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Realistic simulation of the mechanical behavior of concrete and reinforced concrete structures
is performed by using a lattice type numerical model. Five different types of lattice members
with simple constitutive models are introduced for mortar, coarse aggregate, steel, aggregate-

mortar interface and steel-concrete interface.

The meso-scopic morphology of concrete, which

can be realized by the image-based geometry modeling technique, is taken into account. By the
incorporation of the accurate meso-scopic morphology into the lattice type numerical modeling,
the cracking behavior induced by the meso-scopic heterogeneities has been successfully captured.
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1. INTRODUCTION

Concrete, which consists of various materials,
displays complex quasi-brittle failure character-
istics associated with the local (or meso-scale)
heterogeneities and the localization behavior with
micro-scale cracking. In particular, the mecha-
nism of its compressive and shear fracture ob-
served prior to failure is still far from being fully
understood. Inevitably, it is quite difficult to ana-
lyze the overall behavior of concrete structures in
consideration of the meso-scopic heterogeneities,
which are often represented by mortar and aggre-
gates.

In this context, it is widely recognized, es-
pecially in computational studies, that the hi-
erarchy of material characterization for concrete
structures plays a vital role in the successful mod-
eling and analysis of their overall behavior. For
example, Zaitsev and Wittmann') posed four hi-
erarchical levels of numerical concrete models: in-
cluding, macro-, meso-, micro- and nano-levels,
as shown in Fig. 1. While the micro- and nano-
scopic levels are related to the physical properties
of mortar and coarse aggregates as well as their
interface, it is usually understood that the me-
chanical behavior of overall concrete structures

lattice model, RC-structures, heterogeneous material, strong discontinuity

can be characterized on the macro- and meso-
scopic levels. In general, the macro-scopic mod-
eling is employed for the structural analysis of
an overall concrete structure, whereas the meso-
scopic modeling is used to obtain a constitutive
relation for the macro-scale analysis.

In macro-scopic models, it is conventional to
regard concrete as a homogeneous material and
to formulate the governing equations within the
framework of continuum mechanics. The so-
called smeared crack model serves as a typical ex-
ample of such models; see, e.g., Bhatt and Abdel-
Kader? and An and Maekawa®). The aim of
macro-level analysis is mainly to predict the over-
all failure condition, such as ultimate loads and
load—displacement curves, at low computational
cost. It is, however, pointed out that the model-
ing of discontinuity in displacement, as well as in
stress and strain, is not straightforward; see the
crack band model by Bazant and Oh?) and many
others.

On the other hand, meso-scopic models deal
mainly with local structures composed of coarse
aggregates and mortar matrix. In these mod-
els, the meso-scopic heterogeneities can be eas-
ily incorporated into the complex macro-scopic
mechanical responses, such as the size effect of
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Fig.1 Structural scales and simulation models for concretes and reinforced concrete structures

un-notched specimens under tension. A repre-
sentative example of those models is a class of
lattice type numerical models, in which the frac-
ture mechanism associated with the meso-scopic
heterogeneities is directly implemented by means
of simple structural members, such as trusses or
beams; see Bazant et al.%) and Schlangen and van
Mier®). Several continuum-based and discrete
models have been also introduced to character-
ize the meso-scopic mechanical behavior; see, for
example, Nagai et al.”) for the former and Kwan
et al.®) for the latter.

Although the macro- and meso-scopic mod-
els are capable of simulating separate aspects of
the mechanical behavior of concrete structures to
some extent, each model stays within its own us-
age, and there have been few attempts to combine
these models. In particular, the material charac-
terization in a meso-scale has not been reflected
on the simulation of the overall macro-scopic me-
chanical behavior of concrete structures.

The goal of this study is to simulate the
macro-scopic mechanical behavior of concrete-
and reinforced concrete structures, which reflects
the meso-scopic heterogeneities; see Fig.1. We
employ the lattice type model to realize the dis-
crete deformation in meso-scale and, in turn, to
capture the cracking behavior and the bond-slip
phenomenon between concrete and steel. For this
purpose, we annex the following two features to

the conventional lattice type modeling:

1. The actual meso-scopic heterogeneities are
reflected with the use of the image data of
the local morphology of concrete.

