トンネル中柱の免震装置形状と
各自由度における剛性の関係

三神 厚1・小長井 一男2・澤田 勉3

1正会员 工博 徳島大学助手 工学部建設工学科（〒770-8506 徳島県徳島市南常三島町2-1）
2正会员 工博 東京大学教授 生産技術研究所第1部（〒153-8505 東京都目黒区駒込4-6-1）
3正会员 工博 徳島大学教授 工学部建設工学科（〒770-8506 徳島県徳島市南常三島町2-1）

兵庫県南部地震では、それまであまり目立たなかった被害が見られなかったトンネルに被害が生じた。神戸高速鉄道大開駅を含む一例で、地上を支える中柱が破壊したことによりトンネルが崩壊した。このような被害を防ぐためには、トンネル中柱を免震化することが一つの解決策で、大きな上載土圧を支えながら、回転に対してのフレキシビリティを有する免震装置を用いることで中柱に作用する地震時の応力を低減することが期待される。本研究では、ゴムと鋼板を用いて要求性能を満足する免震装置の形態について検討した結果、ゴムを円弧状の鋼板で左右から挟み込んだ状態の免震装置が一つの可能な形態であることを見出した。また、この免震装置の捗荷重に対する依存性が小さいこともわかった。

Key Words : Isolation rubber, tunnel, center column, shape analysis

1. はじめに

1995年1月17日の兵庫県南部地震ではそれまであまり目立った被害が見られなかったトンネル構造物にも被害が生じた。神戸高速鉄道大開駅を含む一例で、開削工法によって建設された駅舎側に深刻な被害が生じた。これは、常時に土壌による上載土圧を支えていた中柱が破壊し、トンネル上部構造の崩壊に至ったものである1)。

このような地下構造物の崩壊を防ぐために、構造物の剛性を高めるとともに、地盤の変形を遮断するように地盤構造物の断面をその分大きくなってしまう。そこで地震時断面力の低減を図るため、構造物周辺に免震材を充填し、構体に作用するせん断力の軽減する方法2)などが検討されてきた。この際、地盤の沈下を許容される範囲内に収まるためには、非圧縮性の免震材を用いることが望ましいが、その場合、トンネル舗装に働くせん断力の低減には有効であるものの、壁面法線方向に働く力による変形は免れない3)。

この直接的な断面力の低減方法として、最も厳しい応力条件下に置かれる中柱そのものの端部に直接免震装置を装着することが考えられる4)。これらの場合の装置は、(1) 中柱に作用する1,000(kt)(=約9,800kN)の軸力に耐え、かつ(2)中柱の断面力を許容値以内に収めるべく基本的な要求を満足するものでなければならない。本論文では、まず、これら提案されてきた免震装置を類別し、それらの諸性能が中柱の軸力を依存するものであることを示す。中柱の免震装置の性能が中柱に作用する軸力に依存する場合には、建設サイトごとに軸力の評価を行い、免震装置の程度について検討する必要がある。もし免震装置の性能が中柱に作用する軸力に依存しないのであれば、建設サイトごとに異なる軸力の大きさを考慮せずに設計および免震装置の製作を行うことが可能で、これにより設計プロセスの簡便化が図られることが期待される。このような観点から三神・小長井は軸力依存性が小さい免震装置を提案した5)。この免震装置は円弧状に満たされた鋼板でゴムを左右から挟みつけたものである。本研究の目的は、著者らが提案した免震装置の基本性能に特に上載荷重依存性に検討を加え、免震装置の一つの可能形態を見出すことをある。免震装置の形状に関する研究としては、Park and Otsuka7)によるロックインを抑制する止形のBase Isolatorの検討事例があるが、本研究では円弧状にくぼませた鉄板で左右を挟みつけたゴムの免震装置を考え、その基本的性能を2次元有限要素解析により検討する。

2. 中柱の免震装置

地震時にはトンネル構体が横断方向に変形させるため、地中には常時荷重に加えてさらにモーメントやせん断力が作用するようになる。こ
表-1 免震装置の機能分類

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>鉛直剛性 K_V</td>
<td>大きい</td>
<td>大きい</td>
<td>大きい</td>
</tr>
<tr>
<td>水平剛性 K_H</td>
<td>小さい</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>回転剛性 K_R</td>
<td>∞</td>
<td>0</td>
<td>上載荷重に依存する</td>
</tr>
<tr>
<td>上載圧に依存するパラメーター</td>
<td>K_V, K_H</td>
<td>M_{cr}</td>
<td>M_{cr}</td>
</tr>
</tbody>
</table>

