有料化自治体における自家焼却問題の実態分析
－滋賀県守山市の事例－

山川肇 1・神下高弘 2・寺島泰 3

1 正会員　工博　京都府立大学助手　人間環境学部環境デザイン学科（〒606-8522 京都市左京区下鴨半木町1-5）
2 工修　日本工営コンサルタント　国際事業本部（〒102-0083 東京都千代田区麹町2丁目5）
3 フェロー会員　工博　大阪產業大学教授　人間環境学部都市環境学科（〒574-8530 大東市中城内3-1-1）

本研究では、滋賀県守山市を事例として、有料化自治体における自家焼却問題の状況と対策の可能性について検討した。その結果、塩素汚染の環境負荷が大きなものとなっている可能性とともに、慢、すす等による生活環境被害が住民にとっては大きな問題となっており、それらへの対策の必要性が示された。住民の要望としては、燃やす時間、風向きの制御、火の防犯、プラスチックごみを燃やさない等、自家焼却することの前提とした対策が計画されていただけ、集落内で自家焼却を行う世帯が多く、自家焼却世帯が密集している実態、またプラスチックを燃やしていないつもりの世帯でも少なくないプラスチック類を燃やしている実態等から、これらの対策による問題の改善は困難であると考えられた。以上の分析により、自家焼却自体の抑制が必要であると考えられた。

Key Words : backyard burning, variable rates, waste composition, volatile chlorine, residents’ perception

1. はじめに

北海道伊達市において、有料化によりごみ処理量が大幅に減量したとの報告があつて以来 1-3），ごみ減量施策として有料化が注目を集めており、その導入も広がってきている 4）。しかしながら、有料化については疑問点、問題点も指摘されている。

このような問題点として、しばしば挙げられるものの1つに自家焼却がある。中村ら 5)、天野ら 6)の研究によれば、有料化実施例に平均1割程度の世帯が自家焼却を開始していると報告されており、有料化によって一定程度自家焼却が増加することは事実と考えられる。

一方、有料化自治体において、自家焼却がどのように行われ、どのような問題が発生しているのかについては、これまで必ずしも明らかにされてこなかった。中村ら 7)は伊達市の住民に対する調査において、有料化のメリットの第3位として「焼却による煙害・悪臭」が挙げられていたと報告しており、自家焼却による煙害が地域住民にとって問題となっていたことは報告しているが、その具体的な状況についての報告はない。しかも自家焼却問題の対策を検討する上では、問題の実態、および、その構造を把握する必要がある。

そこで本研究では、滋賀県守山市を事例として、有料化自治体における自家焼却問題の実態を住民意識に基づき把握するとともに、その問題構造を自家焼却が行われている地域状況と自家焼却の態様、及び、自家焼却対象ごみの組成とその中に含まれる揮発性塩素の量の点から明らかにする。

なお田中ら 8)の調査によれば、有料化後の守山市の自家焼却世帯の割合は54%であり、調査されている12自治体の中ではほぼ平均的な自治体である（平均値58％、最小値31％、最大値72％）。本研究では、守山市を有料化自治体における自家焼却の平均的な事例と考えて、考察を行う。

2. 調査地域、及び、調査の概要

(1) 守山市の清掃事業の概要

守山市は滋賀県の南西部、琵琶湖の南東岸の平坦地に位置する。京都・大阪方面的通勤圏内にあり、人口は毎年約1%増加している。調査年度である1995年度末時点で人口62,660人、18,631世帯である。産業構造としては、第二次、第三次産業従事者がほぼ半数ずつを占め、産業従事者は数％となっている。

ごみの収集事業は1954年に一部で始まり、1969年に自治体全域の収集を実施している。有料化の実施は1982年で、処分料削減が緊急の課題になっていたことが
<table>
<thead>
<tr>
<th>表-1 ヒアリング調査の実施状況</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>回答数</td>
</tr>
<tr>
<td>在または拒否</td>
</tr>
<tr>
<td>不在または拒否</td>
</tr>
<tr>
<td>計</td>
</tr>
</tbody>
</table>

有料化導入の主要な理由となっている。この有料化の前後、1980〜1984年度の間に、自治体が受け入れたごみ処理総量が約3分の1に減少している。ただし、この中に建設廃材の搬入規制など有料化以外の施策の効果もあるものと思われる。

