前凝集沈殿汚泥の嫌気性消化特性

高岡昌輝1・廣田淳一2・武田信生3・藤原健史4

1 正会員 工修 京都大学助手 工学研究科環境工学専攻（〒606-8501 京都市左京区吉田本町）
2 京都大学大学院修士課程 工学研究科環境工学専攻（〒606-8501 京都市左京区吉田本町）
3 フェロー会員 工博 京都大学教授 工学研究科環境工学専攻（〒606-8501 京都市左京区吉田本町）
4 正会員 工博 京都大学助教授 工学研究科環境工学専攻（〒606-8501 京都市左京区吉田本町）

前凝集沈殿汚泥の嫌気性消化特性を把握するために、無機凝集剤として塩化第二鉄、硫酸バリウム、ポリ塩化アルミニウムをそれぞれ用いて作成した前凝集沈殿汚泥と凝集剤を添加しない初沈汚泥、初沈汚泥と余剰汚泥との混合汚泥の3種類の汚泥についてバッチ式の嫌気性消化実験を行った。凝集剤をして塩化第二鉄を用いて作成した前凝集沈殿汚泥は消化に対する阻害がなく、むしろ凝集剤を添加していない初沈汚泥の場合よりも、SS減少率、有機酸およびメタンガスの回収という観点から有利であった。アルミニウムを含む凝集剤によって作成された前凝集沈殿汚泥は、SS減少率が低下し、有機酸およびメタンガスの生成に阻害が見られた。

Key Words: sewage sludge, precoagulation, anaerobic digestion, inorganic coagulant, inhibition

1. はじめに

下水道は発酵期を迎えているといえ、環境への負荷の少ない循環型社会の中の基盤システムとして大きな役割が求められており、具体的には、1）処理水質の向上、2）施設のコンパクト化、3）省エネルギー、創エネルギー、4）汚泥の有効利用といった要求がされている。

このような要求を満たすための一つの方法として、最初沈殿池の前に凝集剤を投入し、積極的に最初沈殿池で固形物、有機物、リン等を除去し、後段の生物処理における負荷を軽減して窒素の処理を重点的に行う前凝集沈殿法が検討されている1). 前凝集沈殿法はこれまで水処理系で処理してきた負荷を汚泥処理系に転換する方法であるため、このプロセスを導入した場合、汚泥量の増加および汚泥性状の変化をもたらす2). したがって、汚泥は、汚泥処理は、量的な増加と性状変化に対応せねばならないが、この対応策の一つとして注目されるのが嫌気性消化プロセスである。

嫌気性消化法は、汚泥の減量化・安定化とともに、得られるメタンガスがエネルギー源として利用でき、下水道システムにおける唯一のエネルギー生産プロセスといえる4). 都市下水、産業排水などに含まれる有機物は貴重な資源であり、全ての有機物から嫌気性消化法によって回収されるとした場合のメタン生成量は、原油換算で900万kcal/年と試算されており、これは原油輸入量の4.5%に当たる5). 将来的には家庭におけるディスポーザーが普及すると、高濃度の有機資源が下水道に流入することが予想されること、また、含水率の高い生ごみの焼却は敬遠される傾向にあり、一般ごみのうちの生ごみをし尿、浄化槽汚泥とともにメタン発酵を行うことが注目されており7)，嫌気性消化法の重要性が再認識されてきている。

著者らのこれまでの研究で、前凝集プロセスを導入することによる汚泥量の増加が、汚泥処理システムにかかるコストを増大させることが分かっている4). また、前凝集沈殿により発生する汚泥に易分解性の有機物が従来型の標準活性汚泥法から排出される余剰汚泥に比べ多く含まれることが予想されている。このことから、前凝集沈殿汚泥に対しても嫌気性消化プロセスを組み合わせることにより、汚泥の減量化・安定化ならびに汚泥中分解物(揮発性脂肪酸、メタンガスのみならず、リン、凝集剤等)の回収などが期待される。今まで前凝集沈殿汚泥の有機酸発酵に関する報告はなされてはいるが8)，嫌気性消化特性および消化後の脱水
2. 実験方法

