亜熱帯島嶼地域における微地形を考慮した
地震動特性評価について

松島良成¹ ・ 矢吹哲哉² ・ 有住康則³

¹正会員 工修 (財)沖縄県建設技術センター (〒902-0604 沖縄県那覇市寄宮1-7-13）
²フェロー会員 工博 琉球大学教授 工学部環境建設工学科 (〒903-0123 沖縄県西原町千原1)
³正会員 工博 琉球大学助教授 工学部環境建設工学科 (〒903-0123 沖縄県西原町千原1)

ある特定地域における地震災害防災を検討する場合に、当該地域の地形地盤特性および地震動の情報が重要となる。これまでに、ある地域における地形地盤特性および地震動特性を把握する手法が、いくつか提案されているが、一般に利用されている方法の多くは1つである。しかし、沖縄県のような亜熱帯島嶼地域、特に微地形および地質層の検討する必要がある場合には、従来方法とは異なる手法の導入が考えられる。そこで、本研究では、沖縄県を例にして、亜熱帯島嶼地域の地形地盤特性を考慮し、その地形地盤特性と地震動特性の関係について検討する。また、以上のことを踏まえて、現行の地形地盤特性および地震動特性の推定手法の評価を行う。

Key Words : subtopics small island, micro-relief, subsurface layers, site-amplification, strong-motion observation

1. はじめに

1995年兵庫県南部地震では、人口や都市施設の集積した神戸市およびその周辺で甚大な被害が発生した。しかし、被災地域の被災程度は一様ではないことが報告されている。これには、地盤あるいは地盤条件および地震動と地盤構造の形状等の因子と複雑に関係しているためであると考えられる。これまでに、地形および地盤条件と地震動の関係については多くの研究報告がなされており、地盤および地形特性が地表面の震度に影響を与えることが報告されている。よって、ある地域における詳細な地形被害予測や耐震設計を検討する場合、当該地域の地形および地盤条件を把握し、それと地震動特性の関係を把握することは重要であると考えられる。年間や山林は、関東地域におけるライフマップと地質詳しく地質的特性を考慮してその特性を評価している。また、1kmメッシュ地図の国土地理情報を利用した地震動特性の把握に関する研究も行われている。

ここで、表-1および図-1に、沖縄県における地形特異図およびその例を示す。この図には、100mメッシュを用いて示している。図-1に示すように、冲縄県のような島嶼地域の地形を十分に把握するためには、少なくとも100mメッシュの国土地理情報が必要であると考えられる。参考文献9によれば、地形を中地形、小地形、微地形、超微地形に分類しており、微地形は10^4〜10^5m程度である空間規模の地形と定義している。以上のことから、図-1に示すような島嶼地域における地形分類図は、微地形を考慮した分類を考えることができ、島嶼地域は、微地形が発達した地域と考えることができる。また、冲縄県のような亜熱帯地域には、第四紀更新世に堆積した珊瑚礁礁石が形成される層が広く分布する。このような亜熱帯島嶼地域において、前述した既往の1kmメッシュ地図情報を利用した研究結果を活用することは合理的ではないと考えられるため、島嶼地域地形特性や亜熱帯地域地盤特性に関する情報を利用した地震動特性の把握が望まれる。