2. Five different types of lattice members with
simple constitutive models are employed for
mortar, aggregate, steel, aggregate-mortar
interface and steel-concrete interface.

The proposed numerical concrete model en-
ables us to simulate crack propagation and
debonding of aggregate-mortar or concrete-steel
interface without introducing any macro-scopic
phenomenological constitutive model determined
by experiments. To illustrate the performance
of the model, we employ two representative nu-
merical examples including (1) the simulation of
biaxial test of concrete specimens and (2) the
demonstration of the effect of shear reinforce-
ments on the crack formation in reinforced con-
crete beams.

2. LATTICE TYPE NUMERICAL
MODELING

In order to simulate the mechanical behav-
ior of concrete and reinforced concrete structures,
the existing lattice type models are modified in
this section. After summarizing the features of
the existing lattice type models, we explain in
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detail two major modifications introduced in our
modeling.

(1) Existing lattice type models

The lattice type model is first developed from
the distinct element method (DEM), which was
proposed by Cundall and Strack?), to simulate
the meso-scopic behavior of granular solids. A
macro-scopic continuum is discretized as a net-
work of structural members, such as truss or
beam elements. This modeling strategy has been
extended to simulate the crack growth of con-
crete with quasi-brittle material properties; see,
e.g., Zubelewicz!® and Zubelewicz and Mréz'Y).
These lattice type models fail to incorporate the
meso-scale heterogeneities of concrete, and did
not employ a series of constitutive models for lat-
tice members.

In meso-scopic numerical analysis, overall
structural responses depend heavily on the geom-
etry model that defines the shapes of aggregates
and their spatial distributions. In the lattice type
modeling, the meso-scopic heterogeneities of con-
crete are taken into account by randomly scat-
tering circular aggregates. Then, each of the cir-
cular aggregate is mapped on a triangular reg-
ular lattice network in one case [Schlangen and
van Mier®)]. In another case, which is called the
particle model, these aggregates are connected to
adjacent ones by pin-jointed trusses at the cen-
ters [Bazant et al.%)]. It may be, however, open

to criticism that the use of circular aggregates is
too artificial and ideal, while the actual irregular
shape could possibly be a source of size effects and
complex overall behavior. Therefore, more real-
istic representation for the meso-scopic morphol-
ogy is indispensable in the numerical simulations
of concrete structures by lattice type models.

In addition, especially in the particle model,
the one-dimensional constitutive relationship of
lattice members is usually accompanied with the
reduction of stiffness based on softening plastic-
ity, in view of the macro-scopic response of con-
crete material. However, as will be made clear in
the numerical simulation, it is sufficient to con-
sider the failure due to tensile loading in meso-
scale modeling with lattice network.

(2) Digital image-based modeling

In this study, concrete is assumed to consist
of coarse aggregates, mortar matrix and inter-
face regions. That is, concrete is modelled as
a two-phase material with the meso-level hetero-
geneities, whereas we neglect the effects of other
constituents in the micro-level, such as fine ag-
gregates, cement paste and air space. By virtue
of this assumption, at least the geometrical char-
acteristics of aggregates as well as their spatial
distributions are reflected on our modeling.

In order to generate the realistic geometry
model for the two-phase material, we employ the
digital image-based (DIB) modeling, which was
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developed in the studies of computational ho-
mogenization; see Hollister and Kikuchi!?) and
Terada et al.!3). The geometry model is con-
structed in such a way that one pixel in the 2-D
case (or one voxel in the 3-D case) is regarded as
a single finite element (FE). The same modeling
scheme can be directly applied to the modeling
of the meso-scopic morphology of concrete, al-
though the lattice approximation for continuous
phases necessitates slight modification. In this
particular situation for lattice modeling, a pixel
is regarded as a hinge labeled by mortar or ag-
gregate and each truss member is characterized
as shown in Fig. 2. As a result, the modeling
is similar to the aforementioned modeling with
triangular regular lattice network [Schlangen and
Garboczi!'¥]. The whole procedure of this mod-
eling can be divided into two major stages: (1)
sampling and (2) thresholding and modeling, as
schematically shown in Fig. 2; see Terada et al.!3)
for details.

