仮想割れ目モデルによる空洞周辺岩盤の
透水性変化予測手法

石井 卓1・塚家光男2・桜井英行2・里 優3・木下直人3・菅原健太郎4

1正会員 工博 清水建設株式会社 技術研究所 (〒135-8530 東京都江東区越中島 3-4-17)
2正会員 工修 清水建設株式会社 技術研究所 (〒135-8530 東京都江東区越中島 3-4-17)
3正会員 工博 株式会社地層科学研究所 (〒242-0014 神奈川県大和市上和田 1794 鳥海ビル 2F)
4正会員 株式会社地層科学研究所 (〒242-0014 神奈川県大和市上和田 1794 鳥海ビル 2F)

本論では、地下空洞の掘削に伴う透水性の変化を予測・評価することを目的として、割れ目分布の偏り
と透水係数の応力依存性を考慮した解析手法（仮想割れ目モデル）を提案する。本手法では、原位置で得
られた透水テンソルをもとに、Bingham 分布を用いて仮想の割れ目群を発生させる。この仮想割れ目群
を特徴づける岩盤に対して、空洞を掘削した場合の応力変化を求め、透水係数がどのように変化するか
を予測する。この手法を用い、神岡鉱山で行われた「スーパーカミオカデ」掘削時の透水係数の変化率
を予測した。原位置で行われた計測と予測結果は、いずれも空洞周辺での透水係数の増加を示し、相互に
整合的なものであった。

Key Words: excavation disturbed zone, virtual fracture model, anisotropic permeability,
stress-dependence, fractured rock

１．はじめに

地下空洞の掘削に伴う周辺岩盤の透水性の変化を
予測することには、岩盤構造物に要求される機能を確
保するため、また、建物工事の周辺への影響を評価
する上で重要である。特に、放射性廃棄物の処分施
設を地下に建設する場合には岩盤の透水性能を重
視するため、掘削の影響による岩盤の透水係数の変
化を考慮する必要がある。米国ネバダ州の使用済み
核燃料を地層処分することを目的としたユッカマウ
ンテンプロジェクトにおいては、地下処分施設の設
計に関する指針において、「掘削面から 3 m 離れた位
置における透水係数の変化が 1 ケタ以下」をめざす
ことが提案されている ①）。

しかしながら、わが国における既往の計測結果に
よれば、空洞掘削に伴う周辺岩盤の透水係数は、掘
削前と比較して変化しない場合もあれば、数百倍に
増加する場合もあり ②,③）変化する領域の広がりに関
しても様々で、既往の観測実績データだけに基づけ
て空洞掘削時の透水性変化領域の広がりと変化の程
度を予測することは困難である。透水係数が数百倍
も増大した事例 ④）によると、孔内透水試験のために
注水した水が坑道に溜水したことが確認されている
ことから、坑道を横断する既存の割れ目が坑道掘削時
に開口して水みちが坑道壁面上に直結したものと考え
られる。

原位置の透水係数を調べる方法としては、坑道へ
の溜水量から推定する方法もあるが、坑道から水平
外向きに開口したボーリング孔において拡張パッサ
ーにより測定区間を区分けして、注水法によって透
水係数を測定する方法が多い。この方法では、坑道
壁面から 1 ～ 2 m 程度までの区間はパッサーセンタ
ンとして使用するために計測することはできない。さ
らに、通常は測定区間が 1 m 以上である。放射性廃
棄物の地層処分では、坑道周辺の掘削影響領域の水
理特性を詳細に把握することが安全評価上重要なこ
とから、近年、10 ～ 50 cm の測定区間で計測ができる
試験装置の開発が行われ、原位置計測に適用されて
いる ⑤）。