嫌気性消化実験は分流一部合流式下水処理場の
の消化槽汚泥に、合流式下水処理場の初熟汚泥を
基質として与えて、実験室にて培養、養殖した種
汚泥と試料汚泥を体積比で2:1の割合で混合して
総量を3Lとし、図-1の実験装置を用いて実験し
た。試料汚泥は、合流式下水処理場に併設した前
凝集沈殿実験プラントにて、凝集剤添加汚泥と無
添加汚泥を作成した。凝集剤添加量は塩化第二鉄
11,22mgFe/L-原水（以下11塩鉄、22塩鉄と表す）、
PACとバンドは2.5,7.5mgAl/L-原水（以下
2.5PAC,7.5PAC,2.5バンド,7.5バンドと表す）
とした。凝集操作条件はいずれの場合も、急速摺
拌が123rpmで滞留時間は3.5min,緩速摺拌が
31rpmで滞留時間は15.7minとした。
凝集系は種汚泥、標準系、凝集系の凝集剤濃度
各2条件の計4つの条件について、基本系は種汚
泥、標準系、混合汚泥の3つの条件について同時に
発酵実験を開始させた。混合する際には、有機物
負荷を同じにする目的で、VTSを基準に濃縮、希
釈を行った。種汚泥と混合後の発酵実験前のそれ
ぞれの汚泥の性状を表-1に示した。消化温度は温
水槽を用いて37℃に保ち、発酵槽内はバドルによ
る機械摺拌（300rpm）を行った。また、実験を始
めるにあたり気相部は窒素（N₂）で置換した。実験
期間は2週間として、測定は0,1,2,4,7,10,13
日目の7回行った。汚泥は実験中加圧する
ことはなく、毎回100mLを汚泥引抜き管から引き
抜いた。消化実験における測定項目および測定方
法を表-2に示した。揮発性脂肪酸（Volatile Fatty
Acid：VFA）については、ガスクロマトグラフィー
質量分析計にて、酢酸、プロピオン酸、イソ酪酸、
ノルマル酸、イソギタ酸、ノルマルジタ酸の濃
度を測定した。発生ガスは、テトラパックに捕集
し、ガスクロマトグラフィーで組成（CH₄,CO₂,
N₂）を分析した後、アガラスと乾式ガスメータを
用いて発生量を測定した。
また、13日間の嫌気性消化実験後の汚泥につい
ては、ペルトプレス脱水を想定した簡易脱水実験
機で脱水試験を行った。14種の高分子凝集剤の中

図-1 嫌気性消化実験装置
表-1 消化実験前の汚泥の性状

<table>
<thead>
<tr>
<th>試料名</th>
<th>TS (mg/L)</th>
<th>SS (mg/L)</th>
<th>VTS (mg/L)</th>
<th>VSS (mg/L)</th>
<th>pH</th>
<th>総アルカリ度 (mgCaO2/L)</th>
<th>T-Al (mg/L)</th>
<th>S-T-Al (mg/L)</th>
<th>T-Fe (mg/L)</th>
<th>S-T-Fe (mg/L)</th>
<th>T-P (mg/L)</th>
<th>S-T-P (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>種汚泥</td>
<td>22400</td>
<td>19600</td>
<td>13000</td>
<td>11300</td>
<td>7.5</td>
<td>3170</td>
<td>526</td>
<td>1.8</td>
<td>655</td>
<td>25.2</td>
<td>358</td>
<td>10.5</td>
</tr>
<tr>
<td>標準系</td>
<td>18200</td>
<td>16000</td>
<td>11100</td>
<td>9290</td>
<td>7.4</td>
<td>2250</td>
<td>407</td>
<td><0.1</td>
<td>705</td>
<td>26.8</td>
<td>295</td>
<td><0.1</td>
</tr>
<tr>
<td>11塩鉄</td>
<td>18700</td>
<td>16700</td>
<td>11200</td>
<td>9700</td>
<td>7.4</td>
<td>2250</td>
<td>368</td>
<td><0.1</td>
<td>665</td>
<td>8.7</td>
<td>276</td>
<td><0.1</td>
</tr>
<tr>
<td>22塩鉄</td>
<td>18500</td>
<td>16800</td>
<td>11000</td>
<td>9870</td>
<td>7.4</td>
<td>2370</td>
<td>376</td>
<td><0.1</td>
<td>748</td>
<td>9.2</td>
<td>274</td>
<td><0.1</td>
</tr>
<tr>
<td>種汚泥</td>
<td>14900</td>
<td>12700</td>
<td>9350</td>
<td>7890</td>
<td>7.8</td>
<td>3030</td>
<td>279</td>
<td>4.1</td>
<td>411</td>
<td>6.7</td>
<td>354</td>
<td>32.9</td>
</tr>
<tr>
<td>標準系</td>
<td>12100</td>
<td>10600</td>
<td>8670</td>
<td>7580</td>
<td>7.6</td>
<td>1980</td>
<td>166</td>
<td>1.4</td>
<td>241</td>
<td>4.0</td>
<td>170</td>
<td>20.9</td>
</tr>
<tr>
<td>2.5PAC</td>
<td>14000</td>
<td>11000</td>
<td>9750</td>
<td>7780</td>
<td>7.6</td>
<td>2110</td>
<td>261</td>
<td>3.2</td>
<td>263</td>
<td>3.1</td>
<td>258</td>
<td>16.2</td>
</tr>
<tr>
<td>7.5PAC</td>
<td>11500</td>
<td>10200</td>
<td>7960</td>
<td>6990</td>
<td>7.6</td>
<td>2050</td>
<td>315</td>
<td>1.5</td>
<td>228</td>
<td>1.6</td>
<td>297</td>
<td>17.1</td>
</tr>
</tbody>
</table>