(3) Meso-scopic constitutive model for
each material

An overall analysis model consists of five
types of materials: mortar, coarse aggre-
gate, steel, aggregate-mortar interface and steel-
concrete interface. Each material is represented
by a truss finite element with a simple consti-
tutive model. In the following subsections, our
modeling strategy for the meso-scopic material
characteristics for each material is presented in
order. Note, however, that the mechanical be-
havior characterized by this modeling depends on
the orientation of the unit structure defined in
Fig. 2. Therefore, the resulting averaged mate-
rial properties are regarded as apparent ones; e.g.,
averaged Poisson’s ratio of this unit structure is
evaluated as 0.22 in this particular setting.
a) Mortar, aggregate and aggregate-

mortar interface

In the meso-scopic level, concrete will exhibit
elastic-brittle behavior and re-distribute internal
force at the onset of brittle failure. Such brittle
behavior is caused by the propagation of micro-
cracks and, in turn, new mocrocracks are gen-
erated by re-distributed internal forces. Such
behavior represents nothing but a geometrical
change of structure, but can be viewed as strain
softening behavior from the macro-scopic view-
point. In other words, the macroscopic strain
softening behavior is a consequence of local in-
stability, triggered by the progress of the mi-
crocrack. This type of macroscopic material re-
sponse is sometimes called geometrical softening;
see Drescher and Vardoulakis!®. Special atten-
tion is paid to such implication of macroscopic
softening behavior in our lattice model for con-

crete.

In particular, the meso-scopic brittle response
is assumed to be caused only by the tensile
failure of mortar members. Thus, the stress-
strain relationships for the members of mor-
tar and aggregate-mortar interface are idealized
as elastic-brittle with breaking threshold f* as
shown in Fig. 3, while aggregate members are al-
ways assumed to have a linearly elastic property
and not to fail. We also assume that the ten-
sile strength of aggregate-mortar interface is only
thee one fifth of that of mortar. In such material
modeling for concrete, each meso-scopic lattice
member never undergo compressive and shear
failure. Instead, microcracks, which are repre-
sented by the removal of mortar or aggregate-
mortar interface members, are activated only by
tensile force to invite shear or splitting cracks
even for macroscopically compressive loading.

b) Reinforcing steel and steel-concrete
interface

A reinforcing steel bar is discretized into a
series of steel members, which is the same net-
work of truss elements as concrete members,
and whose material nonlinearity is also ideal-
ized by a 1-D constitutive model. The classical
one-dimensional rate-independent plasticity with
isotropic bi-linear hardening, which is illustrated
in Fig. 4, is employed for the constitutive model
for steel members. Note again that the plastic de-
formation in our modeling does not exhibit soft-
ening behavior.

The influence of bonding characteristics be-
tween steel and concrete should not be neglected
to express the failure of reinforced concrete struc-
tures. Several macro-scopic bond-slip relation-
ships are obtained by pull-out tests; see, for ex-
ample, Salem and Maekawal®). Yet, actual bond
effects seem to be caused by the contact and the
non-reversible behavior together with friction be-
tween steel and surrounding concrete. In this
study, we try to capture such an effect by intro-
ducing the members of steel-concrete interface lo-
cated between mortar and steel, as illustrated in
Fig. 5. For simplicity, the interface region is also
approximated by truss members whose mechan-
ical behavior is characterized by the same 1-D
rate-independent plasticity model as that of steel
members but with different parameters, oy, E
and K.
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3. SIMULATION OF CONCRETE
SPECIMENS UNDER BIAXIAL
LOADING

In this section, we carry out the numerical
simulation on a plane concrete specimen under
biaxial loading (stress). The purpose of this sim-
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Fig.6 Analysis model for biaxial loading

ulation is to examine the performance of our mod-
ified lattice model with the DIB geometry model-
ing and, in particular, the capability to represent
the fracture envelope under biaxial loading, which
is one of the essential mechanical characteristics
of concrete. A strategy of nonlinear analysis for
lattice model is worked out in Appendix A.

