集団意思決定における倫理的競合解消を目的としたグループ効用モデル

田村 坦之

工博 大阪大学教授 大学院基礎工学研究科（〒560-8531 堺市中区長田町 1-3）
E-mail: umura@sys.es.osaka-u.ac.jp

本稿では、複数の意思決定主体（DM）の間で利害の対立がって社会的ジレンマに遭遇し、競合解消のための合意形成が必要な場合を対象にして、集団意思決定を数理的にモデル化する方法を示す。そこでは、各 DM が社会的倫理性からお互いの立場をよく考え、」「どのようにすれば集団全体（社会）がよりよい状態に移行するか？」といった倫理感と社会的な観をもった柔軟性に富んだ選好構造をとらえてモデル化し、凸依存性に基づいたグループ効用モデルを示す。これによって、集団を構成する複数の DM に関して、自己主張が強く利己的な態度を示す DM、協調性が強くて柔軟な態度を示す DM など、各 DM の様々な行動パターンをモデル化することができる。

Key Words: utility theory, group utility model, ethical conflict resolution, convex dependence

1. まえがき

集団意思決定を追及される問題設定には、大きく分けて二通りのケースが考えられる。一つは、集団を形成している複数の意思決定主体（Decision Maker以下、DM と略す）の大きな目的が一つの方向に向かって競合しない場合、もう一つのケースは、複数の DM の間で利害の対立があって、競合解消のための合意形成が必要な場合である。前者の場合として、一企業における政策決定が考えられる。企業としての大きな目的はその企業の業績を上げて繁栄に向かうことであるが、その領域に対してより多くの投資をするかを考えると同時に、領域内の DM の間で集団意思決定が求められる。これに対して、本報で取り上げるのは後者のケースで、例えば、国際空港、ごみ処理場、道路などの公共施設を建設するときに、複数の DM として「建設主体」と「地域住民」が考えられるが、両者の間には利害の対立があって社会的ジレンマに遭遇し、競合解消のための合意形成が必要である。

これまでの集団意思決定の数理モデル 1)、2) では、これを構成している複数の DM がお互いの独立に自己の利益および需要のみに基づいて選好構造を決定し、それらを何かのルールによって集約して集団としての決定を行おうという状況をモデル化してき

1) 自己主張が強く利己的な態度を示す DM
2) 協調性が強くて柔軟な態度を示す DM
など、各 DM の様々な行動パターンをモデル化することができる。この集団解を基礎解として、ま
た、複数のDM間の凸依存性の次數に応じて、グループ不効用関数が構成される。0次凸依存性がいわゆる効用独立性にに対応するが、このグループ効用モデルにおいて相互効用独立性は、各DMが相手の立場を考慮せず、自己の利益のみを主張する場合しかモデル化できない。これに対して1次あるいはもっと高次の凸依存性は、社会的倫理性や相手の立場を考慮した複数のDMによる集団意思決定をモデル化することができる。

また、住民参加型の集団意思決定の初期の段階において利益を念頭に置いたDMが、情報の蓄積に応じて柔軟な態度に変化してゆく合意形成過程をモデル化する上でも、「凸依存性に基づいたグループ効用モデル」が役に立つものと期待される。

2. 効用関数

自然科学の領域では「価値」が用に議論されることはないが、人間を主体にした方策を論じるシステム工学やオペレーションズ・リサーチの分野では「価値」の問題を避けて通ることはできない。

効用関数とは、定義づけは人間の価値観を定量的に表現する数学モデルである。価値に関する科学的アプローチは経済学の分野で古くから扱われてきた。人びとは財を消費したりサービスを受けることによって一定の心理的満足感を得るが、この満足の度合いを「効用」という。この概念は消費者行動理論において基本的役割を担っている。

いま、財Aをx1量、財Bをx2量だけ消費するときに得られる効用（または価値）をu(x1,x2)で表し、これを効用関数（または価値関数）という。ここで予算bが与えられたとして、財A、Bの単位量あたりの価格をそれぞれp1, p2とすれば、消費者は

\[
\begin{align*}
\text{maximize} & \quad u(x_1, x_2) \\
\text{subject to} & \quad p_1x_1 + p_2x_2 \leq b
\end{align*}
\]