調査を行った1995年現在の分別収集の状況は、「焼却ごみ」、「破砕ごみ（不燃ごみ＋粗大ごみ）」、「焼却消し」、「資源ごみ（新間・古布）」、「資源ごみ（チラシ雑誌類）」、「資源ごみ（空き缶）」、「資源ごみ（空きビン）」、「乾電池」、「分別ごみ」という分別区分となっている。プラスチック類は、原則破砕ごみに出すことにとなっている。焼却ごみは週2回収集で、紙製の指定紙袋袋である。指定紙袋袋は大袋（約25L）・小袋（約17L）あわせて1世帯当たり年間110枚で価格が変わる。110枚までが大袋20枚/枚、小袋が17枚/枚であり、111枚目からは150枚/枚となる。破砕ごみは週1回収集で、指定エフを付けての記名排出である。指定エフは年間56枚まで無料で、57枚目からは150枚/枚である。その他、焼却消し専用の指定エフが年間6枚配られている。焼却消しに出す時は破砕用ガスと焼却用ガスが必要である。資源ごみ4分別の収集はそれぞれ毎月2回で、地域毎、品目毎に曜日が決めており、集積所に配置されるプラスチックケースに分別して排出される。

(2) ヒアリング調査、及び、自家焼却ごみ調査の概要

a) 調査地区の概要

自家焼却ごみ調査、及び、ヒアリング調査の対象地区は、住宅地区、農業地区、商業地区と考えられる自治会から1自治会ずつ計3自治会を選んだ。

住宅地区として選んだF自治会は、古からの集落で比較的大きな家族が多い。新しい一戸建ての家もあり、また分譲住宅地、団地、高層マンションなども混在する。

b) ヒアリング調査

上記の3自治会において面接調査法による質問紙調査を行った。ただし、インタビュー調査を同時に行った世帯もある。調査期間は1995年6月から9月で、一部の集会住宅を除き、全戸を訪問した。

表-2 自家焼却ごみの回収状況

<table>
<thead>
<tr>
<th>地区</th>
<th>自家焼却対象ごみ種</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>F自治会 (住宅地区)</td>
<td></td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>T自治会 (農業地区)</td>
<td></td>
<td>18</td>
<td>9</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>U自治会 (商業地区)</td>
<td></td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td>32</td>
<td>15</td>
<td>29</td>
<td>76</td>
</tr>
</tbody>
</table>

a: 自家焼却で、ラップ・卵バケツ両方を燃やしていると答えた世帯
b: 自家焼却で、ラップが燃やし、卵バケツは燃やさないと答えた世帯
c: 自家焼却で、ラップも卵バケツも燃やさないと答えた世帯

なお、この結果に基づいて、自家焼却を行っている世帯を、自家焼却対象ごみ種に基づいて以下の3グループに分類した。

a) グループ：卵バケツなど形のあるプラスチック製品を含めて燃やすることは燃やす
b) グループ：ラップなどシート状のプラスチックと紙類を燃やす
c) グループ：紙類のみ燃やす

各グループの数は、卵バケツやラップに注目し、卵バケツやラップを燃やしているかはaグループ、ラップは燃やし卵バケツは燃やさない場合にはbグループ、いずれも燃やしていないグループとした。

回答の得られた世帯は、F自治会141世帯、T自治会135世帯、U自治会82世帯であった。回答状況については表-1に示す。

c) 自家焼却ごみ調査

自家焼却ごみ調査の上記のヒアリング調査によって自家焼却を行っているかを問った一戸建て世帯を対象とし、普段各家庭で焼却するごみを2週間前留めておいてもらい、それを回収・分析することを行った。依頼は1995年9月22日から25日の間に回収・分析は28日、29日に行った。

サンプリングには、各自治会のa〜cグループそれぞれのデータ数が少なくなりすぎるように配慮しながら行った。bグループについてはどの自治会も少なかったため、bグループとわかった全世帯に依頼した。

以上の手続きの結果、89軒で貯留を承諾、最終的に回収できた世帯数は76軒であった。表-2に回収できた世帯数を示す。
3. 自家焼却による生活環境への影響

(1) 方法
ここでは、自家焼却による生活環境被害の状況について質問紙調査をもとに分析するが、特にどのように意識されているかを具体的に知るために、主として記述式の問いを用いた。ただし、集計は、これらの回答の中から、代表的な被害の内容、被害の原因を整理し、コード化して行った。

(2) 結果と考察
「ごみを家で燃やすのは、近所迷惑も甚だしい」という意見に対する評価を選択式で尋ねたところ、図-1のようないわゆる結果となった。「近所迷惑も甚だしい」と感じている割合は14%，多少なりとも近所迷惑であると感じている割合は約7割にある。この結果は、多くの住民は自家焼却を問題視していることを示している。

そこで、自家焼却による具体的な問題状況を把握するために、困っていること、気にしていることについて記述式で尋ねた。分析した結果を表-3〜表-5に示す。実際に困っている内容については記述のあった家庭は3分の1強となった。その内容について分析した結果を表-3〜表-4から、火災が発生する住宅の状態、火事の発生状態、火事の原因、火事の影響等について、特に重要性が高いものとして分析を行なった。