著者等は、これまでに沖縄県における地盤情報をデータベース化し、地理情報システム（GIS）を併用することで、各地形分類における地盤特性の把握に努めてきた。特に、沖縄県における地形分類と地盤の層層特性の関係から地形分類ごとの動的物理図を推定法を提案した。この推定法を利用することにより、地形分類から任意地点の概略地盤モデルを推定することができる。更に、この推定モデルから任意地点の地盤における卓越周期を推定することができる。これらの提案推定法の導出過程から、島嶼地域における微地形の地形分類（以下地形分類とする）と地震動特性の相関を把握することが可能であると考えられる。そこで、本研究では、沖縄県
地方で観測された水平2方向成分264組の地震波を基に、地形分類と地震動特性の関係の把握を試みた。地震動特性値としては、最大加速度Pga、最大速度PGV、計測震度I、最大加速度応答スペクトルSa,ms、最大速度応答スペクトルSa,msおよびSv,msが得られる周期T,msを考慮する。先ず、これらの特性値について回帰分析を行い、地形分類がパラメータとして回帰式に寄与することを確認する。次に、この回帰分析を利用して、地盤増幅度を推定する。さらに、亜熱帯島嶼地域における微地形を考慮した加速度応答スペクトルと道路橋示方書において耐震設計に用いられている震度法の標準加速度応答スペクトルを比較し、地盤増幅特性の評価を論述する。

2. 沖縄県の地形および地質概要

沖縄県の地形を大きく分類すると、山地、丘陵、台地、低地、海岸、カルスト地形に区分できる。以下に各地形ごとの特徴を述べる。

① 山地：標高500m程度以下の山地からなる低性の小起伏山地があり、山地面積も小さい。これらは、沖縄本島北部と八重山諸島に広く分布する。

② 丘陵地：丘陵地は山地の周辺に発達する大起伏丘陵と新第三紀の島尻層群からなる小起伏丘陵に分類される。この小起伏丘陵は、沖縄本島中南部および宮古島諸島に広く分布している。

③ 台地・段丘：沖縄県には、砂礫層と石灰岩からなる二種類の台地・段丘が発達している。砂礫層からなる台地・段丘は、沖縄本島北部や八重山諸島に広く分布し、石灰岩からなる台地・段丘は、沖縄本島中南部および宮古島諸島に広く分布する。

④ 低地：主に、二種の成因を異にするるものに区分される。すなわち、河川作用によって形成された谷底低地と、海成作用によって形成された海岸低地および完成新世さんが礁面である。面積は、いずれも狭小である。

⑤ 海岸：さんご礁形成に関連する地形であり、さんご礁と海浜に分類できる。

⑥ カルスト地形：カルスト地形は、二種に分類できる。沖縄本島北部に分布する二疊系の石灰岩からなるカルスト地形および琉球石灰岩からなる石灰岩と岩盤の二種である。これらの地形概要から、沖縄県地方は、沖縄本島北部および八重山諸島と沖縄県中南部および宮古島諸島に区分できると考えられる。また、これは、図2の地盤の構造モデルに示すように、前者はそれぞれ古第三紀以前を基盤とする地形群Type1～Type3、後者は新第三紀島尻層群を基盤とする地形群Type4～Type6に、それぞれ分類できる。ここで、基盤とは新第三紀以前に堆積した層とした。
3. 各特性値の回帰分析

(1) 回帰モデル

ここでは、本研究の地震動特性の評価を用いる回帰モデルについて述べる。参考文献 19）によると、地震動の大きさ A と震源距離 X の間に次のような関係がある \(^{17)}\)。

\[A = A_0 X^{-n} e^{aX} \] （1）

ここで、\(n \) は波動が平面的、空間的に広がることで生じる距離減衰係数、\(k \) は媒質の粘性による減衰係数である。ここで、\(A_0 \) の対数と地震のマグニチュード \(M \) との間には比例関係があると考えられるため、\(a_i \) を新たな係数として、上式から

\[\log A = a_i - a_2 M - a_3 \log X - a_4 X \] （2）

が得られる。

また、地震動のフーリエスペクトルまたは応答スペクトルにおける特性の評価式として、次式を用い \(^{(8) \sim (21)}\)。

\[\log S(T) = c_1(T) M - c_2(T) \log X - c_3(T) \] （3）

ここで、\(S(T) \) はフーリエスペクトルあるいは応答スペクトル、\(T \) は周期、\(c_1(T) M \) は、震源スペクトルに関する項、\(c_2(T) \) は距離減衰項および\(c_3(T) \) はサイト係数であり、地盤の増幅特性と震源に関係する項である \(^{(18) \sim (20)}\)。