表-2 測定項目および測定方法

<table>
<thead>
<tr>
<th>測定項目</th>
<th>測定機器・測定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>下水試験法4.6</td>
</tr>
<tr>
<td>SS</td>
<td>下水試験法4.9</td>
</tr>
<tr>
<td>VTS</td>
<td>下水試験法4.8</td>
</tr>
<tr>
<td>VSS</td>
<td>下水試験法4.8</td>
</tr>
<tr>
<td>pH</td>
<td>下水試験法4.5</td>
</tr>
<tr>
<td>総アルカリ度</td>
<td>下水試験法4.12</td>
</tr>
<tr>
<td>脱水ろ液SS</td>
<td>下水試験法12.1</td>
</tr>
<tr>
<td>T-P, T-S-P</td>
<td>ICP発光分析装置</td>
</tr>
<tr>
<td>T-Al, S-T-Al</td>
<td>稲村製作所ICPS-8000</td>
</tr>
<tr>
<td>T-Fe, S-T-Fe</td>
<td>稲村製作所ICPS-8000</td>
</tr>
<tr>
<td>揮発性脂肪酸</td>
<td>GC/MS (GC:HP890/MS:HP970B)</td>
</tr>
<tr>
<td>ガス組成</td>
<td>GC・TCD (GC:HP890)</td>
</tr>
</tbody>
</table>

熱量計（OSK150を使用）により高発熱量を測定した。データは消化実験前と終了後の消化汚泥のTSを用いた。

3. 実験結果と考察

実験は長期にわたったため、種汚泥、試料汚泥ともに変質している可能性があるものので同期間に行なった標準試験に対する基準値との相対値を行った。また、各対照試の添加量が少々ある条件（11塩鉄、2.5PAC、2.5パンド）では、標準試と大きな違いが見られないことが多かったため、主に添加量の大きい場合について結果を示し、考察した。

(1) pHおよび総アルカリ度

今回使用した種汚泥のpHが7.5〜7.8程度であったこともあり、初めのpHは全て7.5付近であった。全般的に実験初期には徐々に低下し実験が進行するにつれて上昇し、最終的に実験時のpHと同等かもしくは若干高くなるケースが多くった。実験開始後の100hr前後のpH低下は高分子有機物分解による揮発性脂肪酸蓄積の結果と推測される。次に、メタノン発酵過程で酢酸などが消費されていくとともに高分子有機物のうち蛋白質の分解によって生成するアンモニア性窒素が生成したために実験期間以降はpHが上昇したと考えられた。pHは
一般的には中性付近（7.3〜7.6）が最適であるといわれていることから小さく、やや高めであるもののpHの変化による消化への影響はないと考えられた。