(3) 質問紙調査の概要
自家焼却に関する状況や問題点等について全市の状態を把握するために質問紙調査を行った。調査対象の非公式調査では、守山区の全世帯数で、そこで住民登録台帳に基づいて約80世帯を抽出した（世帯総数は1995年11月30日時点で18,554世帯）。抽出方法は、訪問に基づいていける小学校区を基にして、各世帯に対し比配分した層別無作為抽出法を用いた。調査期間は1995年1月1日から同年1月24日であり、結果は有効回答数464（有効回収率58.0%）となった。なお質問紙調査は守山区市民病院関係課と共同で実施した。
表-3 自家焼却で困っているもの

<table>
<thead>
<tr>
<th>焼いて 有機ガス すす 灰 火の粉 その他</th>
<th>％の基数</th>
</tr>
</thead>
<tbody>
<tr>
<td>煙 37%</td>
<td>25%</td>
</tr>
</tbody>
</table>

表-4 自家焼却で困っていること

<table>
<thead>
<tr>
<th>洗濯物 布団 健康・不快感 火事の危険 車 家の中 その他</th>
<th>％の基数</th>
</tr>
</thead>
<tbody>
<tr>
<td>割合 61%</td>
<td>11%</td>
</tr>
</tbody>
</table>

表-5 自家焼却についての要望

<table>
<thead>
<tr>
<th>焼やす時間と風を場所をブラリガタを火の始末をその他</th>
<th>％の基数</th>
</tr>
</thead>
<tbody>
<tr>
<td>割合 4%</td>
<td>23%</td>
</tr>
</tbody>
</table>

表-6 住居から住居から自焼けの程度

<table>
<thead>
<tr>
<th>いつも</th>
<th>ときどき</th>
<th>ほとんど</th>
<th>焼かない</th>
<th>％の基数</th>
</tr>
</thead>
<tbody>
<tr>
<td>一戸建て</td>
<td>75%</td>
<td>17%</td>
<td>8%</td>
<td>160</td>
</tr>
<tr>
<td>一戸建て大</td>
<td>30%</td>
<td>27%</td>
<td>43%</td>
<td>171</td>
</tr>
<tr>
<td>一戸建て小</td>
<td>53%</td>
<td>22%</td>
<td>26%</td>
<td>337</td>
</tr>
<tr>
<td>集合住宅</td>
<td>6%</td>
<td>3%</td>
<td>91%</td>
<td>94</td>
</tr>
<tr>
<td>全体</td>
<td>43%</td>
<td>17%</td>
<td>40%</td>
<td>460</td>
</tr>
</tbody>
</table>

※一戸建ての大小は250㎡を基準に分けた。以下同様とする。

そこで以下では、自家焼却の実態をより詳細に明らかにするとともに、風向きや時間などへの配慮や、プラスチック類の燃焼の抑制等の燃え方の配慮による、自家焼却問題の改善の可能性について検討する。

4. 自家焼却世帯の分布と自家焼却の態様

(1) 自家焼却の普及状況

表-6 に住居形態別の自家焼却の実施状況を示す。自家焼却の普及率は、「いつも燃やしている」と「ときどき」を併せて全体で6割。一戸建て大においては8割以上になっている。特に普及率が高い、田中ら82による守山市、松山市の調査結果（47％）と、本調査における「いつも燃やしている」割合（43％）はほぼ等しく、田中らの報告以外に、ときどき燃やす世帯も一定数あると思われる。

3では、約7割の住民が自家焼却を問題視していることを示したが、自家焼却を行っている世帯は約5割であり、近所迷惑と感じる自宅が自家焼却を行っている世帯が一定割合存在することがわかる。こうした背景から、自家焼却を禁止すべきという要望が少なく、風向き等に配慮して燃やすべきという要望が多かったのではないかと考えられる。近所迷惑と感じつつも燃やすのは、ごみを減らすためにであると考えられるが、自家焼却の持つ有益な要素については、別紙10にて分析を行っているので、ここではこれ以上立ち入らない。

なお、一戸建ての大小は敷地面積が250㎡の世帯を基準としているが（以下、同様とする）。この250㎡という数値は、図-2～4の図の図のように、ヒアリング調査結果をプロットした図から経験的に得た数値である。なお集合住宅ではほとんど燃やされていないが、少数ながら自家焼却が存在する。ヒアリング調査では、アパート等の共同焼却布で燃やしている。借りている家で燃やしている等の事例が見られた。そのような世帯も少数ながらあると考えられる。

