地球温暖化対策が地域大気環境に及ぼす副次的効果に関する研究

島田 幸司 1・溝口 真吾 2・松岡 謙 3

1 京都大学大学院工学研究科（〒606-8501 京都府京都市左京区吉田本町）
2 京都大学大学院工学研究科（〒606-8501 京都府京都市左京区吉田本町）
3 京都大学大学院工学研究科（〒606-8501 京都府京都市左京区吉田本町）

筆者らは、地球温暖化対策による大気汚染物質の排出削減量を推計する副次的効果推計モデル(ALICE)を開発し、このモデルをある地方公共団体に適用した。その結果、対策を講じることにより、2010年で発表ケースより最大で23%の二酸化炭素(CO₂)排出量が削減され、副次的に窒素酸化物(NOₓ)および粒子状物質(PM)の排出量が11-12%削減されること。鉄鋼業の自主行動計画やハイブリッド自動車の導入などが、CO₂、NOₓに対する顕著な排出削減効果を有すること。交通機関においては温暖化対策を強化してCO₂排出量を削減しても、PMでは同様の排出削減効果が得られないと、などが明らかになった。

Key Words: greenhouse gases, air pollutants, ancillary effects, integrated policy

1. はじめに

地球温暖化対策については、1997年12月に京都議定書が採択されることを契機に、わが国で地球温暖化対策推進法の制定や省エネルギー法の強化などが実施され、また、世界的にも再生可能エネルギーの導入加速化や低燃費自動車の開発競争が進められるなど、国内外での取組みは始まりつつある。他方、2000年12月にハーグで開催された第6回締約国総会合(COP6)では議定書実施のための詳細規則の合意に至らず、交渉が継続されることになったが、本格的な対策実施に向けての動きは遅いといわざるを得ない。

その原因としては、地球温暖化対策に要する費用負担やこれに起因する経済への負の影響に対する懸念が対策実施による恩恵への認識を上回っていること、これまでの環境問題では地方公共団体による現場レベルでの対策実施が必要解決への原動力となってきた、地球温暖化問題については対策実施の動機付けがそのレベルまで浸透していないこと、などがあげられる。

そこで本研究では、経済的な負の影響が大きいと考えられている地球温暖化対策の副次的効益を定量化し、当該対策実施の根拠を強化しようとする国際的な研究動向をレビューしたうえで、窒素酸化物、粒子状物質等大気汚染物質の排出削減にも繋がりうる地球温暖化対策の副次的な効果を定量的に推計するモデルを開発する。さらにこのモデルを実際の地域に適用し、副次的効果に関する各種の分析を通じることにより、地球温暖化対策と大気環境対策を統合した総合的政策を推進するための構築形成に資することを目的とするものである。

2. 既往の研究動向と本研究の位置付け

(1) 地球温暖化対策の副次的効果に関する議論

地球温暖化対策には莫大な費用を要するなどの理由から、本格的な対策への着手に踏み切れないという世界的な熱望が相次いでいく道筋のひとつとして、当該対策が大気汚染、交通などの分野で相当の副次的利便をもたらすことを定量化し、政策決定者に示しており、方向が模索されている。このような利便を概念的に分類すると、1)地球温暖化対策が他の分野に与える利便。2)大気汚染対策のような他の分野での対策が地球温暖化緩和に与える利便。3)統合的な観点からみた地球温暖化対策と他分野の対策の費用と利便。の3つに大別できる。一般
<table>
<thead>
<tr>
<th>地域区分</th>
<th>研究機関・プロジェクト</th>
<th>対象地域（対象部門）</th>
<th>シナリオ・ケース</th>
<th>推計年度</th>
<th>推計削減率（対象ケース%）</th>
<th>CO₂</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本</td>
<td>ノルウェー統計庁研究部⑥</td>
<td>西歐9ヶ国</td>
<td>エネルギー税</td>
<td>2000</td>
<td>9.4-9.7</td>
<td>7.7</td>
<td>9.3</td>
<td>6.2</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>EC委員会②</td>
<td>欧州19ヶ国</td>
<td>ドイツ3.0%</td>
<td>2008-2012</td>
<td>10.1-10.4</td>
<td>15.5</td>
<td>8.9</td>
<td>4.6</td>
<td>4.8</td>
</tr>
<tr>
<td>米国</td>
<td>資源調査研究部③</td>
<td>米国メリーランド州（電力）</td>
<td>社会的費用を考慮した電気サイトプライバシーチャージ等に伴う電気消費エネルギー削減に対する結果を基にした推計</td>
<td>2008</td>
<td>49</td>
<td>99</td>
<td>73</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>米国</td>
<td>米国資源調査研究部④</td>
<td>米国メリーランド州（電力）</td>
<td>災害対策費の観点で</td>
<td>2010</td>
<td>CO₂, NOₓ, PM削減率を考慮して推計</td>
<td>20.6</td>
<td>30.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>中国</td>
<td>慶應義塾大学⑤</td>
<td>北京市（熱電力部門）</td>
<td>問題の検討</td>
<td>2010</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>中国</td>
<td>国際気候変動研究センター⑦</td>
<td>山西省（石炭燃焼）</td>
<td>気候変動</td>
<td>2010</td>
<td>10</td>
<td>40</td>
<td>16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>世界</td>
<td>OECD⑧</td>
<td>OECD諸国</td>
<td>統合シナリオ</td>
<td>2010</td>
<td>12</td>
<td>13</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

2) 大気環境改善に関する副次的効果の推計例

欧州、北米、中国、あるいは世界全体を対象とした地球温暖化対策の副次的効果。すなわち二酸化硫黄（以下、SO₂と記す）、NOₓ、PMに対する排出削減効果に関する既往の推計結果を踏まええた結果について述べる。ここでは、2010年以降の副次的効果の推計結果を中心に整理した。

前提条件や想定した対策内容は大まちまでであるが、国や地域の発展状況を対象とした研究では、他に考慮した周辺国を対象とした研究では、何ら対策を講じない場合のケースからCO₂排出量を1割程度削減する地球温暖化対策を講じることにより、SO₂についてはCO₂と同程度、それ以上の排出削減効果が示され、NOₓではCO₂を若干低下率の排出削減、また、PMではこの半分かそれ以下の排出削減となっている。