総アルカリ度は、実験開始から徐々に増加していった。この増加の要因は上記にも示したアノニア性窒素によるところが大きいと考えられた。一般にアルカリ度は2000mg/L以上であれば消化に支障がないことから、総アルカリ度の変化による消化への影響はないと考えられた。

（2）SS減少率

凝集剤を添加しない初沈汚泥である標準系汚泥のSS減少率を1とした時の各汚泥の相対的なSS減少率の経時変化を図-2に示した。同じ凝集剤では凝集剤量に関わらず、傾向が同じであったので、添加量が多いものについて示した。22塩鉄では実験初期には、標準系の約3倍の減少率であり、最終的には約1.3倍の減少率であった。これは、凝集剤の添加で易分解性物質が多く含まれていたことによると考えられた。一方、PAC、パンド、基本系では実験初期に若干標準系の分解率を上回っていたものの、最終的には約0.6〜0.8倍の減少率であっ。金らは、凝集生污泥の有機酸発酵に及ぼす塩化第二鉄およびPACの阻害効果について実験を行い、PAC加入時46mgAl/L、塩化第二鉄加入時120mgFe/L以上で有機酸の生成が10％以上減少することを報告している。本実験では、アルミ系凝集剤の場合、7.5mgAl/Lまでで20〜40％程度のSS減少率の低下が認められることもわかった。アルミ系（以下PAC、パンドを含めて）の凝集剤を用いた場合、実験後期に分解される物質の分解に影響を及ぼすと考えられた。実施時の余剰汚泥を用いた場合では、やや污泥分解率が低かったが、これは同じVTSであっても余剰汚泥は初期汚泥よりも生物分解性の悪い有機物を多く含有するためであると考えられた。

（3）揮発性脂肪酸

図-3に22塩鉄と7.5PACの場合について、経過時間と揮発性脂肪酸の生成濃度（酢酸当量）の関係を示した。22塩鉄の場合は標準系と比較して、
ほぼ同様の生成曲線を描き、16.5時間後にVFA生成濃度は22塩鉄が181mg/Lで、標準系の124mg/Lを上回った。PAC系では、実験初期には7.5PACで標準系を若干上回ったが、77.5時間後には標準系と生成濃度が逆転した。両者ともに300時間後の生成濃度が最も高かった。生成総量では7.5PACは190mg/Lで約40%程度しか生成しなかった。後述するように33.5時間後まで溶解性アルミニウム濃度は40mgAl/L程度になっており、有機酸生成に対するアルミニウムによる阻害の影響であると考えられた。

次に、22塩鉄および7.5PACの300時間後のVFA組成を図-4に示した。これをみると塩鉄系では、酢酸＞プロピオン酸＞酢酸の順に生成量が多く、これは黒田ら11)や北村ら12)によって報告されている最初沈殿池汚泥の有機酸発酵の結果と同様であった。一方、7.5PACでは、酢酸＝プロピオン酸＞酢酸という順になり、プロピオン酸の蓄積が認められた。ただし、7.5PACと同時に行った観察剤無添加の標準系においてもプロピオン酸の生成量が65％と多く、PACの影響というよりは供試汚泥の成分が塩鉄の場合と異なっていたことに起因している推測された。

図-5 メタンガスの発生量

(4) ガス発生量および組成

ガス発生量は、塩鉄系では実験開始前に多量のガスが発生し、最終的に22塩鉄で約250（mL/g-VTS）、標準系では150（mL/g-VTS）のメタンが発生した。投入VTSあたりのメタンガス発生量の経時変化を図-5に示した。平岡らは初期汚泥のガス発生量が407（mL/g-VTS）とすることであり13)。今回は標準系でその半分以下しか発生しなかった。

GC-TCDを用いてガス組成を測定したが、実験開始時に、実験装置の上部を空気で置換したため、ガス組成は完全に消化ガスと置換されるまでに時間がかかる。そこで、生成ガスのうちメタンと二酸化炭素の構成比に注目した。22塩鉄については、この構成比が33時間以降はほぼ一定になった。したがって、33時間後の生成ガスについて比較した。
22塩鉄、7.5PAC、7.5バンドの場合の生成ガスの組成を図-6に示した。メタンと二酸化炭素の構成比は塩鉄系では、標準系よりも若干メタン比率が高くなり、標準系がメタン比率68%に対し、22塩鉄で73%であった。PAC系、バンド系では標準系とほとんど同じ組成であり7.5PACで72%、7.5バンドで74%であった。標準系との比較から見れば塩鉄系はメタンの比率がやや高く、メタン生成に有利であると考えられた。