自家焼却の普及状況をより具体的に示すために、ヒアリング調査結果から作成した3地区の自家焼却世帯の分布図を図-2～4に示す。参考までに、生ごみ処理状況とあわせて示している。図-2が住宅地区、図-3が農業地区、図-4が商業地区である。図-3の農業地区では自家焼却世帯の割合は75％と非常に高く、図-2でもほとんど世帯で燃やされているのが見て取れる。農業地区ではあるが生ごみ処理のみという世帯はなく、自家焼却のみの世帯も多い。自家焼却のうちでも、自家焼却の方が生ごみ処理より普及している。

しかしながら、本研究の農業地区だけでなく、図-2の住宅地区や、図-4の商業地区でもかなりの割合で燃やされている。特に商業地区では、生ごみ処理を行っている世帯はほとんどないので、自家焼却を行っている世帯は相当数になる。農業地区だけでなく、かなり家の混ざった商業地区でも、やはり自家焼却の普及率が高いことがわかる。図-2の住宅地区の左側に、建売り住宅がきりきり立ち並んでいるが、ここでもかなりの割合で自家焼却が行われている。しかしこの場合で売り住宅
図-2 自家処理帯の分布（住宅地区）

地区的地図上の自家焼却帯率を計算してみると 33％であり、一戸建て小の 30％と同程度である。また図-4 の商業地区においても、かなり込み入ったところに至るまで自家焼却帯が存在するが、この地域の自家焼却帯の割合も 35％と同程度である。このように自家焼却帯帯率が 30％というのも、一戸建て小の住宅が多い地域にあっては、自家焼却帯が密集していることを意味しているといえよう。

(2) 自家焼却の態様

それでは、これらの世帯は、どのような時間に、どのような場所で、どのように燃やしているのであろうか。以下、一戸建て大、小の別に、自家焼却の具体的状況を検討していく。

自家焼却を行なっている場所について質問した結果を表-7 に示す。ただし、分析対象の自家焼却行動の時間に対して「いつも燃やしている」、「ときどき」のいずれかを選択した世帯のみとした（以下、断りのない限り「4(2) 自家焼却の態様」について同様、表によれば自家焼却帯のうち 3 割弱の世帯は離れた場所で燃やしているが、家の敷地内で燃やしている世帯が最も多く約 5 割であり、家の周りで燃やす世帯も 2 割弱存在する。
表-7 住居広さ別の自家焼却場所

<table>
<thead>
<tr>
<th>家の敷地内</th>
<th>家の周り</th>
<th>離れた場所</th>
<th>会社</th>
<th>その他</th>
<th>%の基数</th>
</tr>
</thead>
<tbody>
<tr>
<td>一戸建て大</td>
<td>56%</td>
<td>7%</td>
<td>35%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>一戸建て小</td>
<td>48%</td>
<td>33%</td>
<td>15%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>一戸建て計</td>
<td>52%</td>
<td>18%</td>
<td>27%</td>
<td>2%</td>
<td>1%</td>
</tr>
</tbody>
</table>

表-8 住居広さ別の自家焼却の方法

<table>
<thead>
<tr>
<th>金属製荷物</th>
<th>ドラム缶</th>
<th>一斗缶</th>
<th>手作りの炉</th>
<th>野焼き</th>
<th>その他</th>
<th>%の基数</th>
</tr>
</thead>
<tbody>
<tr>
<td>一戸建て大</td>
<td>33%</td>
<td>35%</td>
<td>3%</td>
<td>18%</td>
<td>13%</td>
<td>3%</td>
</tr>
<tr>
<td>一戸建て小</td>
<td>4%</td>
<td>13%</td>
<td>24%</td>
<td>12%</td>
<td>8%</td>
<td>3%</td>
</tr>
<tr>
<td>一戸建て計</td>
<td>5%</td>
<td>26%</td>
<td>11%</td>
<td>15%</td>
<td>11%</td>
<td>3%</td>
</tr>
</tbody>
</table>

表-9 住居広さ別の自家焼却の頻度

<table>
<thead>
<tr>
<th>月1回以下</th>
<th>月1回〜2回</th>
<th>週1回〜月2回</th>
<th>週1回〜週2回</th>
<th>週2回〜毎日</th>
<th>%の基数</th>
</tr>
</thead>
<tbody>
<tr>
<td>一戸建て大</td>
<td>6%</td>
<td>8%</td>
<td>21%</td>
<td>27%</td>
<td>37%</td>
</tr>
<tr>
<td>一戸建て小</td>
<td>10%</td>
<td>8%</td>
<td>36%</td>
<td>31%</td>
<td>15%</td>
</tr>
<tr>
<td>一戸建て計</td>
<td>8%</td>
<td>8%</td>
<td>28%</td>
<td>29%</td>
<td>28%</td>
</tr>
</tbody>
</table>