3) 本研究の位置付け

上述したように既往の研究は、炭素税などマクロ施策を導入した場合のSO₂やNOₓの排出総量の低減における副次的効果を推計しているものの、限局的な分野における副次的効果の間隔がほとんどであり、地球温暖化対策別の副次的効果の発現状況を同時に分析することを前提にした研究では、国や地域の発展状況を対象とした研究では、何ら対策を講じない場合のケースからCO₂排出量を1割程度削減する地球温暖化対策を講じることにより、SO₂についてはCO₂と同程度、それ以上の排出削減効果が示され、NOₓではCO₂を若干低下率の排出削減、また、PMではこの半分かそれ以下の排出削減となっている。

3. 地球温暖化対策の副次的効果推計モデル

本研究では、地球温暖化対策の副次的効果推計モデルを開発した。開発にあたっては行政担当者による取り扱いが可能となるよう平易な入力画面を付加した。

まず本モデルにおける排出等推計式について述べる。ここでmはガス種、iは地域、jはサービス種、tは時刻、year別エネルギー使用構造（投入エネルギーをサービスに変換するもの）とエネルギーグ高いサービス種や地域の需要合計、Fはエネルギー種の集合を表す。サービス種における冷暖房や照明のように、エネルギーを消費する
とによって提供されるサービスのこともある。地域 i のサービス種 j からのガス m の排出量 \(Q_{ij}^m \) は式(1)で表される。

\[
Q_{ij}^m = \sum_{l \in L} \left(\alpha_{ij}^l \cdot X_{ij}^l \left(\sum_{k \in F} C_{kj}^m \cdot E_{kj}^l \right) \right)
\]

ここで \(Q_{ij}^m \) は地域 i のサービス種 j からのガス m の排出量、\(\alpha_{ij}^l \) は地域 i の機器類 l のガス m の処理残存率 (1−除去率) 、\(X_{ij}^l \) は地域 i の機器類 l の総運用量、\(C_{kj}^m \) は機器類 l にてエネルギー-k を 1 単位消費したときに排出するガス m の量、\(E_{kj}^l \) は機器類 l を 1 単位運転するときに消費するエネルギー-k の量を表す。ここで \(Q_{ij}^m \) 、\(\alpha_{ij}^l \) 、\(X_{ij}^l \) は、機器類 l の年式を考慮した平均的な性能のこともあり、ただし本論文での計算例では、エネルギー機器を導入したのちに処理残存率を変更するケースはなかったので、脱硝や集じんの効果は \(C_{kj}^m \) に含めて考えることとし、\(Q_{ij}^m \) は 1 と取り扱っている。

一方、式(1)の \(X_{ij}^l \) は地域 i でのサービス種 j の需要量と密接に関結している。地域 i の機器類 l の 1 単位の運転によって供給されるサービス種 j の供給量を \(A_{ij}^l \) とすると、地域 i のサービス種 j の需要量 \(D_{ij} \) は式(2)で表される。\(A_{ij}^l \) は、機器類 l の年式を考慮した平均的な性能であること、本論文では \(A_{ij}^l \) は時間によらず、基準年での値を使用した。

\[
D_{ij} = \sum_{l \in L} \Psi_{ij} \cdot A_{ij}^l \cdot X_{ij}^l
\]

ここで \(\Psi_{ij} \) は機器類 l のサービス供給効率である。

機器類 l は、時間とともに変化、更新が行われる。計算開始年を T とし、地域 i 、年 T に導入された機器類 l の年 T におけるストック量を \(S_{ij}^T \) とすると、年 T における地域 i の機器類 l の総ストック量 \(S_{ij}^T \) は式(3)で表される。

\[
S_{ij}^T = \sum_{l \in L} T_{ij}^l \cdot f_l(T - t)
\]

次に、地域 i 、年 T に導入された機器類 l の計算開始年の翌年 T+1 におけるストック量 \(S_{ij}^{T+1} \) は式(4)で表される。

\[
S_{ij}^{T+1} = S_{ij}^T \cdot f_l(T - t)
\]

ここで、\(f_l(T - t) \) は導入された後 T−t 年の機器類 l が次年に残存する率を表す。

よって、年 T+1、地域 i 、機器類 l の新規参入量を \(r_{ij}^{T+1} \) とすると、年 T+1 における地域 i の機器類 l の総ストック量 \(S_{ij}^{T+1} \) は式(5)で表される。

\[
S_{ij}^{T+1} = S_{ij}^T \cdot f_l(T - t) + r_{ij}^{T+1}
\]

式(4)、(5)を繰り返し計算することことで機器類のストック量の時間的変化を計算することができます。

機器類の性能は時間によって変化する。機器類のストック性能も時間によって変化する。ストック性能はある機器類の性能を年式を通じて平均化したものである。

機器類の性能には \(a_{ij}^l \) 、\(c_{ij}^m \) 、\(e_{ij}^l \) 、\(a_{ij}^l \) があるが、上述のよう \(a_{ij}^l \) 、\(a_{ij}^l \) は一定であることが、地域 i の \(a_{ij}^l \) について説明する。年 T に導入された機器類 l にてエネルギー-k を 1 単位消費したときの排出ガス量を \(c_{ij}^m \) とすると、年 T における機器類 l の平均的な排出ガス量 \(C_{ij}^m \) は式(6)で表される。

\[
C_{ij}^m = \frac{\sum_{l \in L} c_{ij}^m \cdot S_{ij}^T}{\sum_{l \in L} S_{ij}^T}
\]

同様に年 T に導入された機器類 l を 1 単位運転したときのエネルギー-k の消費量を \(e_{ij}^l \) とすると、年 T における機器類 l の平均的なエネルギー消費量 \(E_{ij}^l \) は式(7)で表される。

\[
E_{ij}^l = \frac{\sum_{l \in L} e_{ij}^l \cdot S_{ij}^T}{\sum_{l \in L} S_{ij}^T}
\]

