杭頭回転固定条件による実物大単杭の
大変形水平載荷実験

佐藤 博1・大矢 孝2・松島 学3

1正会員 東京電力株式会社 技術開発研究所（〒230-8510 神奈川県横浜市鶴見区江ヶ崎町4-1)
E-mail:sato.hiro@tepco.co.jp
2正会員 工修 東京電力株式会社 送変電建設部（〒100-0011 東京都千代田区内幸町1-1-3)
3正会員 工博 香川大学教授 工学部土木工学科（〒761-0396 香川県高松市林町2217-20）

実構造物に採用される杭基礎では杭頭の回転が拘束されている場合が多いが、この点を考慮して単杭を載荷した実験例は少ない。さらに、有限長の杭に分類される短尺の杭は、その挙動が底面の回転等に影響され大変形領域までの評価が難しいなどの課題がある。本研究では新たな載荷装置を考察し、短杭と通常の長さの杭について杭頭回転固定条件により単杭の大変形領域までの水平載荷実験を行った。さらに、地盤と杭の非線形性を考慮した梁パネルモデルを提案した。その結果、両杭とも十分な剛性を有すること、杭頭に塑性ヒンジが形成されて終局を迎えること、さらに梁パネルモデルによりいずれの杭も終局までの挙動を精度よく再現できることを把握した。

Key Words: full-scaled single pile, lateral loading test, rotation-fixed head, ultimate behavior, short pile, nonlinear beam-spring model

1. はじめに

杭基礎の設計は許容応力度設計から限界状態設計へ、さらに性能設計へと移行しつつあり、これに対応して大変形領域における挙動や終局状態を把握することが求められている。杭基礎の終局までの挙動を解明するための大変形水平載荷実験は、これまでにいくつか実施されている（例えば 3)～8）。実構造物では、フランジング等により杭頭の回転が拘束されていることが多いことから、これらの実験では、杭頭回転固定条件を実現するために、フランジングを設けて複数本の杭を用いたものがほとんどである。この時、杭の挙動は、杭間隔が小さい場合は群杭効果の影響があり、杭間隔が大きくても複数杭の相互作用の影響が問題となる。

実構造物で見られる複数杭の挙動を正しく評価するには、単杭の挙動を正しく評価することが必要である。そのため、実構造物で見られる杭頭回転固定条件における単杭の挙動を把握することが重要である。

吉岡等 9)は、単杭を杭頭回転固定条件で載荷している。この実験では、強制的に杭頭を抑える構造により鉛直荷重の影響が生じたために、終局までの載荷は実施していない。性能設計のような高度な設計法では、杭の終局までの挙動を把握することが重要である。

近年、基礎構造物の合理化の観点から、支持層が深い場合には支持層まで根入れしない摩擦杭の採用、また支持層が浅い場合には支持層で打ち止める傾向がある。電力構造物である送電用鉄塔用基礎杭では、支持層が浅い場合、有限長の杭、いわゆる短杭を採用することが多い。短杭の挙動は、浅層地盤の非線形挙動の影響を強く受けたり、底面の回転の影響等、通常の杭とは異なるため、大変形領域までの挙動を明らかにする必要がある。

本研究は、実物大の杭を対象に、短杭と通常の長さの杭2本について、終局に至るまでの杭基礎の挙動を把握するため、大変形領域までの水平載荷実験を行った。実験は載荷装置を工夫し、水平載荷に伴う杭頭の傾斜に対応した反転モーメントを加え
表-1 柱の諸元

<table>
<thead>
<tr>
<th>名称</th>
<th>材種</th>
<th>柱径 D (mm)</th>
<th>柱長 L (m)</th>
<th>βL</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>短柱</td>
<td>RC</td>
<td>800</td>
<td>4.0</td>
<td>1.07</td>
<td>鋼筋比 1%</td>
</tr>
<tr>
<td>長柱</td>
<td>打ち</td>
<td>1200</td>
<td>6.0</td>
<td>3.02</td>
<td>かぶり 15cm</td>
</tr>
<tr>
<td>反力杭</td>
<td>H鋼</td>
<td>H-400</td>
<td>6.0</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>

図-1 試験装置の概要と地質断面

図-2 試験装置の概要（平面図）

ことにより元に戻し、杭頭回転固定条件を実現させたことが特徴である。

次に、杭の水平載荷の実験結果から、両杭ともに地盤の深い領域と深い領域で挙動が異なることが推測された。深い領域は杭の拘束が小さく、自由面である地表が近いことから斜め上方向に動き、局所には変形する領域が発生し、すべり面が形成されることが推測された。これに対して深い領域は地盤の拘束が大きいことから水平方向にのみ不動性とする挙動が推測される。この結果を踏まえ、地盤と杭の非線形性を考慮した解析モデルを構築し、実験結果との比較からモデルの妥当性を検証した。