を満たす解、すなわち予算制約式(2)のもとで、式(1)で表される満足感が最大である財Aと財Bの組を購入するであろう。すなわち、「消費者は自己の効用を最大化するように行動する」と考え効用関数を行動説明することが試みられてきた。

近来の経済学の初期においては、主観価値説として大きく与えを有する基準尺度（cardinal scale）に従う基準効用関数（cardinal utility function）の存在を仮定することによってさまざまな経済理論を展開した。それは限界効用（marginal utility）を中心にした議論で限界革命とも呼ばれている。しかし、その後、効用の可測性はあまりにも強い要求であるとして批判され、人々の主観的価値を表現する効用関数とし、基準効用関数を排除し、大きさの大小関係だけを表す順序尺度（ordinal scale）に従う順序効用関数（または順序効用関数（ordinal utility function）の）のみの存在を仮定することによって経済分析を行う方向に移ってゆく。これは、経験的に与えられた無差別曲線（indifference curve）を使って消費者行動を説明しようとするParetoの提案によるものである。

無差別曲線から導かれる順序効用に対しては限界効用（効用の微分値）の概念は使えない。そのかわりに無差別曲線の傾きを表す限界代替率（marginal rate of substitution）が使われる。

消費者行動の均衡条件を導出するうえでは順序効用関数によってその目的を達成することができるが、多目的意思決定（Multiple Criteria Decision Making）のための選好条件を導出するには、基準効用関数の存在を仮定することが必要になる。さらに、リスクを伴う意思決定問題では、評価の対象となる結果がある確率分布のもとで発生するので、選好順序を求めると意味の期待値を評価する必要があり、そのために基準効用関数が必要になる。リスク下の意思決定問題に対しては期待値最大化の仮定が意味をもつように公理系をはじめとして作ったのはvon NeumannとMorgensternである。

結果の集合X上の基準効用関数：u : X → Rで、X上の確率についての期待値

\[
E(u, p) = \sum_{x \in X} p(x)u(x)
\]

を期待効用（expected utility）という。X上の確率の集合をP = {p₁, p₂, …}とするとき、期待効用の大きさによってX上の選好関係（preference relation）を表現することを考える。

【定理】：基準効用関数の存在と一意性は

\[
P \times X 上の確率の全集合を P = \left\{ p₁, p₂, \ldots \right\} とするとき、期待効用の大きさによって P 上の選好関係（preference relation）を表現することを考える。
\]

\[
p \geq q \quad \Leftrightarrow \quad E(u, p) \geq E(u, q) \quad \forall p, q \in P
\]

を満たす X 上の基準効用関数 u : X → R が存在するための必要十分条件は次のよう与えられる。

NM1 (P, ≥) は弱順序である。

NM2 p > q \Rightarrow \alpha p + (1 - \alpha)q > \alpha q + (1 - \alpha)p, \forall \alpha \in (0, 1)

NM3 p > q \Rightarrow \alpha p + (1 - \alpha)q > \beta p + (1 - \beta)q, \forall \alpha, \beta \in (0, 1)

さらに、このような u は正の線形変換（u' = hu + ku を満たす定数 h と k > 0 が存在）の範囲内で意であり、別名 von Neumann-Morgenstern 効用関数という。

期待効用最大化仮説に基づく期待効用モデルは、「決定がいかにあるべきか」を議論する規範的（normative）モデルとしては有用なモデルであるが。
3. 多属性効用関数

結果 \(x \in X \) が \(n \) 個の属性 \(X_1, X_2, \ldots, X_n \) によって特長づけられているとき、結果 \(x \)

\[
x = (x_1, x_2, \ldots, x_n), \quad x_i \in X_i, \quad i = 1, 2, \ldots, n
\]

で表される。起こりうるすべての結果の集合 \(X \) は、直積集合 \(X = X_1 \times X_2 \times \cdots \times X_n \) で表され、これを \(n \) 属性空間という。\(n \) 属性効用関数は、

\[
X = X_1 \times X_2 \times \cdots \times X_n
\]

で表される。ここで、\(u : X_1 \times X_2 \times \cdots \times X_n \rightarrow [0,1] \) とする定義とする。このような \(n \) 属性効用関数を直接求めることは、複数の属性を同時に考慮して選択判断をしなければならず、実際にはほとんど不可能である。そこで、複数の属性間で相互に効用を減少させて総合する方法が考えられる。

\[
u(x) = u(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n} k_i u_i(x_i)
\]