表-10 住居広さ別の燃やす時間帯

<table>
<thead>
<tr>
<th>朝</th>
<th>午前</th>
<th>午後</th>
<th>夕方</th>
<th>夜</th>
<th>その他</th>
<th>決まっていない</th>
<th>%の基数</th>
</tr>
</thead>
<tbody>
<tr>
<td>一戸建て大</td>
<td>35%</td>
<td>9%</td>
<td>7%</td>
<td>17%</td>
<td>3%</td>
<td>2%</td>
<td>28%</td>
</tr>
<tr>
<td>一戸建て小</td>
<td>30%</td>
<td>9%</td>
<td>2%</td>
<td>32%</td>
<td>6%</td>
<td>0%</td>
<td>21%</td>
</tr>
<tr>
<td>一戸建て計</td>
<td>32%</td>
<td>9%</td>
<td>5%</td>
<td>24%</td>
<td>5%</td>
<td>1%</td>
<td>25%</td>
</tr>
</tbody>
</table>

ことも示唆される。このように集落内で燃やしている世帯が多い状況においては、風向きを配慮することで自家焼却問題を回避することは困難であると考えられる。特に自家焼却世帯が集積している状況においては、難しいようである。住民からの要望として挙げられた風向きを考えると対策方法については、有効な方策は今見えないと考えられる。

次に自家焼却方法の割合を表-8に示す。自家焼却方法としては市販の焼却炉が全体の3分の1程度を占め、ドラム缶が約4分の1、手作り火がこれに続く。野焼きは1割程度存在する。簡易焼却炉においては煙突付のあるものもあるが、いずれにしても装置面からの環境負荷削減対策以外に等しい。なお作り火は主としてコンクリートブロックを積み上げたもので、ヒアリングにかわるような火を使うのか尋ねたところ、良い。安、持ち運ぶ、等の回答が得られた。金属製の焼却炉等は数年で使えなくなってしまってコストが高くなるためにこのような方法で自家焼却が普及していると思われる。この自家焼却方法を住宅特性に検討すると、一戸建て大ではドラム缶が最も多く、一斗缶等はほとんどないが、一戸建て小ではドラム缶や一斗缶がともに多く、ドラム缶は1割程度であり、一斗缶等は2割以上を占める。ヒアリングの観点からは、焼却炉もいつも50L前後の小さい簡易焼却炉が多く、敷地面積が狭い世帯では小さな炉で少しずつ燃やしているものと思われる。

さらに燃やす時間帯について記述すると、1〜2週間で1回、週1〜2回、週2回以上のがほぼ3割ずつ残りが月2回以下となっている。毎日との回答も、一戸建てで大18%、一戸建て小で7%あった。基本的に日常的に燃やされている状況が読み取れる。
表-12 自家焼却ごみ組成-自家焼却対象ごみ種目一

<table>
<thead>
<tr>
<th>物理組成</th>
<th>用途・形状</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>紙類</td>
<td>ボックス・紙パック</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>その他の容器包装材</td>
<td>23</td>
<td>26</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>新聞紙・雑誌</td>
<td>61</td>
<td>50</td>
<td>4</td>
<td>74</td>
</tr>
<tr>
<td>PR紙</td>
<td>12</td>
<td>9</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>15</td>
<td>20</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ラップ類</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>トレイ・パック類</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>塩ビレイト</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ボトル類</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>その他の容器包装材</td>
<td>10</td>
<td>13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>金属類</td>
<td>カラス類</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>亜鉛電池</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ガラス類</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>木片類</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>繊維類</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ゴム類</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>泥混類</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>断熱材</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ごみ等</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>サンプル量（kg）</td>
<td>58</td>
<td>23</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

a: 自家焼却で、ラップ・紙パック両方を燃やしていると答えた世帯
b: 自家焼却で、ラップは燃やし、紙パックは燃やさないと答えた世帯
c: 自家焼却で、ラップも紙パックも燃やしていないと答えた世帯

害を改善する余地があると考えられるが、朝・夕の時間帯は家事や忙しい時間帯であり、徹底するのは困難ではないかと考えられる。

以上、守山市の自家焼却の実態について詳細に検討した。その結果、3つで示唆されたように、自家焼却に際して燃やす時間帯や天候に十分な配慮は実際にあまり行われていないことが明らかとなった。それにもかかわらず多くの世帯が集団内で燃やしており、また自家焼却世帯が集団として燃やっているため風向きの配慮をし難しい状況にあることも明らかとなった。このことから、風向き等の配慮による問題の解決は困難であると考えられた。時間帯の配慮の徹底による放射物質被害の改善の余地は残されているが、忙しい時間帯であり、徹底は困難ではないかと思われた。