2. 試験体と載荷装置

(1) 試験体と地盤条件
本実験は、実際に多く用いられる基礎杭の杭頭条件を再現するため、後述する新しい載荷方法を考案して単杭の杭頭を回転固定条件により実施したことが特徴である。

試験杭は長さ 80cm、長さ 4m と 12m の場所打ちコンクリート杭 2 本で、それぞれ短い杭と半無限杭の杭に分類される。以降、短い杭を短杭、長杭と呼ぶ。杭の諸元を表-1 に示す。反力杭は長さ 6m の 9 本の H 鋼で支持し、回転、水平力に抵抗できるようにした。

実験位置の地盤は、図-1 に示すように GL-1m 以上の中層部の N 値が 2 ～ 4 の沖積粘性土で、それ以深は 5 ～ 26 の細砂で構成されている。

a) 載荷装置の概要
試験装置の全体概要を図-1, 2 および写真-1 に示す。前述の杭頭回転固定条件とするための新しい載荷方法とは、杭頭フーチングに設置した H 鋼（以下、回転補正桁）を介して杭芯より 6.6m 離れた位置で水平載荷の進展に応じて鉛直力を与え、これにより杭頭が回転しないように制御する方法である。
テクニップ上面に設置した傾斜計により杭頭回転量を常に把握し、この読みに応じて鈴直力を決定した。回転補正桁端部に設置した鈴直ジャッキの下部には摩擦減衰ローラを取り付け、鈴直ジャッキの水平方向への移動を可能とした（写真-2）。鈴直ジャッキと回転補正桁との間に球面ブッシュを設置し、杭頭の回転や杭頭フーチングの破壊等により回転補正桁が傾いた場合でも確実に鈴直力を伝達できる構造とした。

試験体と水平載荷ジャッキの間には、摩擦減衰ローラと球面ブッシュを取り付け、載荷に伴い杭が引抜かれようすることによって生じる鈴直変位を拘束しないようにするとともに、杭頭が傾斜した場合でも載荷荷重の鈴直成分が杭に作用しないようにした。

b) 引抜力に対する検討

回転補正桁を鈴直ジャッキにより押し上げると杭体に引抜力が作用する。回転補正桁を長くすれば、杭頭の回転補正に必要な押し上げ力が小さくて済み、引抜力は小さくなるが、実験の制御が難しくなる。本研究では、引抜力による杭体の曲げ剛性への影響等を小さくすることを主眼とし、補正桁の長さを6mに決定した。鈴直ジャッキにより杭に作用する最大引抜力は、非線形有限変形モデルによる終局水平荷重から終局杭頭モーメントから、170～180kN 程度と予測された。

この引抜力が杭の断面力に及ぼす影響は、杭体断面の引張応力に換算して 0.3～0.4 (N/mm²) と杭体コンクリートの引張強度（2.7N/mm²）に比べて約1/10以下である。図-3に曲率に応じて杭体の曲げモーメントと曲率の関係（以下、M-ρ関係と呼ぶ）を示す。図に見られるように、鈴直変位200 mmの場合の杭体の曲げモーメントで1%と非常に小さく、無視できる値であると言える。

さらに、杭の引抜抵抗力、地盤強度×周面積と

<table>
<thead>
<tr>
<th>表-2 水平載荷実験の計測項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>機器名</td>
</tr>
<tr>
<td>東動計</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

（平面図）

（側面図）
図-5 地表面地盤の計測位置（光沢測定）

図-6 枠前面地盤地変位の計測位置

図-7 枠の計測位置

b）地盤変位

地表面変位は、図-5 に示すように枠前面地盤上にターゲット設置し、三次元光沢測定により計測した。地中変位は、図-6 に示すように枠前面地盤2ヶ所をポーリングし、孔内に傾斜計を設置し、計測した。計測点は軸杭の想定される変形モードの違いを考慮した。短杭は、剛体が回転するような変形が予測されることから、1D 間隔 (D: 枠径, 80cm) で GL-4.0m と枠全長間隔、長杭は、変形が大きい GL-6.4m までの浅い領域では短杭と同じ間隔、変形が小さい深い領域は最下点 GL-12m の位置のみとした。

c）杭体変形

杭体の挙動は、図-7 に示すように載荷軸方向の正負側 2ヶ所にひずみゲージを設置し、計測した。杭体の曲がりが最も大きくなる浅い領域では横断面積を小さく (D/4 = 20cm, D: 枠径) とすることで横断面積を広げるように配置した。フーチングから杭頭の抜け出しを想定してフーチング内の鉄筋にもゲージを貼付した。短杭は杭底部の回転が生じることを予め予想し、杭下端に傾斜計を設置し、回転量を計測した。

