取放水管の合理的な断面方向の設計手法に関する研究

川島正史1・津田守2・金子雄一3・原田光男2

1正会員 工修 東電設計株式会社 地盤・構造部 （〒110-0015 東京都台東区東上野3-3-3）
2正会員 工修 東電設計株式会社 建設部 （〒100-0011 東京都中央区墨田区中央1-1-3）
3正会員 工修 東電設計株式会社 火力・原子力土木部 （〒110-0011 東京都台東区東上野3-3-3）

本研究では、火力発電所構内に埋設される取放水管の断面方向の設計に関し、限界状態設計法を導入し、要求機能と限界状態、考慮する荷重作用の組み合わせについて整理するとともに、それらに対する部分安全係数を設定した。また、構造解析には地盤の非線形性や管と地盤の相互作用を考慮した非線形FEMの適用を提案した。さらに、この構造解析の適用性を、土槽を用いた模型試験や実管の計測結果に基づき検証した。

Key Words : cross sectional design, buried steel pipe, limit state design, partial safety factors, non-linear FEM analysis

1. はじめに

取放水管は、火力発電所構内に埋設される大口径薄肉鋼管であり、復水器冷却用の海水を復水器まで導水する取水管と、復水器を通じた海水を海域へ導水する放水管の総称である。

埋設管はその力学特性から、剛性管とたわみ性管に分類され、取放水管は水道管と同様にたわみ性管の範疇に入るものの。その管、水槽から取放水管の設計は、WSP（日本水道鋼管協会）の規準1などに準拠し、許容応力型設計法により行われている。

許容応力型設計法では、想定された荷重のもとで部材断面に生じる応力を計算し、その値が許容値以内であることでの設計の妥当性が確認できるため、比較的簡便に設計できる利点を有している。しかしながら、荷重、部材寸法、材料強度、構造解析などがあるならばつきに対し、主に経験的に決められた安全性に基づいて許容応力度が設定されており、その設定根拠が曖昧であるといった課題がある。

一方、種々の構造物の設計において、許容応力度法から限界状態設計法への移行がなされており、最近の構造設計の趨勢となっている。限界状態設計法では、構造物に生じる限界状態と設計に用いる部分安全係数の関係を明確化することにより、限界状態ごとに所要の安全裕度を確保できるため、設計の合理化が図れるという利点を有している。

また、取放水管は周囲の埋戻し地盤と一体となって土荷重や上載荷重に抵抗するため、性管である。そのため、特に入念な縁固めにより埋戻される場合には、管の周囲の地盤による拘束効果、すなわち管と地盤の相互作用を適切に考慮することにより、管に生じる断面力や変形を抑制することができ、設計の合理化が図れると考えられる。これまで、たわみ性管の構造解析では、管と地盤の相互作用は、図1に示すSpanglerの土圧モデル10より考慮されている。このモデルは管の変形により生じる動圧上昇に着目した合理的なモデルである反面、管頂や管周の土圧分布形状を管や地盤の剛性にかかわらず一義的に決定する簡便なモデルであり、既往の研究においても、いくつかの問題点が指摘されている。

このような背景のもと、本研究では取放水管の合理的な設計手法構築のため、限界状態設計法の適用について検討した。すなわち、取放水管に要求される機能を明確にし、種々の荷重ケースに対応する限界状態を取放水管の模型実験に基づき設計した。また、部分安全係数については、既往の材料試験や品質管理試験などのデータを可能な限り反映し、定量的に評価した。さらに、構造解析では、地盤の非線形性や、管と地盤の相互作用を適切に再現するため、非線形FEMの適用を提案した。FEMの適用性については、土槽を用いた模型実験および実管の計測結果に基づき、埋戻し時ならびに上載荷重載荷時の挙動に対して検証した。
2. 取放水管の概要