(1) Analysis model

We have prepared the analysis model and
boundary conditions shown in Fig. 6. It is known
that different boundary conditions of specimen
lead to quite different failure modes and different
apparent ultimate loads under compressive fail-
ure; see for example, Schlangen and Garboczil®.
To avoid the effects of the friction at loading
plane, the loading surfaces in the transverse di-
rections are assumed to be stress free. Also, de-
formations in the perpendicular direction to the
loading surfaces are assumed to be uniform.

The model is generated directly from a plane
digital image of a cross-section (15 cm x 15 cm)
of cylinderical specimen and has 150 x 150 finite
elements (pixels). The resolution of the digital
image is adjusted to 10 pixels/cm.

The material properties are chosen as follows:
Young’s modulus of mortar and interface mem-
bers E,, = 20GPa, that of coarse aggregate
members E, = 60GPa, the breaking threshold
for mortar is given by the tensile strain e* =
1.0 x 1074, and that for aggregate-mortar inter-
face el = 2.0 x 1073(= &*/5.0). Here, Young’s
modulus of each material are determined as the
experimentally averaged values.

(2) Numerical result and discussion

Fig. 7 shows the apparent axial stress ver-
sus strain curves obtained by the simulations for
uniaxial loading, and Figs.8, 9 and 10 show
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the curves for biaxial loading. Especially, in the
case of tension—tension domain and compression—
tension domain, numerical result are compared
with Kupfer’s experimental result!”). Here, the
apparent means macroscopically measured as in
actual experiments, and the stress and strain are
respectively evaluated from the displacement and
external force in the loading direction at the top
surface. In these figures, the numerial and ex-
perimental axial stresses are normalized by the
uniaxial compressive strength f! and o, respec-

tivelly. The features of experimental stress-strain
relationship are qualitatively reproduced by this
numrical simulations.

In Fig. 11, the strength, the maximum load-
ing parameter, for each loading condition is plot-
ted along with the fracture envelope under biax-
ial stress in the principal stress space. As for
the fracture envelope, which is to be obtained
through experiments, we have adopted Niwa
model'®) derived for the compression-tension do-
main, Aoyagi-Yamada model'® for the tension—
tension domain and Kupher model??) for the
compression—compression domain. As can be
seen from the figure, the strength characteristics
evaluated in our simulations (shown by O) accord
the well-known experimental trend with sufficient
accuracy. The comparison in the compression—
compression domain is not carrried out because
our numerical simulation is limited to 2-D situa-
tion and, hence, cannot express the crack propa-
gation only in the plane of z1-z5. Typical fracture
modes after the post-peak region, which corre-
spond to the points [a]~|[c] in Fig. 11, are shown
in Fig.12. As can be seen, the differences of
fracture modes in the loading conditions are well
captured.

It is emphasized here that the meso-scopic ge-
ometrical configuration in actual concrete plays
an important role to capture such mechanical be-
havior. Note again that our lattice model does
not involve compressive or shear failure criterions,
but employs simple material models presented in
Section 2.2.
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SIMULATION OF REINFORCED
CONCRETE BEAMS

4.

The proposed analysis method is applied to
the numerical analyses on a series of simply-
supported reinforced concrete beams under a
transverse point force at the midspan (three-point
bending beams).

(1) Conditions of numerical simulations

Specimens with two different values of height-
span ratio a/d (with the same effective depth d),
and with and wihtout shear reinforcements are
considered. The concrete is assumed to be of the
same material composition as that employed in
the previous section; see Table 1 for physical
properties employed.

