されている傾向が見られる。これは、降伏変位が過小に評価されたことによるものである。本結果より、提案モデルにおいて主筋筋の伸し出しを考慮することは、算定精度の向上に寄与することが明らかとなった。
図-13 提案モデルにおける主鉄筋の抜け出しを考慮することの有無によるじん性率の計算値の変化（計算ではρを一定にした）

図-14 部材の変形レベル

図-15 せん断力Vc(ρ)と回転角ρとの関係

図-16 せん断力Vcを回転角ρの関数とした場合のじん性率の計算値の変化

(2) コンクリートの負担するせん断力

指針式(1)では、正負交番載荷によるかぶりコンクリートの劣化を考慮するため、コンクリートの負担するせん断力Vcを5割減じてじん性率を評価することとしている。また、実際の載荷実験では，図-14に示すように、部材の変形が進みコンクリートの損傷が進行するに従って、コンクリートが負担するせん断力が徐々に減じてゆき、逆にシートの負担するせん断力が増加することが既往の実験により明らかにされている[10]。これらを考慮に、提案モデルにおいて、コンクリートの負担するせん断力Vcを、部材の変形レベルの指標となるせん断び割れの回転角ρの関数として減少させて計算する場合について検討する。

図-15に本検討で仮定するせん断力Vc(ρ)と回転角ρとの関係を示す。式で表すと以下となる。

\[V_c(\rho) = \begin{cases} V_{c_{max}}(\rho_{max} - \rho) & (0 < \rho < \rho_{max}) \\ 0 & (\rho \geq \rho_{max}) \end{cases} \] (16)
表-2 感度解析に用いたパラメータの一覧

<table>
<thead>
<tr>
<th>変動要因</th>
<th>パラメーターの値</th>
<th>共通要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>シート補強比（%）</td>
<td>0.05, 0.1, 0.15, 0.25</td>
<td>主鉄筋比</td>
</tr>
<tr>
<td>シート弾性係数（KN/mm²）</td>
<td>80, 150, 250, 400, 600</td>
<td>せん断補強筋</td>
</tr>
<tr>
<td>シート引張強度（N/mm²）</td>
<td>2500</td>
<td>部材幅</td>
</tr>
<tr>
<td>剉離せん断変位（mm）</td>
<td>0.05, 0.1, 0.2, 0.4, 0.6</td>
<td>鉄筋降伏強度</td>
</tr>
<tr>
<td>剉離せん断応力（N/mm²）</td>
<td>8</td>
<td>コンクリート圧縮強度</td>
</tr>
</tbody>
</table>

※変動要因において正規は検討要因以外で固定した因子

と、5/200[rad]の場合には、計算値が大幅に過大であった場合の算定精度が向上し、それ以外ではせん断力Vcが一定の場合とほぼ同じ結果となっている。一方、ρmaxを1/200[rad]とした場合には、一部において計算値が実験値より過小となり、逆に算定精度が低下する場合が見られた。

以上の検討結果より、今後本モデルでは、コンクリートの負担するせん断力をせん断ひび割れ回転角の関数とし、ρmaxを5/200[rad]とすることにする。なお、ρmaxは部材の諸元やシートの補強量によって変わる可能性があるが、ここでの検討ではその定量化まで特定できないので、一定と仮定する。

5. 提案モデルによる各種要因の感度解析

本章では、前章までに構築したじん性予測モデルを用いて、連続繊維シート補強RC柱のじん性に影響を及ぼすと考えられる各種要因の感度解析を行う。比較のため、指針式(1)についても同じ検討を行う。取り上げた要因とパラメータ値の一覧を表-2に示す。指針式(1)と比較することを考慮して、各種パラメータの値は、現実的な範囲に設定した。

図-17 シートの破壊ひずみと提案モデルによるシート補強RC柱のじん性率の計算値との関係

図-18 シートの破壊ひずみと指針式(1)によるシート補強RC柱のじん性率の計算値との関係

（1）シートの破壊ひずみ

図-17に、シートの破壊ひずみと提案モデルによるシート補強RC柱のじん性率の計算値との関係を示す。図-18に、指針式(1)による同様の計算結果を示す。本検討結果は表-2に示したように、シートの引張強度を一定にし、弾性係数を変化させることにより破壊ひずみを変化させる計算結果はシートの補強比ごとにプロットした。