取放水管の構造概要および埋戻し状況を図-2に示す。その特徴は以下のとおりである。
①内径(D)と管厚(t)の比で表す径厚比(D/t)は100〜250程度であり、ガス管や水道管の50〜100に対し大きく、たわみ易い
②管内面には防食と被覆着防止を目的として、高い硬度（一般的な塗料は鉛筆硬度がB程度であるのに対し、本塗料は5H程度）を有するガラスフレーク含有不飽和ポリエチル樹脂塗料を塗布
また、管の埋戻し方法は作業エリアなど工事の制約条件により異なるが、本研究では、取放水管の施工において代表的な以下の方法を対象とした。
③管の施工方式は施工エリアが十分に確保される状況を想定し、地山を法面状に掘削した後に管を設置し、管の周辺地盤を埋戻す方法
④埋戻しは砂質土を用いた密な締固め（通常の施工管理基準は締固め5%以上）
なお、上記方法以外にも、良好な地盤で掘削面が自立する場合に適用する溝掘りや、狭隘な場所で施工する場合に適用する矢板による土留がある。特に矢板を用いる場合には、矢板引き山時の地盤の破損により、管の変形が他の方法と比較して大きくなくなることが報告されている。このような条件下で施工される埋設管を対象とする場合には、解析モデル等の設定において別途検討が必要であると考えられる。

3. 考慮する荷重

取放水管の断面方向の設計では、以下の各荷重を、表-1に示す組合せにより考慮する。
①埋戻し土の土圧（土荷重）
②管自重および管内水重
③内圧
④上載荷重
⑤地震時荷重（応答変位など）
地震時荷重（応答変位など）
地震時荷重は、一般的なパイプラインでは管軸方向の設計で考慮されており、断面方向の設計では考慮されるとは少ない。一方、ボックスカルバートのような矩形断面の構造物では、断面方向に地震時荷重として応答変位を作用させた設計が行われている。この違いは、矩形断面と比べパイプは円形であり、応答変位を作用しても断面力が集中し難しいことが要因と考えられる。本研究では断面方向の設計を対象とするため、表-1に示すとおり地震時以外の荷重ケースを抽出し、それらを対象とした。
常時荷重、荷重ベースは通常運用時に想定される荷重であり、①〜④全ての荷重を考慮する。上載荷重については一般的にT-25荷重等が考慮される。
また、表中の搬入時と点検時では、発電所特有の荷重ベースであり、上載荷重は非常に大きいがその作用する期間が短いものである。搬入時には、発電所の建設の際に管上を通過する大型機器を積載したトレーラーの走行荷重（総重量5000KN程度）を考慮する。点検時と
表2 断面方向の設計における限界状態とその限界値

<table>
<thead>
<tr>
<th>限界状態</th>
<th>限界値</th>
</tr>
</thead>
<tbody>
<tr>
<td>終局限界状態</td>
<td>管体の断面降伏</td>
</tr>
<tr>
<td></td>
<td>（作用応力が所要の安全裕度を確保して降伏応力度以下）</td>
</tr>
<tr>
<td>使用限界状態</td>
<td>内面塗装の損傷</td>
</tr>
<tr>
<td></td>
<td>（塗装のひずみが所要の安全裕度を確保して2500μ以下）</td>
</tr>
<tr>
<td></td>
<td>管体の過大な変形</td>
</tr>
<tr>
<td></td>
<td>（変形量が所要の安全裕度を確保して直径の5％以下）</td>
</tr>
</tbody>
</table>

は、発電機などの保守点検時に相当し、発電機を吊り上げるための大型トラッククレーンの走行荷重（総重量1500kN程度）やそのアウトリガーの反力（設置範囲に50kPa程度）を考慮する。

4. 限界状態の明細化

(1) 要求機能と限界状態

限界状態の検討ではなく、対象構造物に求められる機能を明確にし、耐用期間中にその機能を果たさなくなるすべての状態を考慮する必要がある。取放水管には、「作用するあらゆる荷重条件下で、所定の運用水準で冷却水を通水する機能」が求められる。これを踏まえ、要求機能を確保するための限界状態として、終局限界状態と使用限界状態を設定した。表2に限界状態とその限界値を示す。なお、疲労限界状態については、埋設鋼管では振動荷重のような繰返し荷重は作用しないことから検討を省略することとした。