(4) 載荷方法

載荷方法は多サイクル方式とし地盤工学会「杭の水平載荷試験方法・同解説」の9を参考にし、設定した。ただし、載荷に伴う地盤の変形を計測するため地表面変位測定を行うことから、処女荷重時の荷重保持時間を 20 分と通常より長くした。制御方式は、杭及び地盤が降伏したと判断できるまでは荷重制御とし、降伏以上は変位制御とした。

水平力と回転補正桁による鉄筋力を同時に載荷することは制御が難しいことから、最初に水平力を与え、次に傾斜した杭頭を水平になるように補正桁で鉄筋力を与えることにより杭頭回転固定条件を保持した。補正桁で杭頭を水平に引き戻すことにより水平荷重、変位が変動するが、ここでは水平荷重、変位として回転補正桁による補正後の値を採用した。他の計測データも補正後の値を採用した。

3. 実験結果

(1) 杭頭荷重と水平変位の関係

杭頭荷重と水平変位の関係を図-8 に示す。長杭は水平変位が約 500mm まで載荷したため、この場合の図も併記して示す。図中の Per, Py, Pu はそれぞれひび割れ発生、鉄筋降伏、終局時の荷重を示す。ひび割れ発生と鉄筋降伏は鉄筋ひずみから判断し、終局は圧縮線コンクリートが圧壊する時点と考え、RC 断面の計算結果から求めた値とした。最大荷重は短杭が 540kN, 長杭で 760kN であり、短杭は長杭の約 70% であった。これらの値を表-3 にまとめて示す。両杭とも終局荷重 Pu 以降荷重が増大しているのは、せん断補強筋を十分に配置していることから、杭体の一部が圧壊しても杭頭部に塑性化した領域（ここでは塑性ヒンジ 10 と呼ぶ）を形成して、荷重を分担できるためと考えられる。
位が支配され、その後抗頭部の鉄筋が降伏し、さらに圧縮側コンクリートが圧壊して塑性ヒンジが形成され変位が進展したものと推測される。

短杭において水平荷重280kN時に変位が戻っているの、今回初めて回転補正桁を使用することから、初期から280kNまでの間の載荷で回転補正が十分でなく、変位が大きめにでたためである。長杭において大変形時に荷重変動が大きいのは、水平変位128mm以下杭頭のD鋼取付部が破損し回転補正（杭頭固定）が完全にはできなかったことが原因である。

最大水平変位は短杭で94mm（杭径の12%）、長杭では480mm（杭径の60%）までと、両杭とも最終段階に至るまで急激な耐力の低下が認められない。短杭では最終変位δu=94mm、長杭では回転補正桁による補正が十分にできなくなるまでの変位δu=128mmに対し、これらの鉄筋降伏荷重（Py）時の変位δyで除すことにより剛性率μ（=δu/δy）を算定すると、短杭で4.3以上、長杭で6.7と十分な剛性を有することが確認された。

(2) 杭体の曲げモーメント分布、変位分布

杭体の曲げモーメント分布、変位分布を図-9、10に示す。曲げモーメントは、杭体の鉄筋ひずみから曲率を算出し、断面剛性の低下を考慮したRC断面の計算により求めた杭のM—δ関係（図-11）を用いて算出した。杭体の材料物性値を表-4に示す。

コンクリートの物性値は杭体打設時のテストビースを載荷試験日に試験して求めた値。鉄筋の物性値はミルシートの値である。図中に弾性支承上の梁としたChangの式11)1による値も併記した。この場合、地盤反力係数は後述する図-23の物性値を基に、平均的な変形係数から道路橋仕方書・同解説11)12)を参考に算定した値（1.67×104kN/m³）を用いている。境界条件として、短杭では杭下端を自由、杭頭を固定、長杭では杭下端を半無限長、杭頭を固定としている。

杭体の変位分布は、鉄筋ひずみから出力した曲率分布を3次スプライン関数で近似し、これを2階積分することにより求めた。境界条件として、短杭では杭下端の回転角（=計測値）と杭頭水平変位（=計測値）を、長杭では杭下端の回転角（=0）と水平変位（=0）を用いた。