概念モデル

モデルの特徴

水平方向に柔軟

回転自由

回転自由、形状復元力を利用

ただし，K_V, K_H, K_R：それぞれ鉛直方向，水平方向および回転に対する剛性

M_{cr}：滑り出すのに必要なモーメント

を低減する目的でこれまでに提案されていくつかの免震装置について便宜的に表-1に示すように分類する。

タイプ1は中柱の一端に例えば鉄板を層状に挟み込んだ積層ゴムのような，水平方向のみフレキシブルな免震装置を設置するものである。この装置はトンネル架体の上床が水平に働くことで中柱に発生するせん断力の低減を図る目的には有効であるが，上床の回転によりモーメントが発生する。また，免震装置の鉛直方向初期剛性 K_V は，免震装置の形状係数の値によって中柱に作用する上載土圧に依存する。水平方向初期剛性 K_H については面圧の上昇とともに初期剛性係数を低下するため，積層ゴムの面圧を抑えることによって水平剛性が低下しないように配慮する必要がある。

タイプ2は両端をビンにして中柱へのモーメントの伝達を抑えるというものである。ビンが滑り出すのに必要なモーメント M_{cr} は，やはり上載土圧に依存する。回転に対して M_{cr} 以上の反力が発生しないため，過度の回転が生じるような場合には中柱が支えていた土圧が他の構造荷材へと分担されるようにすることを考慮する必要がある。

タイプ3はタイプ2と異なり，中柱の変形時に形状復元力が期待できるもので，中柱が傾いた際，支持壁上的軸力の作用位置がシフトし復元モーメントが中柱の傾きを戻す方向に働く。しかし，形状復元力そのものの大きさは上載荷重に依存するので，設計時には上載荷重を適切に推定するというプロセスを経る必要がある。

以上のように，従来より提案されている免震装置の数多くの提案が見られるが，その効果は実験的に検証される必要がある。

3. 免震装置の各自由度における剛性の設計

(1) 概念モデル

前述のタイプ1～タイプ3のモデルは，上下方向に剛性が大きく，水平方向または回転に対する剛性が小さいという，中柱の免震装置に求まる基本的な性能を満たすものである。しかし，これらのが性能は上載荷重などに依存し変化する。もし上載荷重にさらして依存しない免震装置が開発されれば，設計プロセスの簡便化につながるものと考えられる。そこで三神・小長井は以下のような免震装置を提案した。

上下方向に十分な剛性を有し，回転に対してはフレキシブルである免震装置として，図-1に示す免震装置を考える。この装置では，ゴムの上下端
が剛で、左右の側面が円弧アーチ状の鋼板で挟まれている。上下方向に荷重が作用すると、左右の鋼板が中へ揺もうとするがゴムは非圧縮性材料であるから、このモードの形態に則強く抵抗する。回転に対しては左右の鋼板が抵抗するものの、回転装置上端の回転による直接的なゴムの体積変化はほとんどの生じないので、この自由度に対しては十分フレキシブルであることが期待される。この回転装置上の中央の点における水平変位、鉛直変位、および回転角をそれぞれ \(u_1, u_2, u_3 \) とおくと、システムの支配方程式は、式(1)のように表される。

\[
\begin{bmatrix}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3
\end{bmatrix} =
\begin{bmatrix}
P_1 \\
P_2 \\
P_3
\end{bmatrix}
\] (1)

ここで、\(K_{ij} \)（\(i, j = 1,2,3 \）：剛性マトリックスの各成分）は、回転、鉛直変位と水平変位の関係を表す。それらはゴム上端の中央における水平変位、鉛直変位および回転角、 \(\{P_1, P_2, P_3\} \) ：ゴム上端に作用する水平力、鉛直力および上端面中心に作用するモーメントである。

この装置の水平、鉛直、回転のそれぞれの方向の剛性 \(K_H, K_P, K_\theta \) を荷重制御で評価することにする。よって、鉛直荷重が作用していない場合の水平方向剛性および回転剛性は次式で与えられる。

\[
K_H = \frac{\text{det}(K)}{K_{23}K_{31} - K_{13}K_{32}} \\
K_P = \frac{\text{det}(K)}{K_{22}K_{31} - K_{12}K_{32}} \\
K_\theta = \frac{\text{det}(K)}{K_{22}K_{33} - K_{12}K_{33}}
\] (2)

解析にあたっては、回転装置の装置を 1(m)、装置方向には平面ひずみ状態を仮定し、2次元有限要素(アイソパラメトリック要素)法を用いて形状非線形解析を行う。

(2) 材料特性

この材料の性能を考慮するために、回転装置を構成する材料を許容ひずみ範囲内で用いる必要がある。特に、回転装置の側面に用いられる鋼板の破壊は、無限エネルギーを維持できることが知られている。したがって、鋼板の材料は弾性範囲内にあたる。ゴム材についても線形弾性体として取り扱う。ゴムのポアソン比については天然ゴム系材料の場合、\(\nu = 0.4999 \) 前後 \(^9\) あるいは \(\nu = 0.4995 \) \(^{10}\) であるとの実験結果に基づく報告もあるが、本研究では \(\nu = 0.499 \) であるとした。

(3) 鉛直方向の剛性に関する検討

この材料の性能を考慮するために、回転装置を構成する材料を許容ひずみ範囲内で用いる必要がある。特に、鉛直荷重が作用する鉛直方向剛性の保持が必要である。鉛直方向の剛性を保持するパラメーターとして回転装置側面の鋼板の曲げ剛性（以下、インデンテーションと呼ぶ）、鋼板の厚さ、回転装置の高さなどが考えられる。そこでこれに回転装置の鉛直方向剛性との関係を調べる。