(2) 終局限界状態とその限界値

終局限界状態は鋼管の耐荷力を確保するための限界状態である。

鋼管の断面方向の耐荷力は、断面において一箇所が塑性化しても低下することなく、数力分析に塑性ヒンジが発生した時点で最大耐力に達することが知られている。このため、荷重レベルが大きく、作用頻度の少ない搬入時や点検時については、鋼材の塑性域を考慮した限界状態を設定できる可能性がある。しかしながら、本研究で対象とする搬入時や点検時の荷重は、発電所の供給前および供給中に必ず作用する性質を有しており、このような荷重に対して鋼材の一部が塑性化するという状態は好ましくないと考えられる。そのため、発電所の社会的重要性も勘案し、常時と同様に搬入時や点検時についても、健全であること（損傷なし）を保証することとし、断面降伏を限界状態として設定した。

(3) 使用限界状態とその限界値

使用限界状態は供給時の使用性および耐久性を確保するための限界状態である。

取放水管は、内面に防食用の塗装が施されており、内面塗装には、防食に加えて貫通を防止するため、一般塗装と比較して高い硬度を有するガラスフレーク含有不飽和ポリエステル樹脂塗装（塗装厚500μm）が使用される。この塗装は「硬いかもしれない」性質を持っており、一般の塗装と比較して、変形に対する追従性が劣ることが予想される。

また、過大な変形は通水断面の縮小、すなわち、使用性の低下を招くことになるが、径厚比が200程度になると、耐荷力の照査を満たしても、管体に過大な変形が生じ使用性を満たすことができない可能性がある。

これらより、本研究では使用限界状態として、「内面塗装の損傷」および「管体の過大な変形」を設定した。

a) 内面塗装の損傷の検討

内面塗装は通水用に作るガラスフレーク含有不飽和ポリエステル樹脂を塗装した鋼管の偏平試験を行い、内面塗装のはく離や亀裂といった損傷の発生限界について検討した。図3に実験の概要を示す。実験に用いた鋼管の径厚比D/H（D：直径、H：管厚）が77（CASE1）、160（CASE2）の2種類である。

実験結果を表3に示す。塗装のはく離の発生は、鋼材面と塗装面のひずみが追従しなくなった時点と定義した。表3より、塗装のはく離や亀裂は、径厚比の大ささにかかわらず両試験体ともほぼ同じ塗装ひずみ（はく離：2700～3000μ，亀裂：9600～10700μ）で発生していることが分かる。一方、その時点における変形
表-3 実験結果

<table>
<thead>
<tr>
<th></th>
<th>CASE1* (D/t=77)</th>
<th>CASE2* (D/t=160)</th>
</tr>
</thead>
<tbody>
<tr>
<td>はく離発生</td>
<td></td>
<td></td>
</tr>
<tr>
<td>塗装ひずみ(με)</td>
<td>3000</td>
<td>2700</td>
</tr>
<tr>
<td>鋼材ひずみ(με)</td>
<td>2950</td>
<td>2650</td>
</tr>
<tr>
<td>変形率(%)</td>
<td>5.0</td>
<td>6.3</td>
</tr>
<tr>
<td>亀裂発生</td>
<td></td>
<td></td>
</tr>
<tr>
<td>塗装ひずみ(με)</td>
<td>10700</td>
<td>9600</td>
</tr>
<tr>
<td>鋼材ひずみ(με)</td>
<td>8700</td>
<td>8600</td>
</tr>
<tr>
<td>変形率(%)</td>
<td>10.5</td>
<td>18.5</td>
</tr>
</tbody>
</table>

*：直径Dは、CASE1：609mm, CASE2：720mm
管厚は、CASE1：7.9mm, CASE2：4.5mm
**：変形率＝変形量δ/直径の初期値D₀

率は、径厚比により異なっている。このように、塗装のはく離と亀裂の発生点は、管の変形でなく、ひずみにより定義できる。

この結果から、塗装の損傷（はく離）の限界値を管体および塗装のひずみで2500μεとした。ただし、内部塗装の損傷に関する照査は、終局限界状態となる断面降伏に対する照査（例えばSM490の場合、1500με以下）に含まれるため、一般に略省可能である。今回試験した以外の塗装については、試験した塗装に比べ延性に富むことから同様の限界値を用いれば安全であると考えられる。

b) 管体の過大な変形に関する検討

上述の鋼管の扁平試験では、鋼管の変形率が5%程度であれば視覚的にも管体の扁平が顕在化せず、通水性（特に通水断面の確保）に支障をきたしたない範囲であると判断された。従って、扁平試験の結果に基づき、変形の限界値を直径の5%とした。