短杭の曲げモーメント分布は杭頭部にのみピークがあり、先端部は終局時ではほぼゼロである。変位分布からわかるようにGL3.5mの位置を中心として剛体が回転するような挙動を示す。杭頭に塑性ヒンジが発生することにより終局を迎えており、荷
重変位関係でも確認されたように急激な傾斜は生じていない。曲げモーメントの値は、ひび割れ荷重（Pcr）、鉄筋降伏荷重（Py）、終局荷重（Pu）のいずれの段階でも Chang の式に比べて 70～80% と小さい。杭体が線形性を保有しているひび割れ荷重段階でも実測値が小さいのは、この段階でも地盤の降伏により地盤反力が深度方向に分散され、地盤の非線形性の影響が無視できないためと考えられる。それ以降の荷重段階では、地盤の非線形性に加え、杭体の非線形性の影響のため、その差は拡大する。

長杭の曲げモーメント分布は、杭頭と地中部（GL-3m）の2箇所にピークが見られ、GL-7m 以深ではほとんどゼロであり、短杭とは明らかに異なっている。定性的には Chang の半無限長杭をよく似た挙動を示すが、短杭の場合と同様曲げモーメントの値は各荷重段階で Chang の式に比べて 50～60% と小さい。杭頭部に塑性ヒンジが発生して終局に至ったが、杭頭だけでなく地中部でもひび割れ発生モーメント（Mcr : 130kN-m）を超えており、ひび割れが発生したことが推測される。ただ、地
表-4 材料の材料物性値

<table>
<thead>
<tr>
<th>区分</th>
<th>項目</th>
<th>単位</th>
<th>物性値</th>
</tr>
</thead>
<tbody>
<tr>
<td>材体</td>
<td>単位体積重量</td>
<td>kN/m³</td>
<td>24.0</td>
</tr>
<tr>
<td>コンクリート</td>
<td>壓縮強度</td>
<td>N/mm²</td>
<td>33.3（短杭）</td>
</tr>
<tr>
<td></td>
<td>引張強度</td>
<td>N/mm²</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>弾性係数</td>
<td>N/mm²</td>
<td>3.1×10⁴</td>
</tr>
<tr>
<td>鉄筋</td>
<td>降伏強度</td>
<td>N/mm²</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>弾性係数</td>
<td>N/mm²</td>
<td>2.1×10⁵</td>
</tr>
</tbody>
</table>

中部の鉄筋は降伏までには至っていない。曲げモーメントの反転位置は、いずれの荷重段階でもChangの式に比べて浅い。これは杭頭が塑性化し、さらに塑性ヒンジが形成されることにより、応力が再配分されているためである。変位分布はGL-4m

以浅で大きく、それ以深は非常に小さい。

(3) 材体前面地盤の挙動

地表面変位測量による地盤の水平ベクトル変位分布、鉛直変位分布および終局荷重時の中表面ひび割れのスケッチ（目視観察）を図-12, 13 に示す。杭体近傍の前面地盤は持ち上がりながら水平に変位し、短杭、長杭ともほぼ同様な傾向を示している。

これらから、杭の截荷による地盤の影響範囲は地表面ではほぼ杭中心から前方4m、杭中心から左右方向に1.5〜2m程度と判断される。地表面のひび割れは前方3m程度の位置まで観察され、杭長による破壊形態に顕著な違いは認められなかった。地表面のひび割れの進展状況は、荷重・変位関係が直線的に近い状態にある杭体のひび割れ荷重（Pcr）時まで、いずれの杭も杭側面から截荷直角方向の引張
ひび割れのみが生じた。鉄筋降伏荷重（Py）時までには、杭側面の引張ひび割れが進展するとともに、杭前方斜め方向のせん断ひび割れが形成された。それ以降、終局荷重（Pu）時までには、斜め前方のせん断ひび割れに加え、杭前方地盤の圧縮に伴う引張ひび割れが多数発生し、変形する地盤の領域が収束する傾向が見られ、地盤中にすべり面が形成されたことが推測される。

地盤の水平変位の深度分布を図-14に示す。杭頭部終局荷重（Pu）時を除いて、地盤の水平変位は長杭の方が大きい。終局荷重時の杭頭変位は、図-8のとおり、短杭は61mmと長杭の33mmの約2倍あるが、地表面変位はほぼ同程度である。これは、短杭と長杭の変形挙動の違いに起因しており、短杭では杭体中に中心を有して回転するモードであるのに対し、長杭は深部地盤に固定された片持ち枠に似た挙動を示し、短杭に比べて変形が深部まで及んでいるためである。