一般に、空洞の掘削に伴う周辺岩盤の透水性の変
化の原因としては、(1) 岩盤の直破による破壊
(2) 岩盤周辺の応力集中による破壊、(3) 岩盤再配分に伴う既存割れ目の閉口、の三つが重要であると考えられている。(1), (2)の原因に対しては、施工技術上で対処することや、良い対策を考慮することによって対処することができる。特に原因に対しては、セメントミルクを用いたクラフトにより、クラフトの劣化による長期（千〜万年オーダー）にわたって性能を担保することを難しく、クラフトにクラフトを用いたクラフトの劣化は、長期栄養性が期待されるが、長期取り扱いを IActionResult 2004 にわたって改良することは難しいと考えられる。
また、改良をしなくても地下施設の安全性を示せば、クラフトの必要性はなくなると言える。したがって、空洞開掘に伴う周辺岩盤の透水性の変化については、何かある予測手法を開発し、事前に検討する必要がある。
不連続性岩盤を対象として、割れ目などの外乱による透水性の変化を評価する手法は、既に様々な研究者によって提案されている。例えば、吉田ら (2) は、空洞掘削に伴う割れ目にせん断すぺリ開口が岩盤挙動の支配的メカニズムであると考え、割れ目の変形挙動を考慮できる解析手法（MBC 解析）を高原放射性物質処分場の処分坑道の掘削解析に適用した。そして、割れ目の開口変位から透水係数を算定し、空洞周辺の透水係数の変化に関する検討を行っている。ただし、割れ目分布による透水係数の異方性に関する考察はなされていない。
山辺ら (3) は、不連続性岩盤において、割れ目作動する垂直応力によって透水係数が変化することに着目し、応力依存性を考慮した透水テンソルを提案している。ただし、この手法は、テンソル化した後に応力依存性を考慮していることから、方向分布によっては、透水性の変化を正しく予測できない可能性がある。
Kelsall ら (4) は、透水係数が変化するメカニズムとして、応力再配分に伴う既存割れ目の閉口に着目し、円形成破周辺岩盤の透水性の変化を予測する手法を提案した。そして、環境変化に対する影響の観察を行っている。
多田ら (5) は、単一割れ目の室内透水試験から、割れ目の透水係数と透水性の関係を求め、それに基づいて空洞掘削時の応力変化に伴う透水係数の変化を予測する手法を提案している。この手法の基本概念は Kelsall らの研究 (4) と同じである。
筆者らは、Kelsall らや多田らと同様に、不連続性岩盤では応力の変化に伴う割れ目の透水係数の変化に着目すれば、空洞掘削に伴う周辺岩盤の透水性の変化を予測できると考えた。しかし、彼らの方法では、割れ目分布の変化に起因する岩盤の透水係数の変化を考慮できない。また、割れ目分布の偏りを考慮して空洞周辺の透水性の変化を解析する場合には、3 次元モデルで評価する必要があるが、多田らの方法では 2 次元問題に限定されている。例えば、図-1 に示すような水平割れ目の卓越する岩盤に坑道を掘削した場合には、坑道の上部と下部の岩盤の透水係数が著しく増大するのに対して、側壁部ではほとんど増加しない傾向となることが予想される。よって、このような透水係数の偏りによって生じる透水係数の異方性についても考慮できる手法を提供することが望ましい。
これらの問題を解決するために、本研究では次のような手法を開発し、空洞掘削に伴う岩盤の透水性の変化を予測することとした (1) (2)。すなわち、仮想の割れ目群を発生させ、各割れ目の透水係数が応力依存性を有することと初期応力を考慮して、原位置で計測された初期透水テンソルを再現する。次に、仮想の割れ目群と空洞掘削後の応力から掘削後の透水テンソルを算定し、空洞掘削に伴う岩盤の透水性がどのように変化するのかを予測する。
割れ目には目視で観察できるものもあるが、観察しにくいものも存在している。そして、観察された割れ目でも、充填物によって透水性が変化している場合や、観察できなかった割れ目が透水性によって支配的である場合も考えられる。そこで、筆者らは、原位置の透水テンソルから岩盤の透水性を支配している割れ目群を推定することを考えた。ただし、この推定された割れ目群は、目視観察で得た割れ目群と一致しないことが考えられる。また、その実体を明らかることは非常に難しいと考えられるので、この割れ目群に仮想という言葉を用いている。
仮想の割れ目群を推定することによってモデルを簡便なものにすることができると考えられる。
生じる。第1に、割れ目の連続性、広がり、密度、1本1本の割れ目の透水特性について実際の割れ目の特性値に近づける必要はない。むしろ、均質媒体としての岩盤の透水特性を評価するのに十分な数の無数の割れ目を仮想的に発生させて、実測した岩盤の透水係数に合致するような値を割れ目の体積密度と仮想的に決定するという手法を採用した。このような手段を採用することによって現場における測定対象割れ目の連続性、広がり、密度等の不確実性について統計的に分析する必要はない。第2に、割れ目の透水性に与える応力再配分の影響については室内試験データを簡便に組み込むことができる。