The analysis models A, Ag,B and Bg in
Fig. 13 have been virtually generated by patch-
ing the digital images of the cross section of a

500
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Fig. 15 Experimental load parameter versus vertical
displacement relationships tested by Yamaya
et al. 22)
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Fig. 16 Experimental cracking patterns at failure
tested by Yamaya et al. 22)

concrete specimen. The dimensions of Beams
A and B without shear reinforcements are cho-
sen to be 30cmx 108cm and 30cmx 198cm, and
a/d = 2.0and 3.0, respectively. We further con-
sider Beams Ag and Bg with the same dimensions
but with the shear reinforcements. Here, the sub-
script ( * )s indicates the presense of shear rein-
forcements. The resolution of the digital image
in this section is reduced from 10 pixel/cm to
2.5 pixel/cm in favor of the computational costs.
Therefore, the mesh sizes of Beams A and B are
identified with 75x 270 and 75x 570 elements, re-
spectively.

(2) Numerical results

Fig. 14 shows the calculated curves for the
loading parameter versus the vertical displace-
ment at the point of loading P indicated in
Fig.13. The load parameter is normalized by
the strength f, for Beam A. Figs.15 and 16
show an exprimental load—displecement relation-
ship and the cracking pattern at failure for com-
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Table1 Physical properties
[ [ Mortar | Aggregate [ interface | Bond [ Steel |
E: young’s modulus (GPa) 20 60 20 20 60
A: cross section area 1.0 1.0 1.0 1.0 1.0
€;: failure criterion 0.0001 - 0.00002 0.0001

es: yield strain -

- E {0.0001) | 0.002

K: plastic hardening parameter -

- 20 20

parison. Here, the size and the height-span ra-
tio a/d of experimental spesimens are different
from those used in the numerical simulation. The
macro-scopic responses of the reinforced beams
are characterized by the rugged lines, which are
actually induced by the meso-scopic shear and

splitting fracture of mortar members. Note that,
owing to our modification of the method of in-
elastic force, see Appendix A, that was originally
developed by Jirasek and Bazant?), each equi-
librated state is evaluated on a discrete loading
step. As can be seen in Fig. 14, Beams A and A,
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exhibit much stiffer responses than Beam B and
B, respectively. This is the well-known depen-
dency of the apparent strength of reinforced con-
crete beams on the height-span ratio; as shown
in Fig.15. Also, Beams A and B; reveal much
stiffer response after the apparent yielding points
and attain much higher peak loads than Beam A
and B do, respectively. Actually, this is a typi-
cal effect of shear reinforcements, which is often
reported in the literature; see, e.g., Leonhardt?®).

Numerical cracking patterns at failure with
and without shear reinforcements are compared
in Fig.17. Crack Opening Displacement{(COD)
in this figure, which is approximately calculated
by the distance between adjacent nodes, shows
asymmetric fracture modes, especially for Beams
A and B without shear reinforcements. Compar-
ison of Fig. 16 and Fig. 17 shows the calculated
cracking patterns look quite similar to the exper-
imental ones. »

Schlangen?®) reported that numerical results
of lattice type models generally depend strongly
on the failure criterion employed and the element
and/or mesh type selected. In our proposed lat-
tice model, on the contrary, the simple failure cri-
terion, simple structural elements and the regu-
lar mesh, but with the accurate geometry mod-
eling technique have been employed. Instead of
the dependency on the fracture criterion inherent
to lattice type models, the cracking patterns of
macrocracks, which govern the stability of overall
structure, are successfully simulated. That is, the
mechanical behavior of reinforced concrete struc-
tures strongly depends on the meso-scopic hetero-
geneities and/or the interaction between steel and
concrete, as well as the brittle nature of the meso-
scale failure of mortar and aggregate-mortar in-
terface. As a result of such capability to accu-
rately simulate the actual phenomena, the com-
plex (shear) failure modes of reinforced concrete
structures have been simulated successfully.