鋼管（SM490）の変形率とひずみの関係を図-4に示す。なお、図10は、ヤング率を一定とした場合の計算結果である。径厚比により、変形率5%に対する管の最大ひずみは異なっており、径厚比が大きい場合には変形の使用限界值が、径厚比が小さい場合には終局限界状態がそれぞれクリティカルとなる。

5. 部分安全係数の設定

（1）提案する安全係数

部分安全係数は、限界状態設計法で一般に考慮されているもの29)を用いる。すなわち、材料係数γₚ、部材係数γ₉、荷重係数γₗ、構造解析係数γₘ、構造物係数γ₀の5種類である。ここで提案する終局限界状態および使用限界状態の部分安全係数を、表-4、表-5に、それらの設定根拠を以下に示す。

（2）終局限界状態の部分安全係数

a) 材料係数

材料係数は、鋼材の降伏点のばらつきを考慮して設定した。設計では、一般にJIS等の規格値に基づいて材料特性を設定することが有用である。JISでは降伏点と引張強度が規定されているが、終局限界状態の照査では、降伏点を材料特性の限界値として用いる。ここでは、鋼材の降伏点のばらつきとJISの規格値との関係に基づいて材料係数を設定した。すなわち、鋼材の降伏点は載荷荷重に影響されること、静的載荷では降伏点の95%保証値としてJISの規格値を10%程度下回る場合があることが報告されている29)、29)、29) ことから、材料係数として1.1を設定した。
図-5 工場溶接部の放射線透過試験結果

表-6 埋め土の単位体積重量のばらつき

<table>
<thead>
<tr>
<th></th>
<th>γ・n数</th>
<th>変動係数 δ</th>
<th>95%上限値／平均値 (1+1.645 δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A地点</td>
<td>72</td>
<td>0.029</td>
<td>1.048</td>
</tr>
<tr>
<td>B地点</td>
<td>99</td>
<td>0.028</td>
<td>1.046</td>
</tr>
</tbody>
</table>

なお、鋼管には溶接部が存在するため、現行の埋設
鋼管の設計では溶接効率として安全率を考慮している
ものが多い。これに対し、断面方向の検討を対象とな
る製管時の溶接は工場で行われる自動溶接であり、
図-5に示すこれまでの品質管理（放射線透過試験）結果
によると、全数の90%程度を無欠陥であることに加え、
発生している欠陥の種類も、1種2類および2種1類以上
と高い品質が確保されていることが分かる。水門鉄管
技術基準などにも、この程度の欠陥は静的強さに
ほとんど影響がないと言われており、钢管の断面方向の
設計では溶接部が降伏点に与える影響は無視できる
範囲であると考え、材料係数に考慮しないこととし
た。

b) 部材係数

部材係数は、加工による残留応力と部材寸法のばら
つきの影響を考慮して設定した。一般に、大口径管に
はロールペンダ管が用いられる。これは、鋼板を曲
げた後、応力を解放（スプリングバック）して、溶接す
ることで製管される。そのため、管の弾性挙動には影響
しないと考えられる。また、部材寸法のばらつきに
ついても、取水管の場合、板厚の公差にマイナス側を
認めていないため、安全係数に考慮する必要はない。
これより、部材係数は1.0と設定した。

c) 荷重係数

荷重係数は、荷重のばらつきを考慮して設定した。
取水管の断面方向の設計で考慮する荷重の組合せは
表-1に示すとおりである。永久荷重のうち、管自重、
管内水重はそのばらつきがほとんど無いのに対し、土
重荷は地盤のばらつきを無視できない。上載荷重は、
考慮する荷重ケースに応じて荷重の値は異なるが、発
電所内を通行する車両重量は十分に考慮されており、
設計で想定した以上の荷重は作用しないと考えられる。
以上を踏まえ、荷重係数には土荷重のばらつきのみを
反映した。このうち、土被り厚については十分な精度
で管理されているため、単位体積重量のばらつきに着
目した。既往の建設地点の埋設し地盤での材料試験
データの統計分析によると、表-6に示すとおり、単位
体積重量の85%上限値は、平均値を5%程度上回ること
が判明したため、常時の荷重ケースについては土荷重
の荷重係数を1.05とした。常時の以外の搬入時等、短期
の荷重ケースについては、荷重の作用頻度を勘案し、
土荷重の荷重係数を1.0とした。