本論文では、実測値（原位置の透水テクソール、または割れ目の卓越方向と岩盤の平均的な透水係数）を再現できる仮想の割れ目群を「仮想割れ目群」と称し、仮想割れ目群に透水係数の応力依存性を組み込んだモデルを「仮想割れ目モデル」と呼ぶことにする。そして、ここでは、この仮想割れ目モデルによる透水性の変化の予測手法の全体像を概説するとともに、割れ目群の発生方法と岩盤の透水テクソールの求め方について詳細を示す。また、空洞掘削に伴う透水係数の変化に関して、原位置（神岡鉱山）で計測された試験結果を基に手法による予測値との比較を行い、本手法の妥当性について検討した結果についても示す。

２．透水性の変化の予測手法

（1）本手法の概要

仮想割れ目モデルでは、岩盤の透水性は割れ目の分布と各割れ目の透水係数により決定されると考える。なお、割れ目は空間に一定に存在するものとし、その体積は、対象としている領域に比べ十分小さい場合に限定する。

予測に要する原位置のデータは以下のとおりである。

・割れ目の方向分布（透水テクソールが得られている場合のぞくてもよい）
・初期応力（データがない場合は土被り深さから設定する）
・透水テクソール（データがない場合は透水係数でよい）
・割れ目供試体による透水係数の応力依存性（室内試験に基づいて設定する）

本手法では、計測できるパラメータを反映でき、以下に示すような手順を踏んで解析を行う（図-2 参照）。

①第1回目の透水テクソールを算定する時には、何らかの方法で仮想割れ目群のパラメータを設定することが必要であるが、原位置で観測された割れ目の方向分布のデータがある場合は、それに基づいて仮想割れ目群を発生させる。第3章で記述するが、Bingham 分布の分布方向と透水テクソールの主方向には密接な関係があることがわかっているので、割れ目の方向分布のデータがない場合は、原位置の透水テクソールの主方向を参照する。すなわち、Bingham 分布は等価線が楕円状の形状となるが、この短軸方向を透水テクソールの第1主値の方向、長軸方向を第2主値の方向、集中方向を第3主値の方向になるようにして仮想割れ目群を発生させる。

②初期応力と仮想割れ目モデルから初期応力状態の透水テクソールを算定する。なお、第1回目の透水テクソール算定時では、式(12)の割れ目体積密度 ρ には適当な値（±0）を代入する。

③で求めた透水テクソールと原位置の初期透水テクソールと比較する。同じ透水性になっていない
Bingham分布による割れ目の発生

\[f(n) = c \exp \left(\frac{12\mu k_f}{\rho e} \right) \]

各割れ目面の垂直応力 \(\sigma \) の計算

各割れ目の透水係数 \(k_f \)、開口幅 \(e \) の計算

\[k_f = f(e) \sigma \]

\[e = \frac{12\mu k_f}{\rho c g} \]

集団方向

\(\theta \)

\(n \)

割れ目

図-4 割れ目の方向の定義

透水テストを推定することができる。

発生させた仮想割れ目群から岩盤の透水テストを求める手順は図-3に示すとおりであり、以下に具体的な手法を説明する。

(2) 仮想割れ目群の発生

仮想割れ目群は空間に一様に存在すると仮定されていることから、仮想割れ目群は各割れ目の方向によってのみ特徴づけられる。

大西・中川10）は、割れ目の法線ベクトル \(\mathbf{n} \) に関する観測データから、その分布を確率・統計的に記述する研究を行っており、Fisher分布とBingham分布の適合性を比較している。それによって、Fisher分布よりもBingham分布の方が観測データに適合することが示されている。よって、ここでは、法線ベクトル \(\mathbf{n} \) の分布はBingham分布により表現できるものとし、これにより割れ目を発生させることとした。

Bingham分布は次式のような関数であり、集中方向周りに等値線が楕円状の形となるものである。

\[f(n) = \frac{1}{4\pi} \exp \left(\left[k_1 \cos^2 \theta + k_2 \sin^2 \theta \right] \right) \]

これに、\(\theta \) は集中方向からの角度、\(\phi \) は集中方向周りの角度を示す（図-4 参照）。\(k_1 \sim k_3 \) は集中度を示す係数、\(d \) は正規化のための係数であり、\(k_1 \sim k_3 \) の関数である。また、一般的に \(k_1 = 0 \) としてもよいことから、係数をまとめるなどして、次式で Bingham 分布を表現することができる。

\[f(n) = c \exp \left(\left[k_1 \cos^2 \theta + k_2 \sin^2 \theta \right] \right) \]