本研究では、地震動特性値と地震動のスペクトル特性の評価を同一の回帰モデルで行うこととする。そこで、本研究では、式 (3) に示す回帰モデルを参考にし、各地震動特性値の式 (4) を回帰モデルとし、地震動のスペクトル特性は式 (3) を回帰モデルとする。また、\(X \) は震央距離 (km) とする。

\[\log A = a_i - a_2 M - a_3 \log X - a_4 \] （4）

また、本研究では、微地動と地震動特性関係の検討するため、式 (4) に応答面分けに対する係数 \(D_i \) をパラメータとして追加した回帰モデルも検討する。したがって、微地動と地震動特性の関係を考慮する場合、地震動特性値の回帰解析式に式 (5)，スペクトル特性の回帰解析式に (6) を用いる。

\[\log \lambda = a_i - a_2 M - a_3 \log X - a_4 + D_i \] （5）

\[\log S(T) = c_1(T) M - c_2(T) \log X - c_3(T) + D_i(T) \] （6）

ここで、\(D_i \) および \(D_i(T) \) は、地震に対する補正項で、地形面分け \(i \) に対して求める。

ただし、計測震度 I の場合、回帰解析の実績が他の地震動特性値に関する回帰分析より少ないため、参考文献 3）における回帰モデルを参考にした。計測震度 I の回帰モデルを式 (7) に示す。

\[A = a_i + a_2 M - a_3 \log X + D_i \] （7）

(2) 回帰分析

沖縄県では 1997 年より各市町村に 95 型計測計を設置し、地震観測を行っている。これら観測点における地震形分類を表-2 に示す。本研究では、1997 年 4 月 1 日から 2000 年 8 月 3 日までに観測された気象庁マグニチュード \(M_j \) が 3.2 以上の地震を対象とした。これらの観測の諸元を表-3 に示す。また、計測震度の分布を表-4 に示す。地形形分類ごとの観測データを表-5 に示す。この 132 個の観測波形より計測震度およびその水平成分 264 組中 254 組の記録を用いて、最大加速度 PGA (cm/s^2)，最大速度 PGV (cm/s) および計測震度 1 と求め、これらの回帰分析を行った。更に、これらの波形のスペクトル解析から、最
大振動応答スペクトル S_{a}, および S_{v} が得られる周期 T_{1} を求め、回帰分析を行った。ここで、回帰分析は前述の 3. (1) の回帰モデルを利用した。各地震動特性値の回帰モデル式を式 (8)～(13) に示す。また、実務において一般に利用されている道路設計基準は、耐震設計における加速度応答スペクトルを 5% 滅衰で設定している。したがって、本研究でも、減衰 5% 回帰応答スペクトルおよび減衰 5% 模擬加速度応答スペクトルを算出した。

回帰分析の方法としては、マグニチュードと距離の相互の影響が大きいことを考慮して Joyner, W.B. と Boohe, D.M. が最初に使用した 2 段階回帰を採用した。ここでは、M_{j} を 15 階級分野し、それをダミー変数として回帰分析を行った。以上の回帰分析を基に、回帰モデルのパラメータにあらかじめ定義した规格を基に、その寄与を検討した。その寄与の確認は、(8)式～(13)式における M_{j} および X の 2 パラメータと回帰モデル (MX) の 2 項分野を増やし、5 パラメータと回帰モデル (MXD) の残差変動の分散を比較することで行った。残差変動の分散の偏推定量 S_{e} は、次式より得られる。

$$e_{i} = y_{i} - \bar{y}_{i}$$

$$S_{e} = \frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}$$ (14)

ここで、y_{i} は観測値であり、\bar{y}_{i} は推定値である。

この S_{e} の有意差検定結果を表－6 に示す。ここに、S_{a} および S_{v} は、それぞれ MXD モデルおよび MX モデルの相関係数を示す。MXD 回帰モデルにおける回帰係数を表－7 に示す。また、実測値と回帰式からの計算値の比較図を図－3 に示す。