d) 構造解析係数

構造解析係数では、構造解析の不確実性を考慮した。
本研究では現行の解析手法に替えてFEMの適用を提案
している。後述のように、短期荷重が作用する場合、
今回提案したFEMによる解析結果は実現象と比較して
安全側の評価になることから、短期の荷重ケースにつ
いては、構造解析係数を1.0とした。

また、地中埋設管では、埋設し後に管の変形が進行
（変形に比例して使用応力も増加）する、いわゆる遅れ
変形が生じることが計測されている。常時の荷重状
態における遅れ変形を解析的に評価することは困難で
あり、一般に変形遅れ係数（砂地盤では1.1が用いられ
る）を解析結果に乗じることで考慮されている。今
回提案するFEMにおいても、現時点ではこの遅れ変形
を再現することができないため、常時の荷重ケースに
ついては、構造解析係数を1.1とした。

e) 構造物係数

構造物係数 γ 全体に、構造物の重要度、限界状
態に達した時の社会的、経済的影響を考慮して定めら
れ、1.0を1.2としてよいとされている。ここでは、
常時の設計では構造物係数を1.1とし、それ以外の短
期の荷重ケースでは1.0とした。

(3) 使用限界状態の部分安全係数の設定

a) 材料係数

鋼材の降伏点のばらつきは、使用限界状態に影響を
与えないため、材料係数は1.0とした。

b) 部材係数、荷重係数、構造解析係数及び構造物係数

部材係数、荷重係数、構造解析係数および構造物係数
は、先の述べた設定根拠をそのままに適用できるこ
とから、終局限界状態と等しく設定した。
6. 構造解析へのFEMの適用

(1) 土槽試験に基づくFEMの適用性評価

土槽試験の概要を図-6に示す。鋼管は、材質SS400、直径D: 609mm、管厚 t: 3.2mm（壁厚比D/t=190）とし、1600×5000×2000（mm）の土槽に土を500mmで埋め込み、基準土には細粒分を混ぜた（F=7%）を用い、締固めを締固め100%となるようパイププレーティにより行った。埋め込み終了後に鋼製の載荷板（750×1000mm）を用い、取放水管で想定される荷重レールを考慮して管頂圧力で200kPaまで載荷した。計測項目は、管のひずみおよび変形とした。

実験結果を図-7に示す。これらの図の横軸は管頂圧力P（=γH+p）、γ: 土の単位体係数重量、H: 土被り厚、P: 載荷圧力）を、縦軸はそれぞれ変形量および曲げひずみを示している。なお、曲げひずみは、載荷時に管全周で最大となる管頂部におけるもので、外引張を正とした。図-7から、管頂圧力が小さい範囲では管の変形量および曲げひずみ量の増加が一定であるのに対し、75kPa以上ではその増加が急激に大きくなることが分かること。このとき鋼材の破壊ひずみに達しておらず弾性範囲内であることから、この原因として地盤のひずみ増加にもとづく剛性の低下と考えられる。

本試験に対し、図-8に示す解析モデルを用いてFEM解析を行った。地盤および管は3節点アイソバラメトリック要素でモデル化し、取放水管の表面は滑面であり、管と地盤の境界に作用する摩擦は小さいと考えられるため、管と地盤の境界に5節点のジョイント要
表8 変位および曲げひずみ分布（実験模擬試験）

<table>
<thead>
<tr>
<th>段階</th>
<th>実位置（cm）</th>
<th>曲げひずみ量（μ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>段階1</td>
<td>左側:管頂+40cm 右側:管頂-1200cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>变位(mm)</td>
<td>[正:伸縮,負:収縮]</td>
</tr>
<tr>
<td>段階2</td>
<td>管頂+200cm (埋設終了)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>变位(mm)</td>
<td>[正:伸縮,負:収縮]</td>
</tr>
<tr>
<td>段階3</td>
<td>車両上載時</td>
<td></td>
</tr>
<tr>
<td></td>
<td>变位(mm)</td>
<td>[正:伸縮,負:収縮]</td>
</tr>
</tbody>
</table>