5. 自家焼却ごみの組成

次に、守山市において、実際に普段自家焼却をしているごみの組成を調査し、特にプラスチックがどの程度燃やされているかを明らかにする。

何を通じて自家焼却するにしても種々の不完全燃焼生成物等の問題は起こると考えられるが、特にプラスチック類の自家焼却は問題が大きいと思われる。しかしながら、これまで有効化自治体における自家焼却ごみの組成についての報告はなく、どの程度プラスチック類が含まれているのかについてのデータはない。

有効化自治体以外では山口ら10による松原市の報告がある。山口らはモニター調査と質問紙調査により松原市の全ごみを推定し、その中で家庭系ごみの99%が自家処理されていることを報告している。自家処理ごみ組成としては生ごみ36%、紙類・木くず類51%で、プラスチック類は3%であり、これは生ごみ全体の99%、紙類・木くず類の12%、プラスチック類の5%にあたっている。しかしながら有効化自治体では、有効化によって自家焼却が促進されている可能性があり、そのため組成においても差が見られる可能性がある。本研究では、このような非有効化自治体の調査事例としても比較しながら、その組成の特徴について検討する。

またプラスチック類の自家焼却に特に問題があるとすれば、プラスチック類を分別することで問題が緩和される可能性がある。そこで、自家焼却におけるプラスチック類の分別可能性について検討する。

(1) 分析方法

組成分析に用いた自家焼却ごみのサンプルは、2(3)で述べた自家焼却ごみ調査によるものである。本研究では、貯留を依頼した世帯から回収した自家焼却対象ごみを、自家焼却対象ごみ種によるグループごとに、各組成に分類し、重量、容積を計測した。このうち組成別の湿重量に基づいて、自家焼却対象ごみ種によるグループごとの湿重量%を求めた。

分類項目は物理組成を第一分類とし、用途・形状を基準に更にいくつかに分類して、計24項目とした。分類項目は表-12に結果とともに示している。

なお、明らかに普段燃やしていないと思われた、紙をおたふくが入った袋については、分析対象から除外した。また、判定基準は特記の袋に大量に出てきたが、この割合を推定するにはより多くの、または長期の調査が必要であると考え、今回は除外した。この結果、自家焼却の割合は、判定基準を除いた割合である。

(2) 結果と考察

調査結果を表-12に示す。2(2)bで述べた自家焼却対象ごみ種に基づくグループ別のごみ組成を示している。

まず物理組成について見ると紙類が全重量の60～74%と最も多く、ついでプラスチック類が11%～25%と多くなり、プラスチック類も主要な自家焼却ごみとなっていることが分かる。一般収集ごみ中のプラス
チック類の割合としては神戸市11.1％、仙台市14.6％、京都市15.2％（いずれも浸没量基準、1998年度調査）等の値が報告されており 10) 自家焼却ごみ中のプラスチック類の割合は、プラスチック類を混合収集している大都市の収集ごみ中のプラスチック類の割合に匹敵するか、むしろ多い。基本的には収集ごみと比較して、自家焼却ごみ中の焼却分ごみが小さいことがその理由と考えられるが、プラスチック類の割合がかなり高いごみを自家焼却していることにかわりはない。3 では、プラスチックごみの自家焼却中を求める声が少なくなかったが、その背景には、相当量のプラスチック類を自家焼却しているという実態があることが明らかとなった。

一方、用途・形状について見たとき、容器包装材が多いことがわかる。紙製容器包装材は全体の27～39％、プラスチック製容器包装材はプラスチック類のほぼすべてで、全体の10～24％である。さらに金属類のその他の中には、アルミとプラスチックの複合材料による袋である。これもすべて容器包装材とする。合計で51～54％となり、自家焼却ごみの約5割は容器包装材であることが明らかとなった。このことは容器包装ごみの増加が自家焼却ごみ量の増加につながっている可能性を示すとともに、自家焼却ごみ量の削減のためには、容器包装ごみの削減が必要であることも示している。

焼却分ごみ内では、いわゆる台所の焼却ごみも一部混入していたが、一般的の焼却とは異なり果物ごみなどにより金属類を多かった。これらが焼却分ごみのごみ分にどれか、そのごみごみの割合が自家焼却の対象になり得るのを自家焼却ごみとして排出されるものと考えられる。

ここでプラスチック類の割合について、先に引用した松戸市の調査結果 11) と比較する。ただし松戸市の自家処理ごみには焼却ごみの堆肥化が含まれているので、比較のためにはこれを除いて自家焼却ごみ中のプラスチック類の割合について考える必要がある。ここでは、松戸市の自家焼却ごみ中の焼却ごみ（焼却分）の割合が、本研究の a→b グループにおける焼却ごみの割合の平均値 7％に等しいと考える。このとき、松戸市の自家焼却ごみ中の紙類・木くず類の割合は74％、プラスチック類の割合は4％となる。この値と本研究におけるプラスチック類の割合を比較すると、プラスチック類の少ない a→b グループでも松戸市の値の約3倍で b→c グループでは約6倍となっている。この結果からは、有料化により、プラスチック類の自家焼却が増加した可能性が示唆される。