または

\[
k u(x) + 1 = \prod_{i=1}^{n} (k_i u_i(x_i) + 1)
\]

ただし、\(u_i : X_i \rightarrow [0,1] \) すなわち \(u_i \) は属性 \(X_i \) 上の効用関数を表す。このような \(n \) 属性の効用関数を表す。この数式（5）を加法型効用関数、式（6）を乗法型効用関数という。分離表現が式（5）のような加法型するなら属性の価の重み付和で表現されるもの、\(n \) 個の属性が相互に効用を減少させて総合する方法は、\(n \) 属性の相互に効用を減少させて総合する方法である。

複数の属性間で効用独立性が満たされないときに、属性間に凸性を含む特性を仮定することによって、さらに広範囲の分離表現を得ることができる \(n \) \(1 \) \(11 \)。以下では、結合する \(2 \) 分の意思決定主体 DM1 と DM2 の間で、倫理観をもとに効用関数を推し進める状況をモデル化するために、凸性を仮定した \(2 \) 属性の効用関数を示すを開示の解釈を明らかにすることになる。

効用関数の代わりに不効用関数を用いてモデリングを行う理由は、5. にも示すように、本稿ではAttributes の関数の決定（descriptive）モデル（あるいは行動科学的モデル）は問題がある。すなわち、Allais の反例や Ellsberg の反例に見られるように期待効用モデルでは説明できない現象がいくつか存在する。これを解決に説明するモデルとして、期待効用モデルを一般化したリスク下の価値関数や不確定性下の価値関数が提案されており、ここでは事象の発生確率（または Dempster-Shafer の確率理論

でいう同じ点要素の基本確率）も評価属性の一つとして扱われる。

4. 倫理的競合解消のためのグループ不効用関数

\(D_1 \times D_2 \) は DM1 と DM2 の不効用関数が張る 2 属性効用関数空間 \(d_1(x_1) \in D_1, d_2(x_2) \in D_2 \) は各々 DM1 と DM2 の評価属性空間 \(X_1, X_2 \) 上の不効用関数 \(x_i \in X_i \) \((i = 1, 2) \) は DM1 の評価特性を表すものとすると、\(D_1 \times D_2 \) 上のグループ不効用関数は

\[
p \geq q \iff E(u(p)) \geq E(u(q))
\]

で表される。

\(d_1, d_2 \) を DM1, DM2 の不効用の最悪レベル、\(d_1^*, d_2^* \) を最良レベルとすると、ある \((d_1, d_2) \) に対して、DM1 の正規化された条件付きグループ不効用関数（Normalized Conditional Group Disutility Function, 以下 NCGDF と略す）は

\[
g_1(d_1^*, d_2) = \frac{g(d_1, d_2) - g(d_1^*, d_2)}{g(d_1^*, d_2) - g(d_1^*, d_2)}
\]

と定義される。ただし、

\[
g(d_1^*, d_2) > g(d_1^*, d_2)
\]

と仮定すると、この NCGDF は

\[
g_2(d_1, d_1^*) = 1, \quad g_2(d_1^*, d_1^*) = 0
\]

を満たす正規化された \(1 \) 属性の不効用関数を表す。従って、NCGDF の同定は、1 属性効用関数の同定と同様に、50-50 くじ \(6 \) に関する質問を繰り返し用いて容易に行うことができる。

DM2 の NCGDF も同様に、

\[
g_2(d_1^*, d_2) = \frac{g(d_1, d_2) - g(d_1^*, d_2)}{g(d_1, d_2) - g(d_1^*, d_2)}
\]

と定義される。

式（8）で示される NCGDF \(g_1(d_1, d_2) \) は DM1 自身が、そして式（10）の \(g_2(d_1, d_1^*) \) は DM2 自身が感じる主観的グループ不効用を、各自の不効用レベルの関数として表したものである。ただし、相手の不効用
用レベルは与えられているものとしている。

式(8)，(9)に示したNCGDF は、相手の不効用レベルが与えられたときに、自分が感じるグループ不効用を自分の不効用レベルの間数として表現したものになっている。従って、例えば、相手の不効用レベルが高い場合には、自分の不効用レベルが高なくてもグループ不効用はそれほど高くなりと感じたり、相手の不効用レベルが低い場合には、自分の不効用レベルが十分低くないとグループ不効用は低いと感じないなど、様々な選好を数学的にモデル化することができる。