(5) リン溶出率
図-7に塩鉄、PAC添加時と標準系のリン溶出率を示した。硫酸バンド添加時は、PACと同様の傾向を示した。ここで定義される溶出率とは、消化前の汚泥（種汚泥と各処理汚泥の混合物）中濃度に対して消化後にろ液側に移行したリンの割合で
ある。リンの溶出率は凝集剤添加量が多くなると低くなった。2.5PACでは標準系と同程度の溶出率であり、凝集剤によるリン固定化作用が十分働いていなかった。著者らが種汚泥を加えずに前処凝沈沈殿汚泥のみのリン溶出試験では、凝集剤添加量が低くてもリンの溶出はかなり抑制されていたので、種汚泥がなんらかの影響を及ぼしているものと考えられた。図-8に溶解性鉄および溶解性アルミニウム濃度の経時変化を示す。実験開始時と50〜100時間後の溶解性アルミニウム濃度を比較すると、PAC添加時には10〜30倍（20〜50mgAl/L）になっており、凝集剤中のアルミニウムが溶出していることが確認された。また、pHの変化は標準系で7.6から7.3へ、2.5PACで7.6から7.05へ、7.5PACでは7.6から7.3へ時間に応じて変化していた。これは有機酸生成によるpH低下によるものと推測された。このことから、pHの低下により、PACとの共沈物の一部が溶解し、リンが溶出したと考えられた。ちなみに、塩鉄添加の場合、実験開始時と50〜100時間後の溶解性鉄濃度を比較すると、2〜5倍にしかならず、凝集剤の溶出量は小さく、塩鉄系でのリンの溶出量の小ささと合致していた。基本系では、標準系（初沈汚泥と種汚泥の混合物）のリン溶出率と比べて、混合汚泥（初沈汚泥と余剰汚泥と種汚泥の混合物）の場合はその溶出率が約1.5倍になっており、余剰汚泥中のリンが放出されていることが確認された。凝集剤添加により、特に塩鉄を用いることで消化プロセスにおいても、リンを汚泥中に固定でき、返流水へのリン負荷が軽減できることかたわら、

（6）消化汚泥の脱水性

まず、脱水試験に用いる高分子凝集剤の種類と添加量を決めるために、塩鉄系の実験を行う前の種汚泥に対して行ったCST測定の結果を表-3に示した。CST/TSの値が低いほど脱水性がよいので、いずれの高分子凝集剤も試料汚泥のTSに対して0.5％添加の場合は脱水性が良くなかった。14種の高分子凝集剤の中ではA-5のポリアクリルエステル系の低カチオンの高分子凝集剤が最も良好であると判断された。以下、の脱水試験ではこの高分子凝集剤を試料汚泥のTSに対して1.0％, 1.5％の添加率で用いることとした。

脱水試験の結果を表-4に示した。試料名の後の1.5はポリマー添加率が試料TSあたり1.5％であることを示す。PAC系では試料のTSが低かったこともあり、他の系と比較して有効な脱水が行なわれなかったが、標準系との比較という観点からは問題ないと考えた。

含水率は、凝集剤添加量に関わらず標準系と同等であった。塩鉄系の含水率が他に比べ低くなっ

たのは、適合ポリマー選定に際し、塩鉄系の種汚泥を用いたことによる。つまり、塩鉄系とPAC系などでは種汚泥の性状が異なっていたため、PAC系などの含水率は塩鉄系より高くなっていたと考えられた。ろ液SSは、塩鉄系では塩鉄第二鉄の添加量が多くなるにつれて増加した。これは、嫌気性雰囲気下で溶解していた鉄イオンが、空気をふるうことにより、酸化し、微細粒子の酸化鉄を形成し、SSに　