図-17に示した提案モデルによる計算結果では、シートの破壊ひずみが増加すると部材のじん性率が増加する傾向が現れている。設定した補強比の範囲において、この傾向はシートの補強比によってならない結果となった。提案モデルでは、シートの破壊を終局破壊モードとしているため、接着したシートの破壊ひずみの大きさは部材のじん性率に大きな影響を及ぼすのである。これに対して、図-18に示した指針式(1)による計算結果では、補強比によってシートの破壊ひずみが部材のじん性率に及ぼす影響が異なる
結果となった。
一般には、補強比によってじん性率は変わると考えられる。提案モデルは、補強比が小さい場合のじん性率を過大に評価している可能性がある。
(2) 界面剥離破壊エネルギー

連続繊維シートとコンクリート界面の力学特性を代表する指標値の一つである界面破壊エネルギーは、界面のせん断応力－せん断変位曲線の面積として表される。図－19。界面破壊エネルギーはシート補強部材の曲げ、及びせん断耐力に及ぼす影響については研究例があるが、じん性については検討例が皆無である。そこで、本論文では部材のじん性に対し及ぼす界面破壊エネルギーの影響についての検討を試みた。

図－20で、界面破壊エネルギーと提案モデルによる部材のじん性率の計算値との関係が示されている。ここでの計算では、表－2に示したように、剥離せん断変位を一定にして、剥離せん断応力を変化させることにより界面破壊エネルギーを変化させている。

図－20より、シート補強比が0.1％及び0.25％と比較的大きい場合には、界面破壊エネルギーを変化させてても、じん性率はほとんど変化しなかったが、シート補強比が0.05％及び小さい場合には、界面破壊エネルギーが大きいケースで、じん性が著しく小さくなる結果となった。これは、剥離以前にシートが破断する未剥離破断モードによる破壊が判定されるためである。

未剥離破断モードと判定されるケースを除くと、提案モデルによる計算結果は、界面破壊エネルギーはシート補強部材のじん性にほとんど影響しない結果となっている。既往の実験を概観した報告では、じん性補強の場合には、補強コンクリートの増加出しおよび主鉄筋の座屈を抑制することが重要であると指摘されている。このことからも、終局時にシートが剥離しているかどうかについては、終局変形にあまり影響を及ぼさないと考えてよいであろう。以上より、本計算結果は妥当であると考えている。
なお、指針(5)には、元来シートの付着特性を因子として含んでいないので、当然ながら界面剥離エ
エネルギーを変化させてもしん性率の算定結果は変わらない（図-2.1）。

③シート接着の有無
シートとコンクリートの界面の付着特性が部材のじん性に影響しないという前節の検討結果より類推すると、最初からシートをコンクリート表面に接着せずに柱の周囲でシートを閉合させだけではじん性向上効果が得られる可能性がある。そこで提案モデルを用いて、シートの接着が有る場合と無い場合について柱のじん性率を計算し、それぞれについて比較を試みた。計算に使用したパラメータは表-2に示した数値を使用した。