回帰モデルにおける相関の程度を定量的に評価する場合、残差変動の平方和から得られる相関係数より、比較的良い評価が得られている。また、相関係数の定義より、残差変動の分散の小さい回帰モデルが良好な相関を示すと考えられるため、MX モデルと MXD モデルにおける残差変動の分散を比較することで、相関性の改善度を評価することが可能となる。残差変動の分散の比較には、分散の有意差検定を利用する。そこで、残差変動の分散の偏推定量は、式 (14) で定義される。よって、本研究では、式 (14) の不偏推定量に対して、分散の統計的検定に極めて一般的に用いられている F 分布を用いた。表－6 における判定は、F 分布の有意水準 $\alpha = 5\%$ における検定結果に基づいた。この結果から、T_{1} を除く特性値について、パラメータとして地震等分野を追加することにより、回帰式における相関性の改善が確認できる。したがって、地震等分野をパラメータとすることが有効であると考えられる。

地震波の卓越周期と考えられる T_{1} における回帰分析において、地震等分野を付加することによる相関性の改善には、有意な差は得られなかった。しかし、本研究で得られた相関係数を考慮すると，
表-8 地形分類に基づく地盤増幅度

<table>
<thead>
<tr>
<th>項目</th>
<th>Vmax</th>
<th>Amax</th>
<th>Savg</th>
<th>Smax</th>
<th>T(Smax)</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hs</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Vs</td>
<td>1.483</td>
<td>1.733</td>
<td>1.212</td>
<td>1.492</td>
<td>0.899</td>
<td>0.332</td>
</tr>
<tr>
<td>Lmu</td>
<td>1.425</td>
<td>2.135</td>
<td>2.434</td>
<td>2.157</td>
<td>0.560</td>
<td>0.342</td>
</tr>
<tr>
<td>Lml</td>
<td>1.372</td>
<td>1.547</td>
<td>1.498</td>
<td>1.193</td>
<td>0.797</td>
<td>0.204</td>
</tr>
<tr>
<td>Lmb</td>
<td>2.240</td>
<td>2.144</td>
<td>2.383</td>
<td>1.595</td>
<td>1.126</td>
<td>0.431</td>
</tr>
<tr>
<td>Lm</td>
<td>1.411</td>
<td>1.561</td>
<td>1.691</td>
<td>1.339</td>
<td>0.921</td>
<td>0.267</td>
</tr>
<tr>
<td>L</td>
<td>1.434</td>
<td>2.034</td>
<td>1.950</td>
<td>1.326</td>
<td>0.612</td>
<td>0.277</td>
</tr>
<tr>
<td>Lb</td>
<td>1.016</td>
<td>1.170</td>
<td>1.480</td>
<td>1.085</td>
<td>0.806</td>
<td>0.177</td>
</tr>
<tr>
<td>Li</td>
<td>1.468</td>
<td>1.141</td>
<td>1.303</td>
<td>1.277</td>
<td>0.767</td>
<td>0.094</td>
</tr>
<tr>
<td>Lw</td>
<td>1.314</td>
<td>1.275</td>
<td>1.468</td>
<td>1.194</td>
<td>0.726</td>
<td>0.107</td>
</tr>
<tr>
<td>Pe</td>
<td>1.417</td>
<td>1.690</td>
<td>1.931</td>
<td>1.590</td>
<td>0.800</td>
<td>0.375</td>
</tr>
<tr>
<td>Ce</td>
<td>2.442</td>
<td>2.305</td>
<td>2.877</td>
<td>2.854</td>
<td>1.060</td>
<td>0.896</td>
</tr>
<tr>
<td>Ar</td>
<td>1.237</td>
<td>1.618</td>
<td>1.831</td>
<td>1.227</td>
<td>0.663</td>
<td>0.112</td>
</tr>
</tbody>
</table>