杭前面地盤のすべり面について検討する。本実験の場合、杭頭に載荷していること、表層地盤は深部に比べ拘束が小さく強度も小さくことから、地盤の塑性化が杭頭部から次第に深部に向かって進行性破壊と考えられる。地盤が剛塑性的に破壊したとすれば、すべり面内に歪みが集中して局所化するため、せん断歪みが極大となる箇所がすべり面と判断される。しかしながら、本実験のように破壊が杭頭部から進行的に行う場合、変位は表層から深部に行くに従い順次蓄積されていくため、図-14に示すように、表層で大きく、深部で小さくなる変位分布となる。そこで最終的なすべり面は、せん断歪みが急増する箇所として推定する。長杭について、図-10、14を用いて算定した地盤のせん断歪みの深度分布を図-15に示す。せん断歪みが急増する箇所を計測点が多くないことから深度の領域で示すと、
杭表面で深度2〜3m, 杭中心から1.4mの断面で深度1.6m〜2.4m, 杭中心から2.4mの断面で深度0.8m〜1.6mである。地表面はびび割れの最外線3mと判断すると、すべり面が地表面と成す角度は25〜40度で、表層1mは粘性土のためこれより急な角度になると考えられる。

平面的なすべり面も同様に考える。短杭について、図-12を用いて算定した杭中心から1mのラインのセん断歪みの平面分布を変位分布と併せて図-18に示す。せん断歪みが急増する箇所は、杭中心から1mのラインでは、杭中心から0.5〜1mの左右に広がった領域である。これら、すべり面は杭体から斜め前方10〜30度の広がりを有していると判断される。

(4) 杭体の破壊状況

杭体の破壊状況を確認するため、実験終了後杭頭部を半面だけ掘削し観察した。図-17にスケッチの展開図を示す。両杭ともフーチングからの鉄筋の抜け出し部は認められず、ジャッキ側のコンクリートが圧壊し、補正側に向かってせん断びび割れを発生している。

両杭とも引張側のびび割れ間隔は約15cmとフープ筋間隔とほぼ等しく、塑性ヒンジ長は杭頭から約60cm（約0.75D, D: 杭径, 80cm）であった。塑性ヒンジ長は、コンクリート構造物の終局形態に影響するものである。既往のコンクリート柱や梁の応力における実験から、塑性ヒンジ長はせん断スパン比や軸力等の影響を受けるが、平均的には0.5D程度、長くとも1.5D程度と言われている109。杭基礎のような地中構造物においても、これと同程度の値であることが確認できた。

(5) 引抜力の影響

終局時の荷重荷重は両杭で170〜180kN程度と事前解析で予測したが、実際には短杭、長杭でそれぞれ164kN, 215kNと概ね予測値と一致した。従って、杭体のM-φ関係への影響も小さく、杭断面に発生する引張応力も軽微と判断される。図-18に終局荷重Pu時における鉄筋歪み（正負側の平均値）の深
度分布を示す。これより鉄筋管が大きい部分は杭頭に限定される深部には及んでいない。さらに、この区間は両杭とも60cm程度と前述の塑性ヒンジの区間と相当する。引抜力から算定される鉄筋の管径は数m程度となることから、杭頭部の鉄筋管径が大きいときは、水平力により曲げ耐力、その後の載荷により増大したためであり、水平力による影響を判断される。長杭の深度12〜4mの位置における管径がやや大きいのを図-9の曲げモーメント分布と対比しても分かることとなり、水平力による曲げの影響である。

以上のとおり、本実験装置では杭体の引抜力が作用するが、その影響が杭の水平挙動に及ぼす影響は無視できるものと判断される。

4．提案モデル

実験結果から、短杭は剛体的な挙動を示し、長杭はChangの半無限長杭に近い挙動を示すことが確認された。本研究では、実験結果を基に両者を統一的に表現できる実用的な解析モデルを以降に提案する。

（1）解析モデル

解析モデルの概要を図-19に示す。解析モデルは設計上の簡便性を考慮して梁バネモデルとした。地盤ドアはウィンクルバネとして、杭前面、側面、底面に、それぞれ水平直バネ、水平せん断バネおよび鉛直バネを設置した。地盤の非線形特性はパライニア型とし、杭体については前述の図-11に示したように、曲げひび割れ発生と鉄筋降伏による剛性低下を考慮したトリリンニア型のM-φ関係でモデル化した。地盤のバネモデルの概要を以下に示す。

a）水平直バネ（杭前面）

前述の図-12, 13より、地中表面変位は常に杭前面で最も大きいか、大変形時の杭表面のひび割れは杭前面で卓越することから、杭体の挙動を
再現する上で水平直すべりパネが最も重要である。