となったことによると考えられた。PAC系、合金系ではろ液SSは添加量が多くなるにつれ減少した。また、ろ液リン濃度は、凝集剤添加量が多くなるほど減少した。総じて、凝集剤添加量が多くなるにつれてろ液水質は向上したが、塩鉄系ではSS濃度の上昇が問題となる可能性もあるといえる。基本系では、ろ液SS、リン濃度ともに増加したが、リン含有量が多く脱水性が悪いとされる余剰汚泥の影響であると思われた。

（7）発熱量

ポンプ熱伝計による発熱量測定結果を表-5に示した。塩鉄系、基本系については消化前汚泥の発熱量を測定していなかったので、以下に示す村上的式で推算した値により発熱量を比較した。

\[H_n = 58.3V-193 \quad \text{(kcal/kg-DS)} \]

\[V : \text{強熱発熱率（％）(VSS/SS)} \]

村上式による推算値は消化前の汚泥についてよく一致していたが、消化後の汚泥に対しては実測値と値が大きく異なる場合があった。ただし、PAC系、合金系において、発熱量が減少しているかどうかの傾向は実測値と推測値で合致していたため、凝集剤添加による影響を定性的に判断できると考えた。

すべての場合において、有機物が分解されているので消化後の汚泥は発熱量が低くなることが確かめられた。塩鉄系では、標準系の方が若干発熱量の減少は少なかったがほとんど差がないと考えられた。PAC系、合金系では凝集剤添加時に発熱量の減少量は小さかった。PAC系では実測値ではなく大きな違いはなかったが、推測値では標準系と7.5PACで大きく異なる結果となっ

た。合金系では、実測値で標準系より380kcal/kg-DSの減少であったのに対して7.5PACで260kcal/kg-DSの減少であった。この結果はアルミ
表-3 脱水試験のための高分子凝集剤選定結果

<table>
<thead>
<tr>
<th>サンプル番号</th>
<th>成分</th>
<th>イオン性</th>
<th>分子量（万）</th>
<th>ポリマー添加量（%）サンプルTSに対して</th>
<th>CST（sec）</th>
<th>CST/TS（sec/g/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>ポリアクリルエステル系</td>
<td>高</td>
<td>550</td>
<td>0.5</td>
<td>150</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>18.8</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>16.3</td>
<td>0.8</td>
</tr>
<tr>
<td>A-2</td>
<td>ポリアクリルエステル系</td>
<td>高</td>
<td>850</td>
<td>0.5</td>
<td>113</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>27.5</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>4.5</td>
<td>0.2</td>
</tr>
<tr>
<td>A-3</td>
<td>ポリメタクリル酸エステル系</td>
<td>カチオン</td>
<td>1300</td>
<td>0.5</td>
<td>272</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>49.4</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>10.0</td>
<td>0.5</td>
</tr>
<tr>
<td>A-4</td>
<td>ポリメタクリル酸エステル系</td>
<td>低</td>
<td>600</td>
<td>0.5</td>
<td>112</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>52.4</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>27.1</td>
<td>1.3</td>
</tr>
<tr>
<td>A-5</td>
<td>ポリアクリルエステル系</td>
<td>低</td>
<td>1000</td>
<td>0.5</td>
<td>339</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>16.4</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>5.2</td>
<td>0.3</td>
</tr>
<tr>
<td>B</td>
<td>ポリアミン系</td>
<td>亜性系</td>
<td>400</td>
<td>0.5</td>
<td>351</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>283</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>76</td>
<td>3.8</td>
</tr>
<tr>
<td>C-1</td>
<td>アクリル酸エステル</td>
<td>亜性</td>
<td>850</td>
<td>0.5</td>
<td>307</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>39.3</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>10.6</td>
<td>0.8</td>
</tr>
<tr>
<td>C-2</td>
<td>アクリル酸エステル</td>
<td>亜性</td>
<td></td>
<td>0.5</td>
<td>305</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>255</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>251</td>
<td>20.1</td>
</tr>
<tr>
<td>C-3</td>
<td>メタクリル酸エステルとアクリル酸とアクリルアミドの共重合物</td>
<td>亜性</td>
<td>300</td>
<td>0.5</td>
<td>369</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>350</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>67.2</td>
<td>5.4</td>
</tr>
<tr>
<td>C-4</td>
<td>アクリル酸エステル</td>
<td>亜性</td>
<td>400</td>
<td>0.5</td>
<td>400</td>
<td>32.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>307</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>70.0</td>
<td>5.6</td>
</tr>
<tr>
<td>C-5</td>
<td>ポリアクリルエステル系</td>
<td>亜性</td>
<td>400</td>
<td>0.5</td>
<td>854</td>
<td>68.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>65.4</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>15.5</td>
<td>1.2</td>
</tr>
<tr>
<td>D-1</td>
<td>ポリアクリルアミド系</td>
<td>低</td>
<td>1400</td>
<td>0.5</td>
<td>763</td>
<td>61.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>438</td>
<td>35.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>338</td>
<td>27.1</td>
</tr>
<tr>
<td>D-2</td>
<td>ポリアクリルアミド系</td>
<td>中</td>
<td>1000</td>
<td>0.5</td>
<td>362</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>303</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>285</td>
<td>22.9</td>
</tr>
<tr>
<td>E</td>
<td>ポリアクリルアミド系</td>
<td>ノニオン</td>
<td>1300</td>
<td>0.5</td>
<td>310</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>315</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>308</td>
<td>24.7</td>
</tr>
</tbody>
</table>