*：変形量の半分を計測位置両端の変位とした

素を設けることにより、管表面に生じる滑りを考慮した。
解析条件を表7に示す。解析1が地盤の非線形性を考慮しない線形解析、解析2が地盤の非線形性を考慮した解析である。解析1では、地盤剛性を管側位置での応力レベルに相当する地盤剛性とした。解析2では、地盤の非線形性をDuncan-Changモデルを用いて考慮した。このモデルのパラメータk, n, Rは、模型試験の縮小率（縮小率100%）を再現した3軸試験結果に基づいて設計した。ここでの解析に用いたパラメータの適合性は、図9の主応力差と軸ひずみの関係に示すとおりである。

図7-7に解析結果を試験結果と併記した。これより、地盤の非線形性を考慮した解析2は、管頂圧力が大きい段階を含めて実験値を良好に再現していることが分かる。一方、地盤を線形と仮定した解析（解析1）は、P=75kPa程度まではよく一致しているが、管頂圧力が大きくなると管の応力や変形を過小に評価する傾向となっている。

これらの結果から、上載荷重が大きい場合、地盤が非線形化すること、またその影響が管の挙動に表れることから、取放水管のように重量物を想定する埋設管の設計では、構造解析において地盤の非線形性を考慮する必要があると考えられる。

なお、本試験は取放水管より土被りが浅く、低拘束圧条件での結果である。ただし、地盤の剛性および強度の拘束圧依存性はDuncan-Chang法で考慮されるため、低拘束圧の影響は解析に反映されており、シミュレーション上は問題ないと考えられる。

(2) 実規模試験に基づくFEMの適用性評価
実規模試験は火力発電所の取水管を対象として行った。鋼管は、材質：SM490、直径D：2800mm、管厚t：24mm（径厚比D/t=110）として、管を2.0mで埋設した。
埋設状況は図2-2に示す通りである。埋設し土には細粒分混じり砂（Fc=9%）を用い、締固め90%以上となるよう水締めや転圧ローラーにより締め固めた。計算は、管の変位量（4方向）およびひずみ（8方向）について、管設置時から1時間ごとにを行い、埋設し過程における管の挙動を詳細に把握した。さらに、埋設し後に地表面に簡易舗装（石固定：20cm、アスファルト舗装：5cm）を敷き、車両（トラック総重量3000kN）上載時の管の挙動を併せて計測した。車両は図10（a）に示す荷重分布であり、後輪位置下が計測断面の直上となるように配置した。
管の変位分布および曲げひずみ分布の推移を表8に
表9 解析モデル（実規模試験、段階1～段階2）

<table>
<thead>
<tr>
<th>段階</th>
<th>状況</th>
<th>メッシュ図</th>
<th>ジョイント要素</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>左側管附+40cm、右側管頂+200cm</td>
<td>埋没土</td>
<td>原地盤</td>
</tr>
<tr>
<td>2</td>
<td>管頂+200cm（埋没し完了）</td>
<td>埋没土</td>
<td>原地盤</td>
</tr>
</tbody>
</table>

表10 実規模試験の解析条件

<table>
<thead>
<tr>
<th></th>
<th>剛性</th>
<th>206(GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼管 厚さ(Jis6)</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC法</td>
<td>5.3(GPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.3(*)</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>ρ</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>0.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>剛性</th>
<th>6.0(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>地盤</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.1(kN/m²)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>剛性</th>
<th>0.0(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ジョイント要素</td>
<td>c</td>
<td>20(*)</td>
</tr>
</tbody>
</table>

示す。変位分布では変形量の半分を計測位置両端の変
位とした。本解析では片側が先行して埋没されたため
偏圧が作用し、45°および315°方向の変位や曲げひ
ずみが大きくなくなっている（段階1）。また、埋没し終
了後の（段階2）も偏圧の影響が残っており、均等に埋没す
場合とは異なる挙動を示している。車両上載時
（段階3）では、埋没し終了後後側管頂ひずみがわずか
に（10μ）変化した以外は、変位、ひずみともほと
んど変化しなかった。