式(6)から、年 T+1 に導入する機器類 l の排出ガス量を \(c_{ij}^{m,T+1} \) とすると、年 T+1 における機器類 l の排出ガス量の平均的な排出ガス量 \(C_{ij}^{m,T+1} \) は式(8)で表される。

\[
C_{ij}^{m,T+1} = \frac{\sum_{l \in L} c_{ij}^{m,T+1} \cdot S_{ij}^T \cdot f_l(T - t) + e_{ij}^{T+1} \cdot r_{ij}^{T+1}}{\sum_{l \in L} S_{ij}^T \cdot f_l(T - t) + r_{ij}^{T+1}}
\]

同様に式(7)から、年 T+1 に導入する機器類 l のエネルギー消費量を \(a_{ij}^{l,T+1} \) とすると、年 T+1 における機器類 l の平均的なエネルギー消費量 \(E_{ij}^{l,T+1} \) は式(9)で表される。

\[
E_{ij}^{l,T+1} = \frac{\sum_{l \in L} e_{ij}^{l,T+1} \cdot S_{ij}^T \cdot f_l(T - t) + e_{ij}^{T+1} \cdot r_{ij}^{T+1}}{\sum_{l \in L} S_{ij}^T \cdot f_l(T - t) + r_{ij}^{T+1}}
\]

式(8)、(9)を繰り返し計算することことで時間変化による機器類の平均的な性能を計算できる。

また、現状のエネルギー消費量は以下のよう求められる。年 T、地域 i 、機器類 l の運転率を \(a_{ij}^l \) とすると、年 T における地域 i の機器類 l の総運用量 \(X_{ij}^l \) は式(10)で表すことができる。

\[
X_{ij}^l = a_{ij}^l \cdot S_{ij}^T
\]

本論文では \(a_{ij}^l \) は T によらない係数とし、基準年での値を使用した。

なお、本モデルにおけるエネルギー消費原単位は、あるサービス種 j について 1 単位運転する際に必要エネルギー量とする。また、地域 i のサービス種 j からのエネルギー消費量 \(T_E_{ij} \) は式(11)で表される。

\[
T_E_{ij} = \sum_{l \in L} \sum_{k \in F} E_{kj}^l \cdot X_{ij}^l
\]
表2 排出量推計年

<table>
<thead>
<tr>
<th>部門</th>
<th>現状</th>
<th>将来</th>
</tr>
</thead>
<tbody>
<tr>
<td>産業</td>
<td>1989年</td>
<td>1996年</td>
</tr>
<tr>
<td>交通</td>
<td>1990年</td>
<td>1994年</td>
</tr>
<tr>
<td>家庭</td>
<td>1990年</td>
<td>1997年</td>
</tr>
<tr>
<td>業務</td>
<td>1990年</td>
<td>1997年</td>
</tr>
</tbody>
</table>

4. 地域の地球温暖化対策計画への適用とその前提条件

上記3.2で記述したモデルを使用して実際の地方公共団体（愛知県）での地球温暖化対策時における温室効果ガスおよび大気汚染物質の排出量推計を行った。本研究では、ガス種を3種（CO₂、NOₓ、PM）地域を103市区町村、サービス業を産業、交通、家庭、業務の4部門別に区分し全国で60サービス種、機器類は124種、エネルギー源の種類は47種（ガソリン、都市ガス）とした。各部門の推計年は表2に示すように、原則として、基準年を1990年、目標年を2010年とし、さらに2000年については、特に地球温暖化対策を行わなかった場合の比較ケースと地球温暖化対策を実施した対策ケースの排出量推計を行った。産業部門では、NOₓ、PM排出量算定のベースとした大気汚染物質排出量総合調査が、1990年は抽出検査しか行っておらず、十分なデータが利用可能でないことから、基準年を1980年を基準年としたものである。また、各部門の推計年においても同様に先入データの年度が異なるためである。なお、排出量の推計は、将来推計の開始年であるともと、本モデルの妥当性検証のための基礎資料となるものである。

（1）基準年・最新年における排出量推計

まず、基準年・最新年における排出量推計を式(1)を用いて行った。その際、各部門ごとの排出量は(10)を用いて計算した。ただし、交通部門では道路交通事故発生率(NOₓ、PM)から計算した排出量を用いて直接Xₙを設定した。家庭/業務部門では1999年10月に発表された県の地球温暖化対策地域推計(11)(下川計画)という基礎資料から、先入データを対象としたアンケート

（調査数4888件、有効回答数2686件）から得られた機器類の使用状況を用いて(12)を設定した。式(1)のCᵢₙ、Eₙは、機器類の性能を表す係数であるが、年式により変化するため式(6)、(7)によりストック平均値を求め、それぞれの式を基に適用した。式(6)、(7)に用いたsₙは、交通部門では運輸省が調査している自動車保有車両数(2)を、家庭/業務部門では県計画(11)に基づきアンケートから得られた機器類の保有数を基に推定した。各部門の推計年は表2に示すように、原則として、基準年を1990年、目標年を2010年とし、さらに2000年については、特に地球温暖化対策を行わなかった場合の比較ケースと地球温暖化対策を実施した対策ケースの排出量推計を行った。産業部門では、NOₓ、PM排出量算定のベースとした大気汚染物質排出量総合調査が、1990年は抽出検査しか行っておらず、十分なデータが利用可能でないことから、基準年を1980年を基準年としたものである。また、各部門の推計年においても同様に先入データの年度が異なるためである。なお、排出量の推計は、将来推計の開始年であるとともに、本モデルの妥当性検証のための基礎資料となるものである。

（2）モデルの現況再現性について

本モデルによる現状の最新年におけるCO₂排出量の推計値（表8参照）を県が推計した現状の最新年値(11)と比較したものを表3に示す。排出量の差を推計値で除したものは、産業部門では±1.3%、交通部門では±31.9%、家庭部門で±0.2%、業務部門で±0.2%となっており、固定排出源では本モデルの現況再現性は高い。

なお、交通部門において県の推計値に比べて僅かに低い傾向を示しており、これは本研究では道路交通に限るCO₂、NOₓ、PMの排出量を同時に推計するため、Co₂排出量推計に注意深く、燃料消費率を用いるなど、地域全体をマクロに推計した県推計との異なった手法によったことに起因するものである。地域全体の燃料消費率からマクロに推計した値と速度別燃料消費率を用いて道路ごとに積み上げた値が異なることについては、以前より
表-4 モデルの主要な前提条件