系凝集剤添加による有機物分解の阻害が影響しているものと考えられた。
基本系では、発熱量の減少は標準系の約600kcal/kg-DSに対し約450kcal/kg-DSであった（推測値による）。標準系に比べ発熱量の低下が少なかったのは、易分解性有機物が少なかったことによると思われた。

24
4. おわりに

前処理沈殿汚泥の嫌気性消化実験を行い、以下の現象が見られた。
(1) 塩鉄汚泥ではSS減少率が上昇したが、PAC、バンドは7.5mgAl/Lで明らかに阻害があり、SS減少率が20〜40％低下した。
(2) 22塩鉄でVFA生成量が標準系を上回ったが、PACでは阻害があった。

(3) 22塩鉄は、メタン比率、発生量ともに標準系より高い傾向があった。
(4) 塩鉄汚泥は凝集剤を添加した場合、低く保たれ、リン固定化効果が見られた。基本系では、リン濃度が増加した。
(5) 凝集汚泥消化後の脱水性は、標準系と同等で、ろ液中のリン濃度は減少した。しかし、塩化第二鉄使用時は添加量の増加とともに脱水ろ液のSSが上昇した。
(6) アルミ系凝集剤添加時に発熱量減少の特異性が表れたが、脱水液の増加を併用し、有機物分解の阻害が少ないと推測される。

以上の結果をまとめて、塩化第二鉄、PAC、バンドの三者を比較すると、PACの影響が最も大きく、バンドでは次に次に影響が小さいと考えられる。なお、本実験では、塩化第二鉄が他の二者よりも優れているが、他の汚泥汚泥処理においては、より詳細な検討が必要であるが、本実験の結果を参考にすると、塩化第二鉄の効果が大きいことが示唆される。

以下に、実験結果の詳細を示す。

表-4 脱水試験結果

<table>
<thead>
<tr>
<th>試料名</th>
<th>試料TS (mg/L)</th>
<th>ろ液SS (mg/L)</th>
<th>含水率 (%)</th>
<th>ろ液T-P (mgP/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>塩鉄</td>
<td>16100</td>
<td>48.0</td>
<td>79.1</td>
<td>1.1</td>
</tr>
<tr>
<td>標準系1.5</td>
<td>15800</td>
<td>90.0</td>
<td>85.8</td>
<td>2.5</td>
</tr>
<tr>
<td>22塩鉄</td>
<td>16200</td>
<td>132</td>
<td>78.0</td>
<td>0.8</td>
</tr>
<tr>
<td>PAC</td>
<td>8670</td>
<td>270</td>
<td>88.3</td>
<td>13.1</td>
</tr>
<tr>
<td>2.5PAC1.5</td>
<td>11400</td>
<td>158</td>
<td>87.2</td>
<td>9.4</td>
</tr>
<tr>
<td>7.5PAC1.5</td>
<td>8910</td>
<td>130</td>
<td>87.0</td>
<td>9.4</td>
</tr>
<tr>
<td>バンド</td>
<td>13900</td>
<td>74.0</td>
<td>90.2</td>
<td>8.2</td>
</tr>
<tr>
<td>標準系1.5</td>
<td>15100</td>
<td>68.0</td>
<td>90.3</td>
<td>4.4</td>
</tr>
<tr>
<td>2.5バンド</td>
<td>15200</td>
<td>34.0</td>
<td>90.5</td>
<td>2.2</td>
</tr>
<tr>
<td>基本系</td>
<td>16200</td>
<td>74.0</td>
<td>89.4</td>
<td>10.8</td>
</tr>
<tr>
<td>混合汚泥1.5</td>
<td>17200</td>
<td>86.0</td>
<td>88.5</td>
<td>25.8</td>
</tr>
</tbody>
</table>