この実規模試験を対象にFEM解析を行った。厳密に
埋没し過程（段階1～段階2）を再現するため、表9に示
すモデルによるステップ解析とした。車両上載時
（段階3）には、図10(b)に示す解析モデルを用いた。
なお、ここでは、輪荷重が3次元的に分散すると考え
られるため、次のように作用方向の分散を考慮した。図
10(b)に示すように、管軸方向を対象に後輪同軸の
2輪分の荷重を含めたモデルを別の構成し、管頂位置
での鉛直圧力を求め、この圧力を図10(c)に示す断面
方向のモデルの輪荷重位置に作用させた。また、前輪
の荷重は後輪荷重の1/2となっている。

解析結果を表10に示す。本解析も、埋没し発盤の非
線形変形をDuncan-Changモデルを用いて考慮した。非
線形パラメータは、実規模試験の繰り返し状況（繰り返し
92%）を再現した3軸試験結果に基づいて設定した。

解析結果を計測結果と併せて表8に示す。表8の
変位分布は全段階で計測値を良好に再現している。一
方、曲げひずみ分布では、計測値と比較してやや差異
があることを示す。しかし、変化の大きい
45°および315°の方向では計測値をほぼ再現しており,
FEMの設計への適用性は十分であると考えられる。

(3) 現行設計手法との比較によるFEMの有効性の検討

ここでは、现行設計の構造解析手法における実規模
試験の車両上載時の管の変形とひずみを算定し、実
測値とFEMによる解析値と比較した。現行設計手法に
は図1に示すSpanglerの提案する土圧モデルを用いた。
その後、管頂部の鉛直荷重には図10に示すFEMにより
得られた管頂鉛直土圧を、地盤反力係数には実規模試
験での管側位置の応力レベルに相当する地盤剛性
(=16.5MPa)を用いた。
現行設計手法による算定結果を、先に述べた実測値およびFEM解析結果と併せて図-11に示す。現行設計では全体的に算定値との乖離が大きいことに加え、管底でひずみが最大となるなど、ひずみの分布形状も異なっている。一方、FEMでは現行設計と比較して実測値により近い状態が再現されており、FEM解析の有効性が確認されたと考えられる。

7. 試設計による合理化の検討

今回提案する設計手法（以下提案設計手法とする）により取放水管の試設計を行うとともに、その結果と现行設計手法による結果を比較して、その合理性を検証した。ここで提案設計手法とは、これまで述べてきたとおり、設計体系を限界状態設計法とし、構造解析に非線形FEM解析を用いた手法を指している。試設計の条件を表-11に示す。荷重ケースは大物搬入時を想定した。

提案設計手法では地盤の非線形性を考慮するため、図-12に示す応力差＝ひずみ関係を、管と地盤の境界には、表-10に示すジョイント要素を用いた。照査は表-2に示すとおりとした。

試設計結果を表-12に示すが、提案設計手法では管厚16mmで終局限界状態および使用限界状態（管の変形）の照査を満足した。なお、管体に作用する応力は管頂部分で最大となり、土槽試験と同じく上載荷重が卓越する場合の特徴を再現している。

現行設計手法ではSpanglerの土圧モデルを用い、管頂部の鉛直荷重はFEMから求めた管頂鉛直土圧を設定し、地盤反力係数は図-12に示すと同等とした。照査は許容応力度（常時の安全率1.7に割増係数1.5を考慮）に基づいて行った。その結果、管厚30mmで発生応力σ（2060MPa）が許容応力度σa（207MPa）以下となっただけでなく、管体に生じる応力は管頂部で最大となっている。FEMの結果とは異なっている。

両手法により算定された必要管厚は、以下のとおりである。
①提案設計手法による必要管厚：16mm
②現行設計手法による必要管厚：30mm

提案設計手法による必要管厚は、現行設計手法のおよそ半分となっている。これは、「取放水管に固有の条件を反映した限界状態や部分安全係数の設定」および「構造解析手法の高度化」によって達成できた結果であるといえる。本例では、特にFEMを用いることにより、取放水管の発生応力および変形を精度良く解析した効果が顕著に現れていると考えられる。
8. 結論