<table>
<thead>
<tr>
<th>前提条件</th>
<th>単位</th>
<th>基準年</th>
<th>最新年</th>
<th>目標年</th>
</tr>
</thead>
<tbody>
<tr>
<td>人口</td>
<td>千人</td>
<td>6691</td>
<td>6944</td>
<td>7250</td>
</tr>
<tr>
<td>第3次産業從業者数</td>
<td>千人</td>
<td>2260</td>
<td>2465</td>
<td>2794</td>
</tr>
<tr>
<td>世帯数</td>
<td>千世帯</td>
<td>2174</td>
<td>2439</td>
<td>2890</td>
</tr>
<tr>
<td>業務用地面積</td>
<td>千㎡</td>
<td>63812</td>
<td>76821</td>
<td>90266</td>
</tr>
<tr>
<td>旅客走行量</td>
<td>百万台・km</td>
<td>16597</td>
<td>19702</td>
<td>27475</td>
</tr>
<tr>
<td>貨物走行量</td>
<td>百万台・km</td>
<td>13323</td>
<td>13883</td>
<td>14153</td>
</tr>
<tr>
<td>鉄鋼生産指数</td>
<td>-</td>
<td>100</td>
<td>98.3</td>
<td>99</td>
</tr>
</tbody>
</table>

表-5 設定した対策レベルの観要

<table>
<thead>
<tr>
<th>レベル</th>
<th>計画に基づく対策</th>
<th>各主体の心かけ対策</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>目標値の約4割</td>
<td>アサート結果の「いつも実を実施」</td>
</tr>
<tr>
<td>2</td>
<td>目標値の約7割</td>
<td>「今後取り組む」と回答した全主体が実施</td>
</tr>
<tr>
<td>3</td>
<td>目標値を達成</td>
<td>レベルよりさらに</td>
</tr>
</tbody>
</table>

表-6 心がけによる地球温暖化対策の一部

<table>
<thead>
<tr>
<th>部門</th>
<th>地球温暖化対策</th>
<th>実施実施率</th>
<th>実施期待率</th>
</tr>
</thead>
<tbody>
<tr>
<td>交通</td>
<td>車の急発進を1日10回やめる</td>
<td>37% (レベル1) 73% (レベル2) 87% (レベル3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>不要な荷物（10kg）を積んだまま走行しない</td>
<td>27% (レベル1) 53% (レベル2) 78% (レベル3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>乘用車のアイドリングストップを1日5分間実行</td>
<td>33% (レベル1) 67% (レベル2) 86% (レベル3)</td>
<td></td>
</tr>
<tr>
<td>家庭</td>
<td>エアコン（暖房）の設定温度を1℃低下</td>
<td>24% (レベル1) 48% (レベル2) 88% (レベル3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>照明のつけっぱなしをやめる</td>
<td>40% (レベル1) 80% (レベル2) 98% (レベル3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>天気の良いときは乾燥機を使わない</td>
<td>15% (レベル1) 30% (レベル2) 60% (レベル3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>シャワーの出っぱなしをやめる（1日3分間）</td>
<td>26% (レベル1) 52% (レベル2) 94% (レベル3)</td>
<td></td>
</tr>
<tr>
<td>業務</td>
<td>暖房の設定温度の適正化</td>
<td>42% (レベル1) 85% (レベル2) 92% (レベル3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>冷房の設定温度の適正化</td>
<td>42% (レベル1) 84% (レベル2) 91% (レベル3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>昼休みのパソコンOFF</td>
<td>0% (レベル1) 50% (レベル2) 70% (レベル3)</td>
<td></td>
</tr>
</tbody>
</table>

議論のあるところであり、自動車排ガスに係る単位整備上の課題といえる。
また、NOXの現在目標年（表-8参照）についても県が推計した現在値と比較可能な基準年（1990年）で比較を行ってみると、産業部門で+7.9%，交通部門で－2.9%となっている。産業部門における差異は、群小発生元からの排出量推計のための基礎データについて、県推計の現在値ではアンケート調査に基づいているのに対し本論文では石油等消費構造統計表から推計したことなどに起因するものである。

（3）サービス需要量の将来値の設定

目標年における地域でのサービス種jの需要量Djにについては県計画の2010年計画値に基づき設定している。需要量は機器類の総運転量を制約するものである。現在から2010年までの間の値に関しては線形補完したものを利用。表-4にサービス需要量の設定のための重要な前提条件を示す。

（4）地球温暖化対策の設定

参照ケースでは、機器類の性能はエネルギー消費率で2010年経済計画に基づき設定している。需要量は機器類の総運転量を制約するものである。現在から2010年までの間の値に関しては線形補完したものを利用。表-4にサービス需要量の設定のための重要な前提条件を示す。

一方、対策ケースにおいては地球温暖化対策については、表-5に示すように、「計画に基づく対策」（各主体の心かけ対策）と「気温による地球温暖化対策」に分類し、それぞれ3つのレベルを想定した。レベルが上がるために、計画目標値の達成と心かけ対策の実施率が向上する。レベルの設定は1999年10月に行われた県計画に基づいてアンケートをもとに作成した。

「計画に基づく対策」とは、改正省エネルギー法による規制、県計画、事業所や業種別の取組計画を含むものであり、これに基づく具体的な対策内容を部門別にみると以下のとおりである。

* 産業部門では、県計画に基づき事業所へのアンケート結果から2010年におけるエネルギー消費を二酸化炭素排出に関する削減計画を設定し、調査を行なかった事業所については業種別に環境自主行動計画に基づくものとし、これにも該当しない事業所については、改正省エネルギー法に基づき年率1%のエネルギー消費の削減を見込んだ。