地盤パネの特性はバイリニア型としたことから、パネ定数と地盤反力の上限値によって決定される。本研究では、パネ定数は杭長に変動するが、地盤反力係数をパネを用いて表現する。杭の有効幅を、短杭の解析を想定することを考慮し、杭の基礎の式に基づく 0.8R（R：反力）とした。

地盤反力の上限値は、前節の実験結果から浅い領域では杭前面地盤が持ち上がることがあることを示し、水平に変形していると推定される深い領域では杭が短くなると考えられることから、図-20 に示すように 2 つの領域に分けて設定し、上限値は、そのいずれか小さい方とした。

浅い領域は、杭前面地盤が持ち上がりないように斜め上方向に変形し、降伏を超えると力の伝達される領域が収束してすべり面が形成されると推測される。地盤反力の上限値は、本研究では、岸田等 19) の研究を参考にして、図-21 に示すようなすべり土塊の抵抗から定まる一次倒数の抵抗値 P_i(z) とした。P(z) を以下に示す。

ここで、すべり土塊の地表面との交差角度 θ および平均的な杭の反力角度 ϕ を考慮して、地盤の内部摩擦力を削減する表-6 および図-40 として前述の実験結果と比較すると、図-5 のとおり、概ね整合した結果が得られたと判断される。

<table>
<thead>
<tr>
<th>区分</th>
<th>項目</th>
<th>單位</th>
<th>物性値</th>
</tr>
</thead>
<tbody>
<tr>
<td>表層シルト</td>
<td>一義体積重量</td>
<td>kN/m³</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>N 値</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>粘着力</td>
<td>kN/m²</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>内部摩擦角</td>
<td>度</td>
<td>0</td>
</tr>
<tr>
<td>細砂</td>
<td>一義体積重量</td>
<td>kN/m³</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td>N 値</td>
<td>-</td>
<td>4～26</td>
</tr>
<tr>
<td></td>
<td>粘着力</td>
<td>kN/m²</td>
<td>10～20</td>
</tr>
<tr>
<td></td>
<td>内部摩擦角</td>
<td>度</td>
<td>38～41</td>
</tr>
</tbody>
</table>

\[P(z) = \frac{\partial R(z)}{\partial z} = \left(\frac{Dz + \frac{z^2 \tan \phi}{\tan^2 \theta}}{\sin \theta \cos \phi} \right) \cdot \gamma \cdot \cos^2 \theta \cdot \tan \phi \]

ここに,

\[P_i(z) : \text{深さ z における単位深さ当たりの地盤反力の上限値} \]

\[R(z) : \text{深さ z における地盤反力の上限値} \]

\[D : \text{杭径} \]

\[\theta, \psi, \beta : \text{図-21 に示す角度} \]

\[\gamma, c, \phi : \text{地盤の単位体積重量、粘着力、内部摩擦角} \]

\[K_0 : \text{静止土圧係数} \]

深い領域の地盤は上載荷により拘束されるため、水平方向にのみ動くと考えられる。本研究では、国府田等 19) の研究を参考にして、深い領域の地盤反力の上限値を、図-22 に示すような表面荷重として水平土圧が作用する杭径 D の幅を有する浅い基礎の支持力値 P(z) とした。P(z) を以下に示す。

\[P_2(z) = B_z \times [c(N_c + J_z N_q) + \gamma \cdot z \cdot K_s \cdot N_q] \]

ここに,

\[P_2(z) : \text{深さ z における単位深さ当たりの地盤反力の上限値} \]

\[B_z : \text{杭の有効幅 (0.8D)} \]

\[N_c, N_q : \text{支持力係数} \]

\[K_s, J_z : \text{応力係数} \]

\[N_c = \exp(3\pi/2 - \phi) \cdot \tan \phi / (1 - \sin \phi) \]

\[N_q = (N_c - 1) \cot \phi \]
b) 水平せん断パネ（杭側面）
パネ定数は道路橋示方書を参考に水平直パネの0.3倍とした。杭の有効幅は水平直パネと同様に道路橋示方書のケーンソーン式に準じて0.8Dとした。地盤反力の上限値は拘束圧（静止土圧）に応じたせん断強度から算定されるせん断抵抗値 $P_s(z)$ とした。

$$P_s(z) = B_s(c + K_{o2} z \tan \phi) \quad (3)$$

c) 鉛直パネ（杭底面）
杭底面は、特に短杭に見られたような杭体の回転に伴う底面反力の影響を考慮できるように、反転ばねを模擬して剛な梁に鉛直パネを複数設置することでより表現した。