もし NCGDF が条件レベルで条件レベルに依存しないなら、属性で属性に対して効用独立である。もし属性と属性が相互に効用独立なら、2属性不効用関数が式(5)，(6)に示した加法型または乗法型効用関数で表される。

いまま、

\[g(d_1, d_2) \neq g(d_1, d_2') \quad \text{for some } d_2 \in D_2 \]

\[g(d_2, d_1) \neq g(d_2, d_1') \quad \text{for some } d_1 \in D_1 \]

すなわち、属性と属性の間で効用独立性を満たさないと仮定する。この場合には、効用独立性の自然な拡張として定義される凸依存性が概念が導入される。

凸依存性的性質は次のように定義される。

5. 集団意思決定における倫理的競合解消のモデリング

いま、DM1 と DM2 をそれぞれ地域住民の代表と空港建設などの新しい開発プロジェクトの代表とする。この場合、DM1 は航空機騒音その他の生活環境破壊要因のため、市街地から離れた場所への空港建設を望むのに対して DM2 は空港利用者の利便性を考えて市街地に近い場所への建設を望む場合を考える。

ここで、このような社会的基盤構造による正の効用については、社会 (DM1 と DM2) に共通のもので、複数の DM 間にコンフリクトを生じることはないと考えて、ここでは評価の対象外とする。その一方で、社会的基盤構造に対する環境影響評価を考えると複数 DM 間にコンフリクトが生じるので、ここでは負の効用すなわち不効用のみを評価の対象とすることにすることに。
いま、DM1 の不効用関数と DM2 は開発プロジェクトから受ける環境影響に対する不効用を表し、DM2 の不効用関数を環境影響を軽減するために費や
される防除費用に対する不効用を表すものとする。これらの不効用関数は、DM1とDM2のそれぞれの立場に立った環境のスペシャリストに、必要な質問を繰り返して収集された情報に基づいて構成されるものとする。

次にNGCDFについても、DM1とDM2の立場に立った環境のスペシャリストに、必要な質問を繰り返して収集された情報に基づいて構成されるものとする。その結果、状況に依存して次の三つのタイプのモデルが得られたとする。

Model 1: DM1とDM2の間で相互効用独立性が成立する場合

図-1にこのModel 1に対するNGCDFの形状の一例を示す。この場合には、DM1もDM2も、共に相手の立場を考慮することなく、自己の欲求や利益のみに基づいてグループ不効用に対する選好構造を評価している。すると、DM1は自分の不効用が極めて小さないと、グループ不効用は小さくないと考え、利己的で頑固な態度を示している。また、DM2はDM1と比べて利己的ではないが頑固で、自己の不効用レベルに対するグループ不効用関数が線形であるものをとしている。このような状況は、開発者（DM2）が地域住民（DM1）に開発計画を提示した初期の段階で、両者の間で理解が進んでいない場合に見られるケースである。

Model 2: DM1はDM2に対して効用独立、DM2はDM1に対して1次凸依存性が成立する場合

図-2にこのModel 2に対するNGCDFの形状の一例を示す。DM1のグループ効用に対する選好はModel 1におけるものと変わらないが、DM2はDM1との間で合意を形成しようと努め、Model 1の場合と比べてより柔軟な態度を示している。とくに、DM1が最善状態（d1^*）のとき、DM2はそれに対応して同様な選好を示している。このような状況は、DM1とDM2の間である程度の話し合いが進み、開発者（DM2）と住民（DM1）の相互理解がある程度進んだ状況を表している。

Model 3: DM1とDM2の間で相互に1次凸依存性が成立する場合

図-3にこのModel 3に対するNGCDFの形状の一例を示す。DM1とDM2のグループ効用に対する選好は、ともに柔軟で互いに協力的になり、相手の不効用レベルに応じてグループ効用に対する選好を柔軟に変化させている状況を表している。すなわち、相手の状況を配慮し、倫理的競合解消を図ろうとしているケースがモデル化されている。これは、DM1とDM2の間の話し合いがなり進み、両者がお互いに柔軟な態度で臨んでいるケースである。