回帰分析から地震波における卓越周期の推定も可能であると考えられる。

4. 地形分類と地盤増幅度

(1) 地盤増幅度の算定

表-7 に示す回帰係数の地形分類項 D_i は、Hs における地形分類項を解放基盤面として設定した値である。Hs は、主に新第三紀後近に層厚のある地形であると考えられている。また、数箇所の観測点における地震情報を収集し、Hs の地盤種別を推定したところ、I 種地盤が分類された。本研究における地盤種別は、道路橋梁等に従って算定した。21) また、参考文献 8) においても、Hs は、I 種地盤が卓越した地形であることが示されている。

次に、地形分類項に基づく地盤増幅度を算定する。ここで、地形分類 i における地震動特性値を A_i、Hs における地震動特性値を A_{th} とすると、地盤増幅度 A_{rel} は、次式で算定できる。

$$A_{rel} = A_i / A_{th}$$ \hspace{1cm} (15)

また、式(5)より次式が導かれる。

$$\log(A_i / A_{th}) = D_i - D_{th}$$ \hspace{1cm} (16)

式(16)を式(15)に代入することにより、地盤増幅度 A_{rel} を算出する式(17)が導かれる。

$$A_{rel} = 10^{D_i - D_{th}}$$ \hspace{1cm} (17)

したがって、式(17)より、I 種地盤の地震動に対する地盤増幅度を求めることができる。また、計測震度 I については、式(18)に示すように各地形分類の I と Hs の逆で定義できる。

$$A_{rel} = D_i - D_{th}$$ \hspace{1cm} (18)

(2) PGA, PGV および I による地盤増幅度

表-8 および図-4 に地盤増幅度算定結果を示す。

図-4 PGA, PGV および I による地盤増幅度

図-5 既往の地形分類ごとの地盤増幅度

これらの図表から、以下のことが認められる。

1) 地盤増幅度は、1.00 ～ 2.50 の範囲にある。
2) 琉球層群を主体とする台地・段丘（頭文字が L で始まる地形分類記号）は、地盤増幅度が 1.00 から 2.25 程度の範囲でばらついた値である。
3) 城州地形 Ce の地盤増幅度が最も大きい。

次に、これらの結果を既往の結果と比較した。ここでは、参考文献 3) との比較を行った。その理由として、当該文献が、計測震度 I, 最大加速度 PGA および最大速度 PGV による地盤増幅度を推定しているためである。