パネ定数は道路橋示方書の鉛直方向地盤反力係数とし、杭底面の作用面積を乗じて算出した。地盤反力の上限値はテルツーハギの鉛直支持力とし、浮き上がりに対しては抵抗しないものとした。

表7 解析と実験の比較（単位：kN）

<table>
<thead>
<tr>
<th></th>
<th>短杭</th>
<th>長杭</th>
</tr>
</thead>
<tbody>
<tr>
<td>解析 Pe</td>
<td>実験 Pe</td>
<td>比率 Pe/Pe</td>
</tr>
<tr>
<td>ひび割れ発生荷重（Pcr）</td>
<td>80</td>
<td>240</td>
</tr>
<tr>
<td>鉛直降伏荷重（Py）</td>
<td>360</td>
<td>400</td>
</tr>
<tr>
<td>終局荷重（Pu）</td>
<td>560</td>
<td>520</td>
</tr>
</tbody>
</table>

（2）地盤の物性値
解析に用いる地盤の物性値は、載荷実験の前に実施した杭位置における地盤調査結果を基に設定した。せん断強度定数等の地盤物性値はポーリング孔から採取した不摂乱試料の三軸圧縮試験結果から求めた値を用いた。これらの値を表6に示す。

地盤パネ定数の基となる変形係数の深度分布を図23に示す。これらは、N値、孔内水平載荷試験、PS検層、ダイラメータ試験の各原位置試験結果およびポーリング孔から採取した不摂乱試料の三軸圧縮試験結果から算定される変形係数を試験の歪みレベルに応じて補正係数 α を乗じた値である。補正係数 α は道路橋示方書に参考に決定した。ただし、三軸圧縮試験結果はこの α を用いると他の試験結果より大きく、整合しなかったため、実際の試験の歪みから見直した。これらの結果はややばらつきはみられるが、図23に併記したコーナ直入試験結果と比較すると地盤の硬軟の傾向を適切に捉えている。

（3）提案モデルによる解析結果と実験結果
a）杭荷重と水平変位の関係
実験結果と提案モデルによる解析結果を図24に示す。

短杭は、初期段階から終局段階まで実験結果を精度良く再現できている。長杭は、初期段階は実験結果に比べて解析結果の方が変位が大きめであるが、降伏荷重で終局段階では実験結果を精度良く再現できている。実験結果でも述べたとおり、短杭は、荷重280kNまで回転補正が十分でなかなかったことから、それまでの変位の実験値はやや大きめである。従って、解析結果との整合性は長杭と同様の傾向と判断される。初期段階での実験結果と差が見られるのは地盤パネをバイリニア型でモデル化していることが主な変因と考えられる。

ひび割れ発生荷重（Pcr）、鉛直降伏荷重（Py）および終局荷重（Pu）について、提案モデルと実験結果の比較を表7に示す。両杭ともひび割れ発
図-25 短杭底面の回転角（実験と解析の比較）

図-26 杭体の曲げモーメント分布（実験と解析の比較）

図-27 杭体の変位分布（実験と解析の比較）

生荷重（Per）を除いて、実験結果と良く一致している。これは、地盤パネをバイリニア型にモデル化しているため、解析では初期荷重段階の地盤剛性は実際よりも小さく、載荷荷重を実際以上に杭体で分担していることが原因と考えられる。初期荷重段階の再現性を向上させるためには、地盤パネをより現実に近くモデル化することが重要である。

実際の杭基礎設計で用いられる実用的な変位範囲は概ね杭径の1％程度（本実験では8 mm程度）であるが、杭の変形を許容する性能設計に移行していくに従い、荷重・変位曲線の変位が急増するいわゆる降伏程度までを設計に取り込まれていくことが予測される。本解析は初期荷重段階では同一荷重に対してやや変位が大きい、いわゆる安全側の値を与えるものの、終局段階まで精度よく再現できていることから、有用な手法になりうるものと考え方される。
5. まとめ