現実の空港整備や廃棄物処理場立地計画に際して生じるコンフリクトを解消するにあたって、地域住民（DM1）と開発者（DM2）の間の話し合いが進むにつれて相互理解が進み、Model 1の状況からModel 2の状況へ移り、さらにModel 3の状況へと計画が成熟してゆくプロセスを、NGCDFを用いてモデル化することができる。
すなわち、DM1 と DM2 の相互理解が進んでもあると、相手の不効用レベルが高くて不適切な場合には、
自己の不効用レベルが高くてもグループ不効用はそれ程高くないと感じるといった相手の境遇を懸念倫理観と社会的な観を持った DM の選好を表現するこ
とが可能になる。

このように、集団意思決定を対象にして、相手の
不適の状況に応じてグループ不効用に対する選好を
柔軟に変化させる状況を表現できる数学モデルは、
筆者らのオリジナルなモデルである。他に例を見えない。

6. 積み上げ

本稿では、倫理観と社会的な観を持った DM の選
好構造をモデル化する方法論として「凸依存性基
づくグループ効用モデル」を示した。そこで、
グループ不効用関数を各 DM の多属性不効用関数の
関数として表現し、グループ不効用関数を定める
アルゴリズムを示した。ここでは、各 DM の多属性
不効用関数は、個々に独立で異なった属性のもとで構
成することができるが、各々の DM に対して、
正規化された条件付きグループ不効用関数
(NCGDF) を定義し、DM の NCGDF は、他の
DM の不効用レベルが高くなったときに、グループ
不効用を当該 DM の不効用関数の関数として表現した。
そして、この NCGDF が、倫理観と社会的な観をも
った DM の選好構造をモデル化するうえで本質的な
役割を果たすことを示した。この NCGDF は、集団
を構成する複数の DM に関連

1）自己主張が強く利己的な態度を示す DM
2）協定性があって柔軟な態度を示す DM
など、各 DM の様々な行動パターンをモデル化する
ことができる。

本稿で示した方法論の実際問題への適用可能性
として、本文中に引用した大規模設備の立地選択
に関する「地域住民」と「建設主体」の間の倫理的競
合解消については、独挙にいとまがないほど多くの
差し迫った場面に遭遇する。その一例として、最近
の一般廃棄物処理場の立地選択問題をあげることができる。この問題は、市町村にとって最も重要な事
業の一つになっているが、廃棄物処理場の建設予定地の地域住民は、施設の運営や廃棄物輸送による環境影響を懸念するので、建設合意を得ることは困難な状況にある。さらに、近年、廃棄物処理場から排出されるダイオキシンによる環境汚染問題が重大な社会問題となっており、地域住民との合意形成はますます困難になってきている。このような状況のもとで一般廃棄物処理場を立地選択するにあたって、市町村の意思決定支援を支援するために方法論として改善型AHPの応用が提案されている(2)
それでは、集団意思決定問題として扱われていな
いが、これはまさに社会的ジレンマに関わる問題で
あり、本稿に示したような倫理的な立場から対処する
べき集団意思決定の格好の問題と考えられる。
さらに、近年、ダイオキシン問題が発覚を発表し、
小規模の一般廃棄物処理場を統合して複数の市町村
のごみ処理を広域的に処理する大規模な施設を1箇
所に建設する計画がある。このような場合には、複
数の市町村間の競合解消が必要となり、この複数の
市町村間の合意形成を支援するうえでも、本稿の合
意形成過程のモデリングが役に立つものと期待され
る。その詳細な検討結果については文献(13)において
報告がある予定である。

今後、住民参加型の集団意思決定の場で倫理的競
合解消のモデリングを試みるとき、話し合いの初期
の段階において利己的な態度を示していた DM が、
情報の蓄積に応じて柔軟な態度を変化してゆく合意
形成過程をモデル化した社会的ジレンマの解消を図
る上で、本稿に示したグループ効用モデルを役立て
ていただけるならば筆者の望外の幸である。
GROUP UTILITY MODEL FOR ETHICAL CONFLICT RESOLUTION AMONG MULTIPLE DECISION MAKERS

Hiroyuki TAMURA

This paper deals with modeling decision analysis for ethical consensus formation between two conflicting decision makers. For this purpose we try to construct a group disutility function for two conflicting decision makers taking into account the property of utility independence and convex dependence between them. By using such a group disutility function we could model the mutual concessions of two conflicting decision makers taking into account ethical preference with each other, and hence we can expect fairer group decision making for realizing better social welfare.