交通部門では、自動車の燃費率について改正省エネルギー法の基準値を用いた。また、これら職種の導入程度については、県のエネルギー軌道ビジョンを参考に設定した。なお、NOx、PMの排出に関しては、中央環境審議会の答申に基づく規制が参照ケース、基準ケースに基づき拡張されるものとした。ただし、こうした前提では、燃費の向上することによりエネルギー消費量当たりのNOx、PM排出量が見かけ上悪化することも生ずる。このほか、交通部門では、参照ケースにおける自動車走行量の推計結果を前提としたモダルシフト推進といった。
<table>
<thead>
<tr>
<th>部門</th>
<th>地球温暖化対策</th>
<th>2010年までの概要（レベル2）</th>
<th>モデル中に対応する変数</th>
</tr>
</thead>
<tbody>
<tr>
<td>産業</td>
<td>化学部門自主行動計画</td>
<td>1%増・原単位を90年で7%減</td>
<td>E_{11}</td>
</tr>
<tr>
<td>鉄鋼部門自主行動計画</td>
<td>1%増・消費量を90年で8%減</td>
<td>E_{11}</td>
<td></td>
</tr>
<tr>
<td>その他製造業部門自主行動計画</td>
<td>1%増・消費量を90年で7%減</td>
<td>E_{11}</td>
<td></td>
</tr>
<tr>
<td>交通</td>
<td>自家用乗用ガソリン車の効率向上</td>
<td>95年から20.7%向上</td>
<td>e_{11}</td>
</tr>
<tr>
<td>乗用「コンパクト」車の導入</td>
<td>保有率を0.1%から15.1%向上</td>
<td>r_{11}</td>
<td></td>
</tr>
<tr>
<td>車の事故数を10回に強い</td>
<td>実施率を36.7%から87.0%向上</td>
<td>Ψ_{1}</td>
<td></td>
</tr>
<tr>
<td>視認性を良くするために</td>
<td>実施率を40%から90%向上</td>
<td>Ψ_{1}</td>
<td></td>
</tr>
<tr>
<td>トランスポリューションのシフト</td>
<td>輸送量の4%をシフト</td>
<td>X_{11}</td>
<td></td>
</tr>
<tr>
<td>家庭</td>
<td>エアコン（暖房）の効率向上</td>
<td>97年から2004年で45%向上</td>
<td>e_{11}</td>
</tr>
<tr>
<td>太陽熱温水器の導入</td>
<td>保有率を6%から22%向上</td>
<td>r_{11}</td>
<td></td>
</tr>
<tr>
<td>暖房の使用時間を一時間短縮</td>
<td>実施率を6%から60%向上</td>
<td>Ψ_{1}</td>
<td></td>
</tr>
<tr>
<td>シャワーレースをしばしばやる（1日3回）</td>
<td>実施率を26%から94%向上</td>
<td>Ψ_{1}</td>
<td></td>
</tr>
<tr>
<td>総合的な省エネルギー型住宅の建築</td>
<td>新築時の導入を5%から4%に向上</td>
<td>Ψ_{1}</td>
<td></td>
</tr>
<tr>
<td>業務</td>
<td>パソコンの効率向上</td>
<td>97年から2005年で115%向上</td>
<td>e_{11}</td>
</tr>
<tr>
<td>照明機器の効率向上</td>
<td>97年から2005年で18%向上</td>
<td>e_{11}</td>
<td></td>
</tr>
<tr>
<td>HHインターオータル照明機器の導入</td>
<td>保有率を13%から59%向上</td>
<td>r_{11}</td>
<td></td>
</tr>
<tr>
<td>暖房機器の設定温度の適正化</td>
<td>実施率を42%から92%向上</td>
<td>Ψ_{1}</td>
<td></td>
</tr>
<tr>
<td>建築物の省エネ・ビル化の推進</td>
<td>新築時の導入を5%から15%に向上</td>
<td>Ψ_{1}</td>
<td></td>
</tr>
</tbody>
</table>

交通政策も考慮した。

・家庭/業務部門では、高性能機器のエネルギー消費率については改定省エネルギー法に基づく新基準に則して設定するとともに、これに機器の導入程度は原則法に基づき設定した。また、家庭部門では、省エネルギー型住宅、業務部門では原則法に基づき省エネルギー型ビルへの移行といった対策も考慮した。

・全体的に共通する電力の排出係数については、参照ケースでは地域の電力会社の実績値をもとに最新人として設定した。対策実施では、CO2排出係数は電力業界の自主行動計画に沿って1990年から2割低減させた値を用いた。NOx/PM排出係数は1997年から2010年にかけてのCO2排出係数低減率に応じて設定した。

次に、「各主体の実施対策」の一部を表6に示す。ここで既実施率とは、すでに実施されている割合、実施期待率とはアンケートにおいて「実施したい」とする回答率に既実施率を加えた率である。

以上の具体的な地球温暖化対策は、表7に示すように各対策に対応するモデルの変数を変化させることで反映させた。表7には、モデル対象のレベル2の内容と本研究で設定した変数の対応を示す。例えば自家用乗用ガソリン車の効率向上といったトランプラン機類の導入対策は機器類の単位単位あたりのエネルギー消費量を変化させる対策である。また、太陽熱温水器の導入といった省エネルギー型の建築を増加させる対策がモデル的に表現できるのではなく、さらに省エネルギー型建築の建築といった対策は機器類のサービス供給効率が変化する対策である。以上のように対策と変数を対応できる場合の排出係数推計が可能となる。

5. 目標年における排出係数推計

目標年・参照ケースの排出係数推計は、まず式(8)、(9)を用いて C_{0}, E_{0} を計算した。上記(4)で述べたように、C_{0} は実施が予定されている規制の目標年と基準値に基づき、また、E_{0} は基準年から一定と設定した。f_{i} については、交通部門では我が国の「長期エネルギー計画に関するモデル分析」10)に準拠し、自動車保有車両数24)を用いてワイルド曲線から計算した値を使用した。家庭/業務部門での f_{i} は、機器の寿命を1とし、その後再利用を0とした。r_{i} については、状況のストックから原則計11)の保有率目標から計算した目標年のストック量になるように各年度の r_{i} を設定した。次に、上記(3)で設定した目標の設定を行った後、式(2)を解くことで機器類の総排気量 X_{j} を求めた。そして式(1)に従って排出係数推計した。