次に自家焼却分ごみの焼却のごみ分ごみのグループ別に分類し、自家焼却ごみごみのグループ別に分類し、全体的である a→b の分類割合はほとんど同じであったが、c グループはそれぞれと異なっていた。c グループでは、プラスチック類が10％強まもなく、自家焼却ごみ中の焼却ごみを燃やす機会をもっているか否か、プラスチック類の自家焼却に影響を及ぼしていたものと考えられる。このことは、プラスチック類を分類し、自家焼却しない可能性を示すものではある。しかしながら、基本的にプラスチック類を燃やさないつもりである c グループにおいても割程度はプラスチック類となっていることとも事実であり、プラスチック類を完全に分類して燃焼することは困難であると考えられる。

このような、今回の調査ではプラスチック類の割合が10～25％程度と多く、そのことが自家焼却の問題を大きくしている可能性が示唆された。またこれは既存の有料化自治体の調査結果よりも多く、有料化によりプラスチック類の焼却が増加した可能性も示唆された。また、プラスチック類の分類・燃焼については、ある程度の削減は可能であると考えられるものの、完全に燃焼するのでは困難であろうと考えられた。

6. 自家焼却ごみ中の揮発性塩素

5 では、松戸市の調査において、少なくないプラスチック類が自家焼却されていることが確認された。プラスチック類の中には塩素が含まれている可能性があるが、揮発性塩素を含むごみの自家焼却は、有害な塩素化水素や有機塩素化合物を発生させる可能性があり、プラスチック類の中でも問題が大きいと考えられる。3 では燃焼ガスの有害性の問題は、住民からはあまり出されていなかったが、自家焼却ごみ中のプラスチック類の割合を考えると、実際には相当な量が出てくる可能性もある。そこでこうした環境負荷を軽減するための基礎として、ここでは自家焼却ごみ中の揮発性塩素的量を明らかにする。

(1) 試料と測定方法

自家焼却ごみ中の揮発性塩素の測定には、5 の調査で用いたサンプルを再分類した後、乾燥、粉状に破砕した試料を用いた。具体的には、表12の組成ごとに円錐四分法により細分し、これを「紙類」、「プラスチック類」（「ポトル類」、「トレイ・パック類」、「ラップ類」、「その他」、「木質アルミ」、「他の可燃物」）の7組成に再分類した。なお各グループ間で組成ごとの揮発性塩素量には差がないと考え、グループ a のごみを 3 グループの代表サンプルとしている。

この試料を800±10℃に設定した電気管状炉で完全燃焼させ、燃焼ガスを吸収液に取り込んだのち、吸収液中の塩素イオン濃度をイオン電極法により測定し計算する。この結果により、自家焼却ごみ中の組成別揮発性塩素の量を求めた。測定装置を図5 に示す。なお、事前の塩素ビ
表-14 自家焼却ごみ1kg中の揮発性塩素量
(г-Cl/kg-wet Waste)

<table>
<thead>
<tr>
<th>物理組成</th>
<th>用途・形状</th>
<th>挥発性塩素量</th>
<th>参考データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>紙類</td>
<td>ラップ類</td>
<td>0.00</td>
<td>ー</td>
</tr>
<tr>
<td></td>
<td>トレイ・バック類</td>
<td>0.21</td>
<td>0.28 (11)</td>
</tr>
<tr>
<td>プラスチック類</td>
<td>ポチ類</td>
<td>0.11</td>
<td>0.09 (9)</td>
</tr>
<tr>
<td></td>
<td>その他</td>
<td>0.01</td>
<td>0.04 (17)</td>
</tr>
<tr>
<td>金属類</td>
<td>混合アルミ</td>
<td>0.04</td>
<td>0.04 (39)</td>
</tr>
<tr>
<td>その他可燃物</td>
<td>ー</td>
<td>0.03</td>
<td>ー</td>
</tr>
</tbody>
</table>

※参考データは秋山らによる製品中の揮発性塩素の測定値。
平均値 () 内はサンプル数。

以上の結果は、揮発性塩素の量は、一般的に収集ごみの量と同程度か、むしろ高いものと思われる。なぜなら、各物理群の単位重量あたり揮発性塩素の量は一般の収集ごみと同程度であり、三者あたる塩素源となっているプラスチック類の割合が一般的収集ごみと同程度かむしろ高いと考えられたからである。筆者らは、生産者における自家焼却ごみ量を可燃性ごみ量の約1/3と推計している(図)が、このような大量のごみが自家焼却されている。揮発性塩素量も多い含まれていることから、自家焼却は大きな環境負荷発生源になっていると考えられる。