表-5 高位発熱量測定結果

<table>
<thead>
<tr>
<th>試料名</th>
<th>消化</th>
<th>高位発熱量（実測値） (kcal/kg-DS)</th>
<th>村上式による推測値 (kcal/kg-DS)</th>
<th>SS (mg/L)</th>
<th>VSS (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>塩鉄</td>
<td>前</td>
<td>3200</td>
<td>13.4</td>
<td>16000</td>
<td>9290</td>
</tr>
<tr>
<td>標準系</td>
<td>後</td>
<td>3070</td>
<td>12.6</td>
<td>2770</td>
<td>11.6</td>
</tr>
<tr>
<td>22塩鉄</td>
<td>前</td>
<td>3220</td>
<td>13.5</td>
<td>16800</td>
<td>9870</td>
</tr>
<tr>
<td>標準系</td>
<td>後</td>
<td>3200</td>
<td>12.9</td>
<td>2750</td>
<td>11.5</td>
</tr>
<tr>
<td>前</td>
<td>3930</td>
<td>16.4</td>
<td>3990</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>7.5PAC</td>
<td>後</td>
<td>3930</td>
<td>14.2</td>
<td>2680</td>
<td>11.2</td>
</tr>
<tr>
<td>標準系</td>
<td>前</td>
<td>3770</td>
<td>15.8</td>
<td>3800</td>
<td>15.9</td>
</tr>
<tr>
<td>後</td>
<td>3270</td>
<td>13.7</td>
<td>3150</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>前</td>
<td>3600</td>
<td>15.0</td>
<td>3630</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>7.5バンド</td>
<td>後</td>
<td>3220</td>
<td>13.5</td>
<td>3140</td>
<td>13.2</td>
</tr>
<tr>
<td>前</td>
<td>3330</td>
<td>13.9</td>
<td>3430</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>後</td>
<td>3070</td>
<td>12.9</td>
<td>3180</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>前</td>
<td>3410</td>
<td>14.3</td>
<td>3140</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>基本系</td>
<td>後</td>
<td>3740</td>
<td>15.7</td>
<td>3740</td>
<td>15.6</td>
</tr>
<tr>
<td>4180</td>
<td>17.5</td>
<td>3300</td>
<td>13.8</td>
<td>12600</td>
<td>7520</td>
</tr>
</tbody>
</table>

25
参考文献
1) 岩崎俊哉, 武田信生, 岡島重伸: 納集剤添加法を利用しての下水処理システムに関する研究, 土木学会第49回年次学術講演会講演概要集第2部(B), pp.1048-1049, 1994.

(2000.5.31受付)

ANAEROBIC DIGESTION OF SEWAGE SLUDGE FROM PRE-COAGULATION

Masaki TAKAOKA, Junichi HIROTA, Nobuo TAKEDA and Takeshi FUJIWARA

In order to understand the characteristics of anaerobic digestion of the sewage sludge coagulated with inorganic coagulant before biological treatment, the batch type of anaerobic digestion experiments for three kinds of sewage sludge were performed. When the sewage sludge was coagulated by ferric chloride of 22mgFe/L, inhibition to anaerobic digestion was not observed, and reduction ratio of suspended solids and the amount of volatile fatty acids and methane gas increased compared with those of the sewage sludge without coagulant. Whereas, inhibition to anaerobic digestion was observed in sewage sludge coagulated by aluminum coagulants of 7.5mgAl/L.