目標年・参照ケースの排出係数推計は、上記(4)で設定した各地球温暖化対策に対応した変数の変化を加えた参照ケースと同様の排出係数推計を行った。例えば高性能機器の保有率を変化させる対策では、まず目標年における駆動器類の保有率を計算し、その値をさらに各年度の r_{i} を設定した。一方、交通部門では工場・事業所や施設別にエネルギー消費量をもとに排出係数を推計するほうが妥当で、実施(8)、(9)によらず、目標年におけるエネルギー消費量の削減目標を達成するよう推計した。
表8 排出量推計結果

<table>
<thead>
<tr>
<th>ガス種</th>
<th>部門</th>
<th>基準年</th>
<th>最新年</th>
<th>目標年</th>
<th>参照レベル1</th>
<th>レベル2</th>
<th>レベル3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>産業</td>
<td>36603</td>
<td>41309</td>
<td>41267</td>
<td>36180</td>
<td>35049</td>
<td>33919</td>
</tr>
<tr>
<td></td>
<td>交通</td>
<td>7444</td>
<td>8489</td>
<td>10680</td>
<td>8934</td>
<td>8490</td>
<td>8081</td>
</tr>
<tr>
<td></td>
<td>家庭</td>
<td>8130</td>
<td>9354</td>
<td>11309</td>
<td>8758</td>
<td>7771</td>
<td>7544</td>
</tr>
<tr>
<td></td>
<td>業務</td>
<td>6009</td>
<td>6829</td>
<td>7554</td>
<td>5587</td>
<td>5101</td>
<td>4825</td>
</tr>
<tr>
<td>合計</td>
<td>58187</td>
<td>65980</td>
<td>70810</td>
<td>59458</td>
<td>56412</td>
<td>54369</td>
<td></td>
</tr>
</tbody>
</table>

表9 参照/対策ケースの比較

<table>
<thead>
<tr>
<th>ガス種</th>
<th>部門</th>
<th>レベル1</th>
<th>レベル2</th>
<th>レベル3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>産業</td>
<td>-12.3%</td>
<td>-15.1%</td>
<td>-17.8%</td>
</tr>
<tr>
<td></td>
<td>交通</td>
<td>-16.3%</td>
<td>-20.5%</td>
<td>-24.3%</td>
</tr>
<tr>
<td></td>
<td>家庭</td>
<td>-22.6%</td>
<td>-31.3%</td>
<td>-33.3%</td>
</tr>
<tr>
<td></td>
<td>業務</td>
<td>-26.0%</td>
<td>-32.5%</td>
<td>-36.1%</td>
</tr>
<tr>
<td>合計</td>
<td>-16.0%</td>
<td>-20.3%</td>
<td>-23.2%</td>
<td></td>
</tr>
</tbody>
</table>

5. 推計結果と削減効果等の分析

地球温暖化対策による大気汚染対策の効果を、
表3, 4, および目標年と比較して推計結果を述べる。

まず、部屋別の差異を含むガスの排出量の推計
結果を示すことにより、地球温暖化対策による効果
を発見し、高熱帯撲襲を考慮したうえで、対策種類ご
の削減の度数を分析する。これにより、各種対策の
目標の実現に向けた要因を分析し、排出削減に大きく寄
与する要因を分析に抽出する。最後に排出量の増加を
大きく左右する要因を活用して部屋別のシナリオ分析
を行う。

（1）部門別の排出量推計結果

基準の効果推計モデルを参考に、基準年と比較して
排出量を考慮する。レベル1, 2, 3の対策として、
CO2排出量は基準年と比較して、レベル1で2.2%増加、
レベル2で3.1%減少、レベル3で6.6%減少（以下同様に
目標年を考慮して記述）が示された。NOx排出量は、
基準と比較して、レベル1で21.7%、レベル2で23.8%、
レベル3で27.4%、レベル2で29.7%、レベル3で32.0%それぞれ
減少されている。

また、目標年対策と比較して、レベル1, 2, 3の排出量を
部屋別の要因で比較すると、CO2排出量は16.0%,
20.3%, 23.2%削減される一方で、NOx排出量は6.2%, 9.4%,
11.9%削減され、PMの排出量が4.6%, 7.8%, 10.7%削減
されることが示された。これを部門別の結果と合わせて
表9に示す。

（2）対策種類別のCO2-NOx削減効果の分析

図1, 2, 3, 4に産業/交通/家庭/業務部門の対策種類ご
の削減率を示す。CO2削減率は基準年と比較して、
CO2削減率-PM削減率-PM削減率-NOx削減率の関係を示す。
CO2削減率-PM削減率-NOx削減率の関係を示している。
なお、この削減率は、目標年参照ケースの排出量に対する
削減割合である。

部門別の削減率をみると、産業部門においては、鉄鋼
部門の自動車等がCO2で5.3%, NOxで4.6%と比較
的に高い削減率を示している。化学製品部門の
自動車等の削減率は、CO2で0.9%, NOxで2.1%の削減率を
示している。

交通部門においては、本論文では既存自動車のNOx等
に係る排出削減効果を参照ケースに考慮しているため、
既存自動車の単体対策としてはCO2削減率のみが示されている。
この中で自動車の使用実紛の燃費向上が6%を
近い削減率を有している。ただし、ハイブリッド自動
車の導入はCO2で2.7%, NOxで1.5%、エネルギー効率の
推進ではCO2で1.0%, NOxで1.9%と高い削減率を示
している。交通部門の特色を対策では、「車の急発進を
1日10回やめる」がCO2で1.8%, NOxで1.0%、「適正な
空気圧で走行する」がCO2で1.4%, NOxで0.8%と比較
的に高い削減率を示している。

家庭部門では、「エアコン（暖房）の効率向上」がCO2で
3.0%, NOxで1.9%の削減率を有し、「シャワーの出っ
ぱないやめる」がCO2で2.8%, NOxで5.2%の削減率を
示し、「大気過度水銀の導入」は、CO2で2.6%, NOxで
5.6%の削減寄与率を示している。また、この部門では「シャワー・出しっぱなしをやめる」と「太陽熱温水器の導入」を除き、ほととのどの対策が削減寄与率でNOx / CO2比6と1の直線に乗っているが、これは本部門内の対策のほとんどが電力消費削減に係るものであり、電力の排出係数低減に係る削減寄与率のNOx / CO2比に連動していることによるものと考えられる。