短杭と長杭について、杭頭固定条件で大変形水準載荷実験を実施し、以下の事項が明らかになった。
(1) 杭頭にモーメントを与えることにより、単杭を杭頭固定条件として載荷する装置を考案し、この条件で大変形載荷実験を行うことができた。
(2) 杭頭の変位量約100mm。長杭は約500mmまで載荷したが、いずれの杭も急激な耐力低下はみられず、弾性率は短杭で4.3以上、長杭で6.7と十分な強度を有していることが確認された。
(3) 杭頭は深部で転倒モードとなるなど長杭と変形モードは異なるが、杭頭に塑性ひずみが形成されて終局に至り、破壊形態に大きな違いはなかった。杭頭の塑性ひずみ長も両杭で0.75D（D：杭径）とほぼ同一であり、既往の気中における梁等の実験結果である0.5～1.5Dと同程度であることを確認できた。
(4) 杭の載荷により、表面地盤の変形選は荷重の増加につれて収束する傾向を示し、すべり面が形成されることが推測された。また、想定されるすべり土塊の地表面における広がり角度は10～30度、傾斜角度25～40度と既往の研究と概ね整合する結果であった。
(5) 本体、地盤の非線形性を取り入れた解析モデル（梁パネルモデル）を提案し、これによる解析の結果、長杭、短杭ともに、終局に至るまでの杭頭荷重・変位関係、断面力を精度良く再現することができた。杭頭荷重・変位関係における鉄筋降伏荷重、終局荷重の推定精度は、実験値の80～110%と高い、変形を許容する性能設計を行う上で有用な手法と判断される。

参考文献
1) 大矢、李、佐藤、博、松島、学、藤崎、泰輔：土木学会第55回若手学術講演会、2000.9.
2) 佐藤、博、李、大矢、松島、学：杭基礎の終局挙動に関する実験的研究、杭基礎の耐震設計法に関するシンポジウム、土木学会、pp.15-20、2001.9.
3) 大西寛和、山本達夫、田中浩：場所打ちコンクリート杭の終局水平耐力、土質工学会第8回土質工学会研究発表会、pp.1041-1044、1983.6.
4) 小笠原経文、食谷雄一、川口光雄、堀川：杭基礎の耐力に関する研究、構造工学会論文集、Vol.37A、pp.1467-1477、1991.3.
5) 村木健、幸左貫、伊藤正則、坂本行徳：場所打ち杭の大変形水平挙動に関する研究、構造工学会論文集、Vol.39A、pp.1385-1394、1993.3.
7) 小野勇、山田英作、南田邦男、松井邦人、松浦義：粘性土地盤における杭頭固定条件と水平抵抗に関する研究、地盤工学会第32回地盤工学研究発表会、pp.1591-1592、1997.7.
8) 吉岡正道、前田良文、脇田和志、三日月勇：実大杭基礎を用いた水平載荷試験、土質工学会第23回土質工学会研究発表会、pp.1447-1448、1988.6.
9) （社）地盤工学会：杭の水平載荷試験方法・同解説、1983.
10) （社）日本建築学会：鉄筋コンクリート造建物の耐震性能設計指針（案）・同解説、pp.112-114、1997.
11) （社）日本道路協会：道路橋設計方書・同解説、IV下部構造編、pp.238-369、1996.
12) 岸田英明、中井正一：地盤の破壊を考慮した杭の水平抵抗、日本建築学会論文集、第281号、pp.41-55、1979.7.
13) 国府田誠、樋並昭：杭の水平荷重に対する耐震設計法に関する研究（斜杭および斜め荷重を含む）第1報 杭の受動土圧に関する解析法、日本建築学会論文報告集、第345号、pp.79-91、1984.11.
14) 阪原美知夫、髙木章次、中谷昌一、田口敬二、坂本昭夫：載荷試験データによる杭の水平抵抗特性に関する
STUDY ON THE BEHAVIOR OF FULL-SCALED SINGLE PILES WITH ROTATION-FIXED HEAD UNDER LARGE LATERAL DEFORMATION

Hiroshi SATO, Takashi OHYA and Manabu MATSUSHIMA

This paper describes the behavior of full-scaled single piles with rotation-fixed head under large lateral deformation. Most of the real structures have rotation-fixed head, whereas there have been few tests of single piles in its condition. Also, it is difficult to evaluate the ultimate state of a short-length pile, since the behavior is affected by the rotation of the pile bottom. In this study, the tests were conducted with use of new test apparatus for a short-length and a long-length cast-in-place pile with the diameter of 80 cm in condition that the pile heads were fixed. According to the test results, it was found that both piles had sufficient ductility and that plastic hinges were formed at their pile heads in their ultimate states. Furthermore, the applicability of nonlinear beam-spring model proposed in this study was also confirmed for load-displacement relationship and bending moment of both piles.