これに、\(c \) は正規化のための係数である。

方向に関する確率密度が式(2)で特徴づけられる割れ目に対して、透水テストを求めるときに第2章第4節に示すような重み付け平均を行う場合、通常は確率密度関数に関する積分を行うことになる。
解析による透水性変化の評価は実測値よりも保守的な値を与えることが望ましい。また、空洞掘削時の応力解放が透水性増大の要因であることを考えると、垂直応力が減少する割れ目には降圧過程の式を用いるべきであると言えるが、昇圧過程の式を用いたほうが保守的な評価を与えることができる。よって、第3章および第4章の解析では、最も大なる応力依存性を示した花崗岩試料（図-5の+印）のデータによる実験式（10）を用いることとした。昇圧過程の式（3）だけを用いた。実験式を式（5）と図-5に示す。

\[
\log_{10} k_f = \frac{\sigma_n}{-2.44 - 0.28\sigma_n} + \log_{10} 2.2 \times 10^{-3} \tag{5}
\]

ここに、\(k_f (\text{m/s}) \) は割れ目の透水係数、\(\sigma_n (\text{MPa}) \) は割れ目に作用する垂直応力である。

仮想割れ目群の方向分布が定まり、各割れ目面の垂直応力\(\sigma_n \) が算定できる。式（5）より割れ目ごとの透水係数\(k_f \)を算定することができる。

また、割れ目を平行平板でモデル化すると、水理学的開口率\(e \) は次式で算定できる（19）。

\[
e = \sqrt{\frac{12\mu k_f}{\rho e g}} \tag{6}
\]

ここに、\(\rho_e \) は水の密度、\(g \) は重力加速度、\(\mu \) は水の粘性係数である。

4 岩盤の透水テンソルの算定

次の作業は、仮想割れ目群を有する岩盤の透水テンソルを求めることがある。これは、各割れ目ごとの透水係数を、その方向を考慮して重ね合わせることで求められる。

2次元問題では、平行平板内の直線流れを仮定することによって、割れ目の透水係数\(k_f \) と岩盤の透水係数\(k_r \) の関係を次式で表すことができる。

\[
k_r = \eta k_f \tag{7}
\]

ここに、\(\eta \) は割れ目の密度である。

3次元問題で考えると、式（7）は割れ目の透水係数を体積の重みを付けて平均化することで岩盤の透水係数を求めていると考えることができる。例えば、図-6に示すような平行割れ目を有する岩盤では、割れ目に沿う方向における岩盤の透水係数\(k_r \) が次のように求められる。
図-6 平行割れ目を有する岩盤

\[k_f = \frac{\sum V_f}{V} k_f = \frac{N_{p} L^2 \epsilon}{L^2} - k_f = \frac{N_{p}}{L} e k_f = \eta e k_f \quad (8) \]

ここで、\(V \) は岩盤の体積、\(V_f \) は割れ目の体積、\(N_{p} \) は割れ目の数である。

次に、これを一般化することを考える。すなわち、割れ目の面内方向の透水係数は \(k_f \)、面外方向は \(0 \)であることから、これを全体座標に変換した後に、体積 \(V_f \) の重み付けをして平均化すれば、岩盤の透水テンソル \(k' \) を求めることができる。

また、各々の割れ目は法線ベクトル \(n \)、体積 \(V_p \)、透水係数 \(k_f \) という特性を持っている。そして、ある任意の特性の組合せ \((n, V_p, k_f) \) を考えたときに、この特性を持つ割れ目が \(N_f \) 個あるものするとすると、岩盤の透水テンソル \(k'' \) と割れ目の総数 \(N \) は次のようになる。

\[k'' = \frac{1}{V} \sum_{i} V_f(k_f(n_i \cdot n_i) N_f) \quad (9) \]

\[N = \sum_{i} N_f \quad (10) \]

ここで、添え字の \(i \) で \(i \) 番目の特性の組合せを意味している。また、\(m \) は特性の組合せの総数、\(\delta_{ij} \) はクロネッカーのデルタである。

割れ目の平面形状をモデル化する方法としては、円、楕円および多角形が考えられるが、ここでは、菊地ら \(^{19}\) の考え方を基に図-7 のように割れ目の平面形状を半径 \(r_{f} \) の円盤としてモデル化するものとする。すなわち、円の場合、形状を指定するためには、短径と長径およびいずれかの方向が必要である。また、\(n \) 角形の場合には \((n-1) \) 個の相対的な位置の座標が必要である。それに対して、円は半径だけで形状を指定できるので最も実用的であると考えられる。よって、体積 \(V_f \) は次のようになる。