当該文献は地形分類の山地を基準値 1.00 としている。本研究では丘陵地を基準値 1.00 としているため、同一の地形に対する増幅度に換算する必要がある。そこで、本研究では参考文献 3) における各地形分類の増幅度を丘陵地の増幅度で除することで、基準値の換算を行った。この換算結果を図-5 に示す。更に、参考文献 3) に基づく図-5 は、地形分類を中規模 31) による分類と地質分類を併用しているため、本研究の微地形を利用した図-4 と単純に比較することはできないと考えられる。そこで、本研究における微地形を中小地盤分類ごとにまとめ、参考文献 3) で考慮されている地質分類項を除外し、地形分類項のみにすることで定性的な比較を試みた。
図－4および図－5共に、次の傾向を示している。
① 丘陵地Hsと比較して、他の地形の増幅率は大き
い傾向を示す。
② 三角州低地、砂州等の河川作用で形成された地形の
増幅率は、最も大きい傾向を示す。
③ 第四紀更新世に形成された台地・段丘地形の増幅率は、
丘陵地のそれより大きい傾向を示す。
④ 埋立地の増幅率は、三角州低地、河川作用で形成
された地形と比較して小さい傾向を示す。
以上より、図－4および図－5における地形分類と
地盤增幅率の関係は、定性的に類似していると言
えよう。ただし、定量的には本研究における地盤増
幅率が全体的に大きい傾向が認められる。特に、地
質年代更新世に形成された台地・段丘である
Lmu～Lwの琉球層群台地・段丘と同一地質年代に形成され
たと推定される砂礫台地等の台地系地形と比較した
場合、前者の地盤増幅率1.01～2.24に対して、後者は
0.66～1.46であり、同一地質年代にかかわらず、
地盤増幅率に差異が認められる。
第四紀更新世に形成された台地・段丘における地
盤増幅率に比較的大きな差異が生じる原因として、
以下のことが考えられる。沖縄県において、このような
台地・段丘を形成する主な地盤は、琉球層群琉
球石灰岩層である。この琉球石灰岩層は、固結した
岩塊の状態の部分からN値20以下を示すような砂礫
状、砂状、粘土状の層が複雑に堆積しており、変化
に富んだ状態で堆積している。また、固結部の圧縮
強度が19.6～29.4(MPa)以上である[11,10]。したがっ
て、琉球層群台地・段丘における地盤増幅率のばら
つきは、琉球層群の堆積状況が影響していると考え
られる。
提出Ceの観測点における地盤情報が無いため、観
測点付近におけるCeの地盤情報より地盤種別を推
定した。結果々、観測点の地盤種別は第Ⅲ地盤
と推定された。既往の研究結果 [3,4]と同様に、本研
究においても第Ⅲ地盤と推定される地形の地盤増
幅率が最も大きいことが確認できた。
(3) 応答スペクトルによる地盤増幅率
既往の研究において、各地域における地盤増幅率
の推定には、PGAおよびPGVが主に用いられて[30,11]
きた。道積橋示方書では、固有周期ごとの設計水平
震度を日本国内で観測された394成分の強震記録に
おける加速度応答スペクトルの統計解析結果に基づ
いて設定している[11]。そこで、地震動スペクトルか
ら得られる最大応答スペクトルに基づいた地盤増幅
率の推定も可能であると考えられる。
よって、次に加速度応答スペクトルおよび速度応
答スペクトルの最大値(前掲Sa,およびSr)に基づ
いた地盤増幅率と地形分類の関係について検討し
た。ここでは、前述のPGAとPGVの場合と同様に、
地形分類別から地盤増幅率を推定した。図－6にそ
の結果を示す。この図から以下のことが認められる。
最大応答スペクトルより地形分類と地盤増幅度の
関係は、他の地震動特性値による地盤増幅度と地形
分類の関係と概ね同様な傾向が認められる。Lmu、Lmb、
LiaおよびCeの加速度応答スペクトルの地盤増幅度
は大きい傾向が認められる。また、Sa,による地盤
増幅度は、他の地震動特性値による地盤増幅度より
大きい傾向が認められる。
以上より、地形分類ごとの地盤増幅度と最大応
答スペクトルとの関には有意な相関が認められるこ
とから、応答スペクトルに対して地形分類を考慮した
回帰モデル式(6)の適用が可能であると結論づけられ
よう。
5. 地形分類と地震動応答スペクトル特性
ここでは、前述の地形分類を含めた回帰モデルで
ある前掲式(6)を用いて、擬似加速度応答スペクトル
回帰分析を行った。
また、周波数Rは、0.1～1.00(sec)間を約0.05(sec)
ピッチ、1.0～5.00(sec)間を約0.5(sec)ピッチで取
出し、回帰分析を行った。
\[\log(S(T)=c_0(T)+c_1(T)+c_2(T)+c_3(T)) \] (6) (前掲)
ここで、4.(1)と同様に地形分類別D(T)は、丘陵
地Hsを基準としている。また、前述の式(17)を応答
スペクトルST(T)に適用すると地盤増幅度AR,100(T)の
値は次式(19)で表すことができる。
\[AR,100(T)=10^\left(\frac{D(T)}{2}\right) \] (19)
また、4.(1)と同様に、この地盤増幅度AR,400(T)は、
周波数TごとのHsに対する地盤増幅度と考えられる。