予想通り、じん性率の計算結果（図-2.2）は、接着の有無にようらずほぼ同じとなった。

6. まとめ

本論文では、著者らの開発した連続繊維シート補強RC柱のじん性予測モデルの概要、算定精度の検証、改良、各種要因の感度解析について述べた。本モデルは、せん断ひび割れが形成され、最終的にせん断ひび割れを跨ぐシートが破断することで終局を迎えるRC柱のじん性を予測する力学モデルである。本研究で得られた知見をまとめる以下のようなになる。
①提案モデルは、シート補強柱の正負交番載荷試験で見られた大略の傾向、すなわち連続繊維シートの補強効果が大きくなるに従って、じん性率も大きくなる傾向を表現しうると示した。
②提案モデルで予測されたじん性率および連続繊維シートの剥離現象とせん断び割れの発生状況を実験結果と比較した結果、三者の関係は概ね整合することができなかった。
③提案モデルでは、曲げによる主鉄筋の降伏により部材の最大耐力が決定される場合の最大荷重を正しく予測できない。これは提案モデルがせん断耐力予測理論を基本としているためである。
④主鉄筋の伸しきを考慮し、且つコンクリートの負担するせん断力を部材の変形状態の関数とすることによって、提案モデルによるじん性率の算定精度が向上することを示した。
⑤提案評価モデルを用いてシート補強RC柱のじん性に及ぼす各種要因の感度解析を行った。シートの破断ひずみ、シーントの補強量を変化させた場合、提案モデルによるじん性率の計算値は、補強量よりも、破断ひずみに大きく依存する結果が得られた。
⑥上記と同様に、シートとコンクリートとの界面破壊エネルギー、シート接着の有無、シートの補強量を変化させて感度解析を行った。その結果、界面破壊エネルギーとシート接着の有無は、補強後の部材のじん性にはほとんど影響しないことを示した。

謝辞：本研究の一部は平成13年度吉田研究奨励賞（土木学会）の補助を受けたものである。ここに記して感謝の意を表する。

参考文献
1) 土木学会：連続繊維シートを用いたコンクリート構造物の補強補強指針、コンクリートライフプラリー101、2000。
2) 日本建築学会：連続繊維補強コンクリート系構造設計施工指針案、2002。
3) （財）鉄道総合技術研究所：炭素繊維シートによる鉄道高架橋の耐震補強工法設計・施工指針（付属資料7）、1996。
4) （財）鉄道総合技術研究所：アラミド繊維シートによる鉄道高架橋の耐震補強工法・施工指針（付属資料7）、1996。
5) アラミド補強研究会：アラミド繊維シートによる鉄筋コンクリートの耐震補強工法設計・施工要領（案）（付属資料6）、1997。
6) 増川淳二、秋山輝、齋藤宗：炭素繊維シートとアラミド繊維シートによる既存RC橋脚の耐震補強、新素材のコンクリート構造物への利用シンポジウム論文集、pp.193-198、1996。
7) 長田光司、大野晋、山口隆裕、池田肖治：炭素繊維シート補強で補強した鉄筋コンクリート橋脚の耐震性能、コンクリート工学会論文集、第8巻第1号、pp.189-203、1997。
8) 吉田文雄：壁面補強のRC耐震補強およびFRPによるRC耐震補強の実験と解析、コンクリート系構造物の耐震技術に関するシンポジウム論文報告集、1994。
9) 大野了、大内一：炭素繊維によるRC橋脚の耐震補強に関する実験的検討、土木学会第51回年次学術講演会論文集要、第5部、pp.950-951、1996。
10) 上原卓久、下村匠、丸山久一：連続繊維シート補強コンクリート部材のせん断耐力の評価法に関する研究、土木学会論文集、No.648／Y-47、pp.217-226、2000。
11) 上原卓久、下村匠、丸山久一、西田浩之：連続繊
MECHANICAL MODEL FOR PREDICTION OF DUCTILITY OF REINFORCED CONCRETE COLUMN RETROFITTED WITH CONTINUOUS FIBER SHEET

Akihisa KAMIHARAKO, Takumi SHIMOMURA, Kyuichi MARUYAMA and Takayuki SHINBO

A prediction method for ductility of reinforced concrete columns retrofitted with externally-bonded continuous fiber sheet is related in this paper. The method is based on the mechanical model that represents experimentally observed deformation and failure behavior of RC column with CF sheet observed: generation and propagation of diagonal shear crack in the member and delaminating of the CF sheet from concrete over the shear crack. It was verified that ductility of the RC columns with CF sheet is well predicted by the proposed method in terms of their deformation and failure mechanisms. It was also clarified from sensitivity analysis using the prediction model that the ductility of the RC columns with CF sheet does not much depend on bonding characteristics of CF sheet from concrete but on the ultimate tensile strain of CF sheet.