式(11)と(12)より、各割れ目の特性値は \((n, r_{f}, e, \varphi) \) となる。岩盤の応力 \(\sigma \) を与えられると、法線ベクトル \(n \) から垂直応力 \(\sigma_n \) を求めることができる。そして、垂直応力 \(\sigma_n \)、式(5)、式(6)から、透水係数 \(k_f \) と水理学的開口幅 \(e \) を求めることが可能である。よって、特性値の内、透水係数 \(k_f \) と水理学的開口幅 \(e \) は法線ベクトル \(n \) の従属変数であることがわかる。

したがって、式(9)は式(10)と式(11)より、次のようになる。

\[
\begin{align*}
k_f' &= \frac{N}{V} \sum_{i} m V_f(k_f(n_i \cdot n_i) N_f) \\
&= \rho \sum_{i} \pi r_{f}^2 e(n_i) D(n_i)
\end{align*}
\]

ここに、\(\rho \) は割れ目の体積密度、\(D(n) = N_f/N \) は法線ベクトル \(n \) の相対頻度を示す関数であり、手法では、密度関数として式(2)の Bingham 分布を用いている。なお、円盤の面積を表す項は、割れ目の面積を表す項で置き換えることもできる。

以上により、仮想割れ目群の体積密度 \(\rho \) と方向 \(n \)、ならびに頻度 \(D(n) \) が定められれば、仮想割れ目モデルによる岩盤の透水テンソルを計算することができる。

3．予備解析

これまでに示した手法の特徴を明瞭にするため、簡単な数値モデルにより空洞掘削に伴う岩盤の透水性の変化について調べてみた。

（1）割れ目の分布と岩盤の透水性の関係

最初に、特徴的な3種類の割れ目の分布例を設定した。割れ目の分布とその岩盤の透水方向を図-8に示す。
図-8 割れ目の法線ベクトル分布と主透水方向

図-8 の左側は Bingham 分布によって発生させた割れ目の方向分布（青点）と式(12)により求めた主透水方向（赤点）をステレオネット上（上半球投影）に示したものである。図中の数字は主値を示している。図-8 の右側は、割れ目の分布を円盤の集合で、岩盤の透水テンソルの主方向と主値の大きさを矢印の方向と大きさで示したものである。ここでは、割れ目の透水係数と開口幅は応力にかかわらず単位の値とした。

Bingham 分布の係数 \(k_1, k_2 \) は上から \((-0.01, -0.01), (-10, -0.01), (-10, -10) \) である。

方向分布が等方的である場合（図-8(a)）は、当然ながら岩盤の透水性も等方的で、主値の比率は \(K_1:K_2:K_3=1.03:1.02:1.00 \) となる。

表-1 解析ケース

<table>
<thead>
<tr>
<th>解析ケース</th>
<th>初期応力</th>
<th>割れ目分布（ステレオネット、上半球投影)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>(\sigma_1=5) (MPa) (\sigma_2=5) (MPa) \ (\sigma_3=5) (MPa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N (y、空洞軸方向)</td>
<td></td>
</tr>
<tr>
<td>Case 2</td>
<td>(\sigma_1=5) (MPa) (\sigma_2=5) (MPa) \ (\sigma_3=10) (MPa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(水平:鉛直=1:2)</td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td>(\sigma_1=5) (MPa) (\sigma_2=5) (MPa) \ (\sigma_3=5) (MPa)</td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td>(\sigma_1=5) (MPa) (\sigma_2=5) (MPa) \ (\sigma_3=5) (MPa)</td>
<td></td>
</tr>
</tbody>
</table>

割れ目の法線ベクトルが特定の 1 方向に集中する場合（図-8(c)）は、割れ目面に平行な方向が第 1, 第 2 主値の方向となり、両者の値はほぼ等しくなる。また、集中方向が第 3 主値の方向となるが、第 3 主値は第 1, 第 2 主値に比べ著しく小さくなる。この場合の主値の比率は \(K_1:K_2:K_3=8.88:8.78:1.00 \) となる。
表2 円形断面トンネル周辺の透水係数の変化率計算結果一覧

<table>
<thead>
<tr>
<th>变化率</th>
<th>Case1</th>
<th>Case2</th>
<th>Case3</th>
<th>Case4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X方向の透水係数</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>变化率</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y方向の透水係数</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>变化率</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z方向の透水係数</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>变化率</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