図－6 応答スペクトルによる地盤増幅度
図-7および図-8に回帰分析結果を示す。図-7は、Type1～3（前掲図-2）の地質層序におけるHsに対する地盤増幅度であり、地形分類としてはLab, Lla, Llb, PcおよびCeが対象となる。また、図-8は、Type4～6（前掲図-2）の地質層序におけるHsに対する地盤増幅度であり、Hs, Vs, Lau, Lam, Lm, Ll, Lw, PcおよびArが対象となる。ここで、Pcは地質層序Type1～3およびType4～6にあるため、図-7および図-8に同じ値を示す。また、地質層序Type1～6における相関係数の推移を図-9に示す。

(1) 地質層序特性とスペクトル特性

図-7と図-8から以下が確認できる。

①関東地区の観測結果に基づく研究によると、Ⅲ種地盤に分類される埋立地の地盤増幅度は、大きくなることが確認されている。しかし、今回の結果からは、この傾向は認められず、その理由として、当該地形における地盤構成が地域によって相異なることが考えられる。参考文献3)においてもこの点を指摘している。沖縄県地域における埋立地は、さんご礁のイーヌ（礁池）で大規模な埋立てが行われているため、埋立て層厚が浅くなることが考えられる。また、琉球層群琉球石灰岩層が堆積していることとも重要な要因であると考えられる。沖縄県地方における埋立地Arの地震計設置箇所付近で得られた地盤データによると、埋立て層厚が7m、強度層厚が10m、活断層（琉球層群）25mとなっている。また、その地点におけるPS検査結果を基に、道路構示方書による地盤特性値T1は0.32（sec）であり、II種地盤に分類される。したがって、当該地形において、沖縄県の地盤増幅度は、他地域の地盤増幅度より小さくなると考えられる。

②沖縄平野である海岸平野Pcにおける地盤増幅度が比較的小さい理由としては、上記①Arと同様に、沖縄層が5m～20m程度と比較的厚く堆積しており、また、Ar同様に琉球層群琉球石灰岩層が堆積しているためであると考えられる。

③図-7における地質分類CeとLabは、周期（T）0.1～5.0（s）の領域で地盤増幅度が1.5～3.0程度であり、他地質分類の地盤増幅度より比較的大きい傾向を示している。

④図-8に示す全地質分類において、周期（T）0.1～0.2（s）間の地盤増幅度が大きく、その領域の地盤増幅度は約2.0～3.0程度を示している。また、周期（T）0.2以上では、地盤増幅度は1.0～1.5程度に推移する傾向が認められる。

⑤上記③④より、Type1～3とType4～6の地盤増幅特性は相異なる傾向が認められる。この両者の地盤層序の相違点の1つは、前掲図-2に示すように、地層層序中の島尻層群の有無である。よって、上記③④は島尻層群が lỗiしていると考えられる。上記③④⑤は、せん断弾性波速度Vsが300（m/s）以上で定義される工学的基盤に深くおける地盤
特性が、地表面地震動特性への影響を及ぼすことを示していると考えられる。よって、今後の設計用応答スペクトルを含め、工学的基盤を深く、堆積する島尻層の地盤特性を補正する必要があると思われる。

(2) 地形効果とスペクトル特性
過去の地質調査から、島尻層群は約1000m以上堆積していることが確認されている。そこで、この位置まで地盤を考慮し、図10に示す成層地盤モデルを用いた周波数応答解析を実施した。重複反射シミュレーションを用いた地盤モデル（図10(b)）の上層の動的物理定数は、沖積層として設定した。図10において、島尻層群を解放基盤とした。これは、丘陵地Hsを想定したモデルと考えられる。このHsモデルに対して、解放基盤面Hsの直上に沖積層厚Hが5m、7m、10mの厚さで堆積する地表面の地盤増幅率を図11に示す。また、図11に、Type4～6の地形分類ごとの地盤増幅率を示す図11の地盤増幅率を示す。この図より、島尻層群に堆積層が堆積する場合、短周期成分において地盤増幅率が大きくなることが確認でき、図10と同様な傾向が認められる。また、図10および図11から、以下のことが確認できる。