また、業務部門においては、「照明器具の効率向上」がCO2で4.5%、NOxで2.8%、「デスクトップパソコンの効率向上」がCO2で3.2%、NOxで2.0%、「暖房の設定温度の適正化」がCO2で2.2%、NOxで3.7%の削減寄与率を示し、削減寄与率高い部門となっている。また、業務部門と同様、電力のみならず燃料の消費削減に繋がる「建築物の省エネルギー化」、「暖房の設定温度の適正化」、「暖房の使用時間の1時間短縮」では、電力の排出係数低減に係る削減寄与率でNOx / CO2比0.6程度を超えるNOxの削減効果を有しているが、それ以外では、電力の排出係数低減に係る削減寄与率のNOx / CO2比の直線に乗っていることがわかる。

以上の分析により、地域の大気環境状況により、副次的効果の観点から重点を置くべき地球温暖化対策が異なり、例えば都市大気汚染の深刻な地域においては、家庭やオフィスにおける節電より直接燃焼分野の効率向上を重点施策とするべきことが示唆される。

（3）対策レベルによる排出削減感度の分析
図2.1〜2.2に示す対策レベルを2から1に下げた場合の対策毎のCO2、NOxの排出削減の効果を、また、対策レベルを2から3に上げた場合の同様の変化を示す。対策のレベルを下げたときにCOM工程、NOxの排出削減効果が3割以上減少する対策は、「冷蔵庫への適度な使用」「洗濯物の適正化」「ソファの適正化」「洗濯物の適正化」である。また、対策のレベルを上げると同時にCOM工程、NOxの排出削減効果が5割以上増加する対策は、「建築業の自動化」「公共交通機関等を使用し1週間に1回マイカー利用を控える」「ハイインバータ照明器具（センサー付）」の導入」である。

これらの対策は、対策レベルが上昇することにより排出削減効果の変化が大きなものであり、行政担当者が多数ある高効率機器やカーボン対策の中から重点化を行う際の目安となるものと考える。

（4）分野別の排出削減要因分析
本事例では、主要分野の排出削減がどのような要因により左右されているのかを分析する。具体的には、式(13)を用いた。
図2-1 対策感度分析（レベル2→レベル1）
図2-2 対策感度分析（レベル2→レベル3）

表10 主要分野の排出要因別の減析成（対策ケース・レベル2の場合）

<table>
<thead>
<tr>
<th>ガス種</th>
<th>分野</th>
<th>活動量</th>
<th>エネルギー強度</th>
<th>排出強度</th>
<th>排出量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>産業</td>
<td>鉄鋼</td>
<td>基準年</td>
<td>参照</td>
<td>対策</td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学製品</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>交通</td>
<td>乗用車</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>貨物車</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>家庭</td>
<td>家庭エアコン</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>シャワー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>業務</td>
<td>オフィス暖房</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>オフィス照明</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>産業</td>
<td>鉄鋼</td>
<td>100</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学製品</td>
<td>100</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>交通</td>
<td>乗用車</td>
<td>100</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td></td>
<td>貨物車</td>
<td>100</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>家庭</td>
<td>家庭エアコン</td>
<td>100</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td></td>
<td>シャワー</td>
<td>100</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>業務</td>
<td>オフィス暖房</td>
<td>100</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>オフィス照明</td>
<td>100</td>
<td>141</td>
<td>141</td>
</tr>
</tbody>
</table>

（注）エネルギー効率改善が排出量低減に繋がらない対策を含む分野の欄は「-」とした。

\[Q = \frac{D}{E} \cdot \frac{E}{D} \quad (13) \]

ここで、\(Q \)は排出ガス量、\(D \)は各分野にかかる活動量、\(E \)はエネルギー消費量を表す。式(13)から排出量を活動量、活動量当たりのエネルギー消費量（エネルギー強度）、エネルギーを1単位消費するときの排出ガス量（排出強度）の3つの要因に分解し、表10に示すように、基準年の排出量を100とした場合の個別分野毎の排出増減を分析した。なお、産業部門や交通部門でNOXやPMに関係する分析を行わなかったのは、前述したようにこのような要因分解が不適当であるからである。

エネルギー強度には3、に述べたエネルギー消費効率化対策の変数（\(\delta_0, \delta_1, \delta_2 \)）を、排出強度には同様に電力等の排出係数低減対策の変数（\(\gamma_0, \gamma_1, \gamma_2 \)）が含まれている。例えばオフィス照明に対しては、「照明機器の効率向上」、「ハッピータ照明機器の導入」、「昼休みの消灯」といった対策があるが、各対策はそれぞれ\(\delta_0, \delta_1, \delta_2 \)に対応していき、基準年と対策ケース（レベル2）を比べると、

- エネルギー強度が大きく寄与している分野：乗用車、家庭エアコン、オフィス暖房、照明
- 排出強度が大きく寄与している分野：
 - シャワー、家庭エアコン、オフィス照明

という特徴を得た。

このような要因分析を通じて、どの要因がどの程度削減に寄与するかを定量化でき、個別分野ごとのきめ細かな施策の立案に貢献するものと期待できる。

148
表-11 設定したシナリオ

<table>
<thead>
<tr>
<th>項目</th>
<th>基礎となるネット</th>
<th>需要量の増加</th>
<th>対策の強化</th>
</tr>
</thead>
<tbody>
<tr>
<td>産業</td>
<td>自主行動計画等の7割を達成</td>
<td>産業が想定より10%増加</td>
<td>自主行動計画を目標どおり実施</td>
</tr>
<tr>
<td>交通</td>
<td>ハイブリッド車の普及率が自家用車の2割</td>
<td>自動車走行量が想定より10%増加</td>
<td>心がけ対策を全主体が実施</td>
</tr>
<tr>
<td>家庭</td>
<td>HFC-245zea照明の普及率が49%</td>
<td>1%増加</td>
<td>高効率機器の普及率が30%向上</td>
</tr>
<tr>
<td>業務</td>
<td>心がけ対策</td>
<td>業務用床面積が想定より10%増加</td>
<td></td>
</tr>
</tbody>
</table>