凡例
0 20倍

（2）空洞掘削による透水性の変化

次に、本手法を用いて、初期応力状態や削れ目分布の差によって円形断面トンネルの周辺の透水性がどのように変化するかを試算した。解析ケースを表1に示す。ここでは、削れ目の方向分布は等方向
\((k_1,k_2) = (-0.01,0.01)\) であるが、初期応力が等方向の場合（Case1）と異方向の場合（Case2）、削れ
目の法線ベクトルが1方向に集中（\((k_1,k_2) = (-1.0,0.0)\)）しているが、その方向が異なる場合（Case3、Case4）
を想定した。Case3では集中方向を空洞轴方向（y方向）に、Case4では図8（c）と同様に鉛直方向（z方向）に一致させた。また、掘削後の応力は線形弾性
解析により求めた。

解析結果は、空洞掘削後の透水係数を初期状態の透水係数で除し、変化率として整理した。透水係数
の変化率の計算結果を分布図で表したものを表2に示す。

a) Case1

x方向の透水係数の変化率に注目すれば、x-y平面
にほぼ平行した面を持つ削れ目では、その垂直応力
（ほぼ\(\sigma_z\)に等しい）が空洞の天端および底盤で減少
するために、この部分ではx方向の透水係数が増加
する。また、z方向に着目すると、y-z平面に平行な面を
もつ削れ目の垂直応力（ほぼ\(\sigma_z\)）は側壁部で減少する
ために、側壁のz方向の透水係数は増加する。

b) Case2

Case1と同じ等方向的な削れ目の方向分布であるが、
初期応力の異方向性の影響を受けて結果は異なったも
のとなっている。すなわち、空洞の天端や底盤近傍
では、各成分の透水係数の変化率はCase1よりも増
大している。また、側壁部ではほとんど増加していない。

c) Case3

割れ目面に垂直方向の応力（ほぼ\(\sigma_z\))が空洞掘削
前後でわずかにしか変化していないため、いずれの
方向の透水係数も1.1～1.3倍程度しか増加していな
4. 神岡鉱山における計測結果との比較

不連続性岩盤内における地下大空洞の建設に伴う周辺岩盤の透水係数の変化を測定し、本論文において提案している手法を用いた解析結果との比較検討を行った。
表-3 応力解析に用いた物性値と初期応力

<table>
<thead>
<tr>
<th>ヤング係数</th>
<th>50 (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポアソノ比</td>
<td>0.2</td>
</tr>
<tr>
<td>初期応力σ₁ (N309°E E68°E)</td>
<td>29.4 (MPa)</td>
</tr>
<tr>
<td>σ₂ (N60°E E8°W)</td>
<td>19.3 (MPa)</td>
</tr>
<tr>
<td>σ₃ (N153°E E20°N)</td>
<td>6.2 (MPa)</td>
</tr>
</tbody>
</table>

図-12 解析メッシュと掘削部分

間D〜G) の透水係数の平均値は 1.6 × 10⁻¹⁰ m/s である。孔内深度 28 m 以深（空洞壁面から約 14 m 以内）では、10⁻⁷ から 10⁻⁸ m/s のオーダーを示している。孔内深度 27.8〜39.8m（区間 A1〜C）の透水係数の平均値は 2.5 × 10⁻⁹ m/s である。割れ目密度では両者の違いはあまり明瞭ではないが、開口割れ目（本論文では、BT 島を対象とする開口度 1.0mm 以上の割れ目を開口割れ目としている）密度は明瞭に異なっている。孔内深度 10〜28m の区間における平均開口割れ目密度は 0.17 本/m であるのに対して、28m 以深では 1.08 本/m であり、後者の方が開口割れ目密度は高くなっている。

図-11 の第 2 回目および第 3 回目の測定結果によれば、孔内深度 20m（空洞壁面から約 21m）以深では、掘削により透水係数が増大していることがわかる。

図-13 応力解析に用いた初期応力 (ステレオネット、下位投影)

(2) Bingham 分布による仮想割れ目群と解析条件
仮想割れ目モデルを用いて透水性の変化を評価するために、ここでは、

- 割れ目の方向分布
- 初期応力
- 原位置の透水係数
- 割れ目供試体による透水係数の応力依存性を入力パラメータとした。

- S-2 孔で観測した割れ目の方向分布が図-10（左）のように得られていることから、これに視覚的に近くなるように、Bingham 分布による仮想割れ目群を発生させた。発生させた仮想割れ目群を図-10（右）に示す。