5. CONCLUSIONS

We have presented a lattice type numerical
model for the simulation of the quasi-static defor-
mation of concrete and reinforced concrete struc-
tures. On the hypothesis that the macro-scopic
softening behavior is the consequence of a series
of local instabilities, we have incorporated the ef-
fect of meso-scale heterogeneities into the com-
plex macro-scale mechanical behavior. In partic-
ular, our numerical concrete model is composed of
as many as five regions (members); mortar, coarse
aggregate, aggregate-mortar interface, steel and
steel-concrete interface. The actual meso-scale
heterogeneities is accommodated by means of the
digital image-based modeling technique.

Numerical results for concrete specimens and
reinforced concrete beams show the possibility
that the fracture mechanisms of concrete mate-
rial, which are conventionally interpreted as ma-
terial instability from the macro-scopic viewpoits,
can be interpreted as their meso-scale structural
instability (cracking behavir). This suffices to en-
sure the validity of the aforementioned hypothe-
sis. Thus, the following two significant aspects
of our numerical concrete modeling strategy are
again emphasized:

1. representation of the actual meso-scale het-
erogeneities, and
2. characterization of the meso-scale localiza-
tion behavior without complex constitutive
modeling.
In conclusion, this type of numerical models is
effective to some extent, especially for the quali-
tative studies of the relationship between the lo-
calized deformations due to heterogeneities and
the stability of concrete structures. The calibra-
tion of model parameters in view of a series of
experimental data will be a topic in the future.
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Appendix A NONLINEAR ANALY-

SIS METHOD FOR
LATTICE TYPE
MODEL

In this appendix, we present a nonlinear anal-
ysis method for lattice type numerical models
with geometrical nonlinear effect. By this tech-
nique, highly complex equilibrium paths caused
by the material and geomerical nonlinearity can
be traced stably. The analysis procedure is simi-
lar to that of the method of inelastic force (MIF),
which was originally proposed by Jirasek and
Bazant?!) for the dynamic motion of cracking.
In the present study, however, we try to attain
the quasi-static equilibrium states of concrete
structures by using the Newton-Raphson iterative
scheme with the arc-length control. In particular,
to characterize the brittle mechanical response of
mortar members, our numerical analysis method
is established by the concept of operation split-
ting as shown in Fig.18. That is, our analysis
scheme has two successive steps as follows.

1. In the first step, we obtain the fictitious equi-
librium state, in which the mortar members
deform elastically and do not fail. Also, the
steel and bond members are assumed to un-
dergo only elastic-plastic deformation. The
analysis, accordingly, is completely conven-
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tional and one can refer to the standard text-
book for computations; see, e.g., Simo and
Hughes?®),

2. The second step is implemented to perform
the cracking analysis with inelastic force
to attain the actual equilibrium state after
cracking. When some mortar members ex-
ceed a breaking threshold, the subsequent
equilibrium states are sequentially sought
with released forces until the new cracking
does not occur. On the other hand, the fic-
titious state becomes a true one if there are
no mortar members that exhibit cracking.

Though the first phase is trivial, the further
explanation for actual computations is given in
the following. The internal force associated with
the failure of mortar members is regarded as a
releasing force, which would triggers new failure.
The releasing force f . can be written as

M
frel = n r;n (Al)
m=1

where 7], is the elementary internal force vector
for a single member, () indicates the special op-

erator to assemble only from newly broken mem-
bers. We solve the following linearized equilib-
rium equation to obtain the incremental displace-
ment du:

Kdu = frel (A2)

where K is the global tangent stiffness matrix
assembled from element stiffness matrix of not-
broken members. Here, the loading pattern vec-
tor of the conventional Newton-Raphson scheme

has

been replaced by the releasing force in this

second step. Regarding the solution du as a pre-
dictor, we seek the next fictitious state by the
arc-length method. This process is repeated un-
til the actual equilibrium state is obtained. The
flow chart of the analysis is shown in Fig. 19.
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