取放水管の断面方向の設計合理化を目的とし、限界状態設計法を導入した。その基本的な考え方を示すとともに、構造解析手法としてFEMの適用性について検討した。また、提案する手法を用いて試計算を行い、合理的化の検証を行った。本研究で明らかとなった事項は、次のようにまとめられる。

①取放水管の要求機能を満足できる限界状態を明確化した。すなわち、取放水管の特徴を考慮し、終局限界状態として断面降伏を、使用限界状態として内部塗装の損傷および管壁の過大な変形をそれぞれ設定した。また、照査に用いる限界値は、取放水管を模したモデル実験に基づき設定した。

②部分安全係数は、設計における各段階の不確定性を要因別に分離し、各要素の安全係数（材料γ_m、部材γ_b、荷重γ_P、構造解析γ_a、構造物γ_r）を設定した。既往の材料試験、品質管理試験のデータを集約的に評価し、取放水管固有の値として設定した。

③取放水管では、発電所特有の重量物が荷重として作用するため、地盤が非線形化するとともに、管挙動にもその影響が表れることを、土槽モデル実験に基づき明らかにした。

④構造解析として非線形FEMの適用性を、土槽モデル試験や実規模試験の結果に基づいて検討した。その結果、適切なモデルを用いて地盤の非線形性を考慮することにより、上載荷重が大きい場合も含め、埋戻し時から載荷時の管挙動（変形、応力）を良好に再現できることを確認した。

⑤取放水管のように、特に綿密な締め固めにより埋戻される埋設管では、現行設計で用いているSpanglerの土圧モデルとは異なる土圧分布を示すと考えられ、管の変形モードが異なるなど、現行設計での解析結果と実現象との乖離が大きいことが観察された。

提案設計手法を用いた試設計により、現行設計法と比較して大幅に管厚が削減でき、合理化が達成できることを示した。

ここで達成した合理化は、構造解析手法としてFEMを用いるとともに、地盤特性を適切に評価していること、設計図面の変更についても対応し、施工の實際性を考慮し、綿密な締め固め管理などに影響を及ぼす土圧の推定を行い、見返りとして、この新たな設計手法が有効であると考えることが明らかとなった。

今後、これらの構造解析手法の検討を図るとともに、さらに合理的な地盤特性の設定法についても検討していきたいと考えている。

参考文献

1) 日本水道鋼管協会：水道用埋設鋼管の管厚計算規準，

3) 吉村源、東田裕、李明明：遠心模型によるたわみ性埋設管の土圧・変形挙動の検討，土木学会論文集，

4) 日本水道協会：水道施設耐震工法指針・解説，

6) 土木学会：コンクリート構造標準示方書 耐震設計編，
 pp. 70-97，1996.

7) 川島正史、金子雄一、田原光男、佐田守：鋼管に対する内部塗装の変形疲労性に関する実験的検討，第44回日本建築学会材料研究会講演会講演論文集，

10) 日本建築学会：鋼構造物限界状態設計基準案，pp. 204-209，1990.

12) 水門管協会：水門管構造手引 クラス 1 の接着，

14) 鳥渡良一：バイブライオンシステムハンドブック，

16) Sharma, H. D., Nayak, G. C. and Maheshwari, J. B.:

（2001. 8. 21 受付）
RATIONAL CROSS SECTIONAL DESIGN METHOD FOR BURIED WATER SUPPLY PIPELINE OF POWER STATION

Masashi KAWASHIMA, Mamoru TSUDA, Yuichi KANEKO and Mitsuo HARADA

The cross sectional design method for buried water supply pipeline of thermal power stations is studied. Limit state design is introduced to establish rational design method, and the design requirements as well as related limit states for the pipeline are investigated. Moreover several partial safety factors are proposed under the consideration of the loads combination and the uncertainties for load action, material property, and construction. In addition, non-linear FEM, in which soil property and interaction of steel pipe and surrounding ground are adequately calculated, is also introduced as rational analysis procedure. Finally the proposed design method is verified based on the data of experiments and field measurements.