仮想剖面目群が求められた後、空洞掘削による岩盤の応力変化を求めるために有限要素法による三次元有限変形解析を行った。解析に用いたメッシュを図-12 に示す。解析領域は 300m×300m×420m の
図-14 空洞周辺の透水係数の変化率分布
（掘削位置は2回目計測時）

図-15 空洞周辺の透水係数の変化率分布
（掘削終了時）

図-16 空洞掘削による透水係数変化率の比較
（掘削位置は2回目計測時）

図-17 空洞掘削による透水係数変化率の比較
（掘削終了時）

直方体で、全要素数は26240、全節点数は27593である。掘削部分は解析領域の中心に位置しており、側面から解析領域側面までの距離は130mで、天端から解析領域上部までの距離は181.2mとなっている。モデル化は本体空洞のみで、図-9に示すアクセス坑道のモデル化はおこっている。また、境界条件は解析領域の上面、底面、および、側面の面外方向の変位を固定している。なお、解析するに当たっては座標系と方位の関連付けが必要となるが、ここでは、x方向をE方向に、y方向をN方向に一致させることにした。なお、アクセス坑道の位置とS-2孔の方向であるが、解析上はNE-SW方向にあるものとした。厳密に言えば、アクセス坑道もS-2孔の方向からはずれた位置にある。しかし、その差はわずかであることから、解析結果に大きな差を与えないであろうと考えたためである。

応力解析に使用した岩盤の物性値と初期応力を表-3と図-13に示す。これらの値は文献(22)より設定した。

原位置の初期の透水係数は、区間A1～Eの対数平均値より7.76×10^{-4}m/sと設定した。区間FとGは測定限界よりも小さな値であったことから、透水係数を設定する際には、これらの値は除外した。

なお、割れ目の透水係数の応力依存曲線は、式(5)（図-5参照）を使用した。

(3) 解析結果
解析は、第2章で示した手順に基づいて行った。なお、実測値はS-2孔軸直交方向の透水係数に相当すると考えられるので、解析で求める透水係数は、
透水テンソルを S-2 孔軸方向に座標変換して、孔軸に直交する 2 方向の成分の相加平均値とした。

始めに、仮想割れ目群の体積密度 \(\rho \) を仮定し、掘削前の初期応力解析結果から初期透水係数を求め、さらに、これを原位置の初期の透水係数と比較することにより、仮想割れ目群の体積密度 \(\rho \) を 10.05 本/m\(^3\) とした。

次に、仮想割れ目群の方向分布、体積密度および各掘削段階の応力から、掘削段階ごとの透水係数を求めた。最後に、初期透水係数と掘削段階ごとの透水係数から変化率を調べた。

空洞掘削前後の透水係数の変化率のコンター図を図-14 と図-15 に示す。

また、S-2 孔の計測期間ごとの実測値と解析値の比較を図-16 と図-17 に示す。

第 2 回目の測定結果は、空洞中でまで掘削した状態のものである。図-16 によると、実測および解析結果ともに、透水係数の変化率は計測孔に対して山なりの形をとる傾向を示しているが、これより、S-2 孔の先端部、空洞の底面の隅角部に位置しているため、圧縮応力が集中し、結果として透水係数は変化しなかったためと解釈できる。解析結果の透水係数変化率の大きさは一致していなかったもので、変化率の傾向はほぼとらえることができた。

図-17 によると、第 3 回目の測定結果と解析結果の透水係数の変化率は、区間 B1, B2, D を除く 6 区間でほぼ一致している。実測値によると、壁面から離れるにしたがって変化率は小さくなる傾向があるが、解析値もその傾向を示している。空洞周辺の岩盤は、力学的には全く安定している状態で、透水係数だけが大きく変化したと考えられる。と報告されており、解析で求めた応力変化で透水係数の変化を評価しているが、空洞掘削後の透水係数測定結果（第 3 回目）とほぼ一致していることから、当該手法による予測は妥当なものと考えることができる。なお、区間 B1 では掘削により透水係数が 3 倍増加しており、解析値とは大きく異なっているが、これは、図-11 からも明らかなように、掘削前の透水係数が接続区間のそれよりも 2 倍以上小さい特異な区間であったためであり、本手法の欠陥によるものではないと考えられる。