① 参考文献8）によると、本研究で利用した地形分類において、沖積層が存在する地形分類は、ArとPcのみであると考えられ、図10(b)の地盤モデルと類似する。ArとPc以外の地形分類では、最上層が堆積層群（沖積層）であり、図10に示す地盤モデル（最上層が沖積層）とは相違する。

② 図11に示すように、回帰分析から得られた各周期のHsに対する地盤増幅率と重複反射法から得られる地盤増幅率は、類似した傾向を示している。このことから、ArおよびPcでは、観測記録の回帰分析結果と周波数応答解析は対応していると考えられる。しかし、ArおよびPc以外では、最上層の地盤特性が異なるにもかかわらず、地盤増幅特性は類似した傾向が認められる。これらの結果より、地形特性は、地表面地震動特性への影響を及ぼすと考えられる。したがって、今後は、地震動特性を基に、地形特性の影響（地盤特性）について評価を行い、地震動特性に関する補正係数を設定する必要があると考えられる。

図11 Type4～6における地盤増幅率の計算結果

6. まとめ
本研究では、亜熱帯島嶼地域の例として沖縄県地
3) 第四紀更新世に形成された台地・段丘において、その地盤增幅度に大きなばらつきがある。これは、砂礫層、砂層、粘土状および岩層が複雑に混在する琉球層脈琉球石灰岩層の影響であると考えられる。
4) 既往の研究は、埋立地や沖積平野の地盤增幅度は大きくなることを確認しているが、本研究では、その傾向は認められなかった。これは、砂礫層、砂層、粘土状および岩層が複雑に混在する琉球層脈琉球石灰岩層の影響であると考えられる。

本論文で評価した事項は、主に定性的に検討した結果である。これらの結果を設計に反映させるためには、工学的基盤に基づく地盤特性を考慮する必要がある。地震影響の予測モデルの開発は、今後の検討課題と考えている。地震動は、規模や地域性により影響を及ぼすが、地震動の規模と影響の評価については、今後の検討課題と考えている。

謝辞：本研究におきまして、地震動に関するデータを提供していただいた沖縄県消防防災課の関係各位に感謝の意を表します。

参考文献
7) 沖縄県: 地震分類基本調査, 沖縄本島中南部, 1983.
19) 太田外気晴, 大野喜: 強震記録による震源域を含む地震動の平均特性, 日本建築学会構造系論文集, No.479, pp.31-40, 1996.
20) 塩沢一男, 宮田淳一, 八代和彦: 小規模地震観測記録から得られる地震強度特性に基づく大規模地震の応答スペクトルの推定評価法, 日本建築学会構造系論文集, No.479, pp.31-40, 1996.
22) 日本道路協会: 道路橋示方書・道路設計編, pp.75-80, 1996.
EVALUATION ON SEISMIC GROUND MOTION CHARACTERISTICS AT MICRO-RELIEF IN THE SUBTROPICAL SMALL ISLAND

Yoshinari MATSUSHIMA, Tetsuya YABUKI and Yasunori ARIZUMI

In examining the prevention of earthquake disaster at particular site, it is needed to investigate correlation of its landform and subsurface layers with ground-motion characteristics. Several methods how to evaluate the characteristics have been proposed. However, the application of the former methods to subtropical small islands like Okinawa prefecture should be examined for their validities. Thus, this study examines, first, the peculiarities of the landform and subsurface layers of Okinawa prefecture as a typical example of subtropical small islands. Then, the interactive relationship between their peculiarities and the ground-motion characteristics under the strong-motion which have been observed in the Okinawa prefecture are investigated and a practical evaluation formula for site-amplification is proposed. Finally, the proposed formula for its validity is examined by comparing with the general evaluation presented formerly.