* 表-4に示したレベル2の実施率

図-3.1 対策シナリオ分析（産業）
図-3.2 対策シナリオ分析（交通）
図-3.3 対策シナリオ分析（家庭）
図-3.4 対策シナリオ分析（業務）

（5）活動量および対策強度に係るシナリオによる分析
各部門の排出量を決定する重要な因子となる需要量と主要な対策については、レベル2の対策ケースを基礎として表-11に示す部門別シナリオを設定し、CO2、PMの排出量推計を行った。その結果を、部門別に図-3.1〜3.4に示す。

産業部門では、産生量が10%増加することでCO2、PMの排出量が5%〜6%増加するが、自主行動計画を目標どおり実施することで、それぞれ2%程度の増加に抑えることができる。交通部門では、自動車走行量が10%増大することで、CO2、PMとも10%排出量が増えるが、ハイブリッド車等低公害車普及率が30%となり、かつ、心がけ対策を全主体が実施することで、CO2では0.9%に排出抑制される。一方、PMについては対策効果がほとんど見られず、これは想定した対策強化の中にディーゼル車対策がほとんど含まれていないことによるものである。家庭部門では、世帯数は1%増加することで、CO2、PMとも排出量が1%増加するが、高効率機器の普及率が30%となり、かつ、心がけ対策を全主体が実施した場合、CO2で10.7%減、PMでは4%減に削減される。業務部門では、オフィス面積が10%増加することで、CO2、PMとも10%排出量が増加するが、家庭部門と同様の対策強化を施することで、CO20.2%、PM3.1%増に抑えられる。

部門別みると（図-4）、需要量が見込みより10%増加（世帯数は1%増加）することに伴うCO2排出量の増加を対策強化により相殺するためには、自主行動計画や心がけ対策の目標達成に加え、低公害車や高効率機器の導入をさらに30%程度進めることが必要となることが分か
図-4 対策シナリオ分析（部門別）

出力係数の低減にかか連で不可能である対策がほとんどであること、明らかになった。このような推計を行うことにより、地方公共団体の地域特性に応じた対策の優先順位付けに役立てることができる。

3) 対策レベルによる感度分析の結果、対策のレベルを上下させることにより、排出削減効果が大きく変化する対策として、「ヘ イ・インターセプトを照明機器の導入」、「建設業における自主行動計画」などが挙げられた。このような分析は、数多くの対策の中から政策的に重点化する際に有用である。

4) 個別分野の排出増減を速報、エネルギー効率、排出係数といった要因別に分析すると、エネルギー効率向上に排出削減に大きく寄与している分野は家庭用エアコン、排出係数の低減が大きく寄与している分野はシャワーやあることが分かった。このような要因分析は、排出構造に着目した的確な施策展開に活用できる。

5) シナリオ分析の結果、活動量が見込みより10%増加（単位数は1%増加）することに伴う、CO₂排出量の増加を対策強化により相殺するためには、自動行動計画や心がけ対策の完全実施に加え、低公害車や低効率機器の導入をさらに30%程度実行することが必要となる。PMなどの排出量は完全には相殺されないことが分かった。地球温暖化対策と大気環境対策の統合政策を推進するにあたっては、特に交通部門において、CO₂排出量とPMなどの排出量は必ずしも連動しないことに留意すべきである。

6. 結論と政策的含意

地球温暖化対策が地域大気環境に及ぼす効果を定量的に把握するため、推計モデル（ALICE）を開発し、愛知県を例としてこのモデルを適用し推計分析を行った。得られた主な成果をまとめる次に示すとおりである。

1) 県の地球温暖化対策地域推進計画で取り上げた3つの対策の実施を計画することにより、推計的推計をと比較すると、CO₂で16-23%の排出削減に対して、NOₓで6-12%、PMで5-11%の削減効果を得る。これは、表-1に示す欧州やカナダなどにおける既存値と同程度の削減効果である。

2) 対策の種類別に、参照ケースから対策ケースへの削減効果に対する削減寄与率をみると、①産業部門では、CO₂、NOₓともに電気部門自主行動計画の占める割合が大きいこと、②交通部門では、車の油費化が6%増えるCO₂の削減寄与率を有していることを、ハイブリッド自動車の導入はCO₂、NOₓで1〜3%、モータルシフトの推進ではCO₂、NOₓで1〜2%の削減寄与率が示されていること、③家庭/業務部門では、削減寄与率のNOₓ/CO₂比が電力排出に優れている。

以上、温室効果ガスと大気汚染物質が同時に推計できるモデルを開発したことで、地球温暖化対策の大気汚染物質排出を低減効果を定量的に把握することが可能となり、これを基に確実な地球温暖化対策と大気環境対策が推進した総合的な施策展開を行うことができる。地方公共団体の地球温暖化対策推進にあたっては、地球温暖化防止活動推進センターを中心とした個別政策の取り組みが期待されているが、そうした活動の有効なツールとして本モデルは活用しもすると考える。

また、この推計モデルは、アジア等の開発途上国の緊急課題である大気汚染対策が温室効果ガスの排出削減に及ぼす効果を推計分析に適用し得るものと考えている。
A STUDY ON THE ANCILLARY EFFECTS ON LOCAL AIR QUALITY FROM THE GREENHOUSE GAS MITIGATION MEASURES

Koji SHIMADA, Shingo MIZOGUCHI and Yuzuru MATSUOKA

The authors have developed the ALICE model, which calculates reduced air pollutant emissions by the greenhouse gas mitigation measures. The model developed here has been applied to a local government in order to estimate the concrete effects on air quality from the mitigation measures until 2010. Main findings are as follows: 1) The measures in the most intensive case, which will reduce CO₂ emission by 23% with compared to a reference case in 2010, would have effects decreasing both NOₓ emission and PM emission by 11-12%. 2) The voluntary action program by steel industry and the dissemination of hybrid cars would have significant effects on the emission reduction of CO₂ and NOₓ. 3) In transport sector intensive measures, which would reduce CO₂ emission substantially, don't have similar effects on PM emission.