本論文のモデルでは、塑性域や既存割れ目せん断による開口による透水性の変化を扱うことはできない。したがって、空洞掘削の岩盤で塑性域が発生している場合には、その領域における実測値と予測値は異なることが考えられる。竹村らの解析法と解析により、この空洞の塑性域は壁面から 3m 程度であることが示唆されているが、S-2 孔より掘削前後に透水係数を計測できたのは、壁面から 3m 以奥である。壁面から 3m 以内の透水性の変化のデータがないため、塑性域や割れ目せん断に伴う開口による透水性の影響については確認できなかった。

5. 結論

本論文で得られた結果をまとめると、以下のようになる。

- 空洞掘削に伴う岩盤の透水性の変化を予測する手法の全体を示し、このうち、仮想の割れ目群の発生方法と、これより岩盤の透水テンソルを求める方法について説明した。
- 典型的な割れ目方向分布を仮定し、空洞掘削に伴う応力変化により岩盤の透水性がどのように変化するかを試算し、空洞周辺の 3 次元的応力変化による透水係数の変化を表現可能な手法であることを確認できた。
- 神岡鉱山に掘削されたスパーカミオカンデ周辺の透水係数の変化の実測結果と仮想割れ目モデルによる予測結果について比較を行った。原位置で観測された割れ目分布と孔内透水試験データを参考に室内の割れ目透水試験データを反映させて設定した仮想割れ目モデルを用いて掘削による影響を予測した結果は、実測された結果と同様の傾向を示しており、不連続性岩盤の弾性領域に対する当該手法の妥当性が確認できた。今後の課題として以下の点が上げられる。

- 本手法では、掘削に伴う既存割れ目せん断変形の影響を考慮していない。神岡鉱山のような硬質岩ではせん断変形が微小であるため実測値を再現できたと考えられるが、局地的に生じていたかもしれない既存割れ目が大きさ開口するような領域に対する当該手法の適用性は確認できなかった。壁面近傍に生じる局地的な破壊や破壊損傷が岩盤の透水性に与える影響等については、別途検討が必要である。
- 深部に掘削する場合にはせん断変形に伴う割れ目の透水係数の変化についても考慮する必要がある。特に、軟質岩では既存割れ目せん断変形の影響は無視できないと考えられる。
- 堆積岩に拡張する場合には、基質部の透水性を無視できるとは限らないので、割れ目の透水性と同様に堆積部の透水性も考慮したモデルを構築する必要がある。
- 軟質岩で深部に空洞を掘削する場合には、せん断変形により基質部にクラックの発生・成長が
生じる可能性があり、これらの影響についても考慮する必要がある。

本手法は、原位置で観測された割れ目方向分布と原位置で観測された透水係数を入力パラメータとすることができるし、原位置で計測された透水テンソルを利用しても価値がある可能性がある。割れ目の観察が空間や時間の制限などで困難な場合には、孔間透水試験等によって直接得た値を入力パラメータに使用するので、本手法の実用性は高いと考える。

謝辞：本研究を行うにあたり、神岡鉱業（株）より計測の機会を提供して頂きました。また、三井金属鉱業（株）には原位置の計測に御協力を頂きました。ここに付記して謝意を表します。

参考文献
5) 南山行, 日野和悦, 谷智之, 星野吉広, 今井久: 坑道周辺の放射能影響領域の水理特性把握を目的とした短間透水試験装置の開発, 土木学会第56回年次学術講演会講演概要集, CS1-017, 2001.
10) 多田浩幸, 木下直人, 若林成樹: 岩石割れ目透水係数と応力の関係を用いた空洞周辺岩盤の透水変化解析, 第9回岩の力学国内シンポジウム講演論文集, pp.139-144, 1994.
PREDICTION OF PERMEABILITY CHANGES IN ROCK MASS AROUND CAVERNS BY VIRTUAL FRACTURE MODEL

Takashi ISHII, Mitsuo GOHKE, Hideyuki SAKURAL, Masaru SATO, Naoto KINOSHITA and Kentaro SUGAWARA

In this study, we propose a method of analysis i.e. VIRTUAL FRACTURE MODEL to predict permeability changes caused by excavating a cavern in anisotropic fractured rock. In this method, based on permeability tensor calculated from in situ tests, fracture settings are virtually created with Bingham distribution. The alterations in permeability of the virtual fracture settings are predicted according to the anisotropic stress changes around a cavern. This method was applied to predict the permeability changes in Super-Kamiokande excavated in Kamioka Mine at the depth of 1000m. Consequently, both in situ measurements and predictions showed an increase of permeability around caverns to be consistent with each other.