7. おわりに

本研究では、滋賀県守山市を事例として、有料化自治体における自家焼却問題に関する住民の意識を把握するとともに、その問題の構造を、自家焼却が行われている地域状況と自家焼却の様態、及び、自家焼却対象ごみの組成とその中に含まれる揮発性塩素の量の点から検討した。
その結果、廃棄物の環境負荷も大きなものとなっており、可能な限り効率よく処理する必要がある。このため、家庭で焼却する方法が一般的であり、特に夏の乾燥期には頻繁に見られる。

自己焼却を抑制するための方策については、別稿で詳しく論じているが、ここでは述べない。これにより有効化により自家焼却が増加している実態があるため、今後の有効化の検討に際しては、有効な自己焼却抑制策が望まれる。

謝辞：本研究の際には、多くの守山市府の皆様と守山市環境課の方々のご協力をいただいた。またごみの分析に際しては、地域計画建築研究の小泉洋子氏、福岡雅子氏に、サンプルの破壊に際しては、大阪市立環境科学研究所の伊藤真也氏、渡辺恵氏に、それぞれ大変お世話になった。ここに記して深く感謝する次第である。

参考文献
1) 習安新聞：1990年6月10日、p.10、1990。
2) 佐藤勝美：ごみリサイクル、岩波新書、1990。
3) 中村恵子：有効化がもたらしたごみ減量・資源化への関心、月刊廃棄物、1991-1、pp.116-1174、1991。
4) 山本修作：ごみ有効化施設と住民の反応、月刊廃棄物、2000-12、pp.48-50、2000。
5) 田中信雄、中田英樹、関田正大：一般家庭における資源消費

節約型生活に対するごみ有効化の効果に関する研究、平成6年度科学研究費補助金（重点領域研究「人間地球系」）研究成果報告書、1995。
6) 天野拓也：ごみ有効化によるごみ減量化と住民のごみ処理意識に関する研究、環境システム研究、Vol.24、pp.419-424、1996。
7) 中村恵子：有効化の原点をみつめて、市民の立場からみた有効化後の実態及び市民意識、月刊廃棄物1994年2月号、pp.9-22、1994。
8) 阿部直実、西谷信雄、落合由紀子：エコサイクル社会、有り蔵、1997。
9) 守山市生活環境部生活環境課：守山市廃棄物処理事業概要、平成11年度版、1999。
10) 山川隆、神下高弘、寺島千秋：有効化自治体における自家庭焼却収集の影響。廃棄物学会論文誌、Vol.13、No.1、pp.12-21、2002。
11) 山口正義、朝田修司、横田信男、中村信夫、松戸内から生ずるごみの絶対出数と物量について、都市消振、第42巻、第170号、pp.231-244、1989。
12) 廃棄物研究会（編）：Fact Book廃棄物基本データ集1999、（財）日本環境衛生センター、p.13、2000。
13) 秋原哲、加藤武生、西沢千恵子：都市ごみ中の有効物質の由来調査（その2）、昭和54年度東京都清掃研究所研究報告、pp.1-27、1981。
14) 久保田宏、内田重男、菊地明、片山新太、土屋達雄、鈴木信男、犬伏伸一、加茂浩：都市ごみ中の揮発性塩素について、都市と廃棄物、Vol.12、No.8、pp.15-23、1982。
15) 山川隆、神下高弘、寺島信：有効化自治体における自家庭焼却ごみ総量の推定とその削減可能性一滋賀県守山市を例として一、環境システム研究論文集、Vol.29、pp.263-271、2001。

(2001.7.16 受付)

ANALYSIS OF BACKYARD BURNING PROBLEMS IN A COMMUNITY WITH A VARIABLE RATE PROGRAM: A CASE STUDY OF MORIYAMA CITY

Hajime YAMAKAWA, Takahiro KAMISHITA and Yutaka TERASHIMA

In this study, we examined environmental problems caused by backyard waste burning by residents, and possible solutions to this problem, based on a case study of Moriyama, Shiga Prefecture. Results revealed a significant smoke and soot problems caused by such burning, in addition to a possible increase in chlorine pollution. Residents asked that any solution allow them to continue burning on their property. However, possible corrective steps such as restricting burning times, monitoring wind direction, extinguishing fires after burning, and prohibiting burning of plastics, are likely to be difficult to put into practice due to prevalence of backyard burning. Moreover, many residents burn plastic without realizing it. We thus conclude that burning by residents must be restricted.