鉛直方向の剛性は膜厚と左右の鋼板のアーチの形状をインデンテーションと関係づけた。

図-2 免震装置の鉛直方向初期剛性と側面のインデンテーションの関係
図-3 鉛直荷重～鉛直変位関係に及ぼす鋼板厚さの影響
図-4 免震装置鋼板の軸方向ひずみ分布
図-5 免震装置の回転に対する初期剛性とアーチのインデンテーションの関係

図-6 免震装置の水平方向初期剛性とアーチのインデンテーションの関係

示す。ここでインデンテーションが負の値であることは左右に膨れている状態を示す。図中、E_R、E_s はそれぞれゴムおよび鋼板のヤング率、t_s は鋼板の厚さ、v はゴムのポアソン比を示す。鉛直方向の剛性は鋼板のアーチのインデンテーションが正の値、すなわちゴムが圧縮された形状になると、これが膨れている場合に比べ剛性が大きくなっている。これは上下方向に圧縮を受けた際、左右のアーチの鋼板も中に入り込むとするため、上下、左右から非圧縮性材料であるゴムを抑え込むという期待された効果が現れたためである。そしてその効果はゴムを 2 次元材料とみなしたときのポアソン比に強く依存する。インデンテーションが零で鉛直方向剛性が最大になっているが、この状態では直立した鋼板に大きな圧縮力が作用しているので、座席荷重以上の上載荷重ではバックリングを起こしき不安定になる懸念がある。

図-3 はインデンテーションを 5cm とした場合に、形状非線形の効果を考慮した解析を鋼板が降伏するまで行い、上載荷重～変位関係を 3 種類の板厚 t_s について示したものである。鋼板の厚さは、免震装置の上下方向の初期剛性にさほど寄与しないことがわかる。免震装置に常時荷重を与えた状態で、この荷重～変位曲線の直線区間、すなわちこの免震装置が鉛直方向初期剛性を有する区間にあり、かつ鋼板が降伏していないことが必要である。これら 3 種類の異なる厚さの鋼板を有す

(4) 回転に対する剛性の検討

回転に対する初期剛性と円弧アーチのインデンテーションとの関係を図-5に示す。免震装置、鋼板の回転はゴムの体積変化を伴わないので、回転に対する剛性は鋼板からなる各部分の剛性にほぼ等しい。したがって、インデンテーションの正負は回転に対する剛性にはほとんど関係なく、鋼板の寄与の影響が支配的であることがわかる。そのため、図-5は左右ほぼ対称な形状を示している。なお、ここでは上載荷重を加えていない事例のものを示しているが、インデンテーションが正の場合、後述するように上載荷重の影響は無視し得ると何小さい。

(5) 水平動に対する剛性の検討

免震装置の上下端の水平方向相対変位に対する初期剛性とインデンテーションとの関係を図-6に示す。インデンテーションが0の状況では、免震装置の水平方向剛性がゴムそのもののせん断剛性（10×10^6N/m）に一致しており、ゴムの影響が支配的であることがわかる。インデンテーションの絶対値が増加するにつれて、鋼板の寄与の程度が大きくなっている。なお、ここでの検討でも上載荷重を零としている。

4. 上載荷重依存性の検討

地震時の免震装置の回転および水平変位に対する初期剛性の検討にあたっては、まず常時の上載荷重の影響と地震時の免震装置の回転および水平変位の影響を合わせて考える必要がある。ここでは、高さ 20cm、幅 40cm、鋼板厚さ 10mmの免震装置に対し、まず鉛直方向に荷重を加えない場合と鉛直方向荷重として 4900(kN)，8900(kN)を加えた場合の 3 種の上載荷重状態を想定した時の、水平方向剛性、回転剛性とインデンテーションの関係について検討する。検討にあたっては、第 3 章までの検討でその意義が明確な正のインデンテーション領域のみを考慮することとする。図-7,8 に回転剛性、水平方向剛性をそれぞれ示す。いずれの場合も3 つの曲線は一致しており、顕著な上載荷重の影響は見られない。
図-7 免震装置の回転剛性とインデンテーションの関係に及ぼす上載荷重の影響

図-8 免震装置の水平方向剛性とインデンテーションの関係に及ぼす上載荷重の影響

図-9 免震装置に作用するモーメント〜回転関係に及ぼす上載荷重の影響

図-10 免震装置に作用する水平力〜水平変位関係に及ぼす上載荷重の影響

次に、同サイズの免震装置のインデンテーションを 5(mm)に固定し、上下方向荷重を加えない場合と2種類の上下方向土圧荷重として4900(kN), 9,800(kN)をまず与え、さらにその荷重を保持しながら回転あるいは水平変位を加えた時の、反力モーメントと回転角の関係および水平反力と水平変位の関係を検討する。考慮した回転および水平変位量については、矢的らの神戸高速鉄道・大関駅の被害要因分析の検討結果によれば、上床・下床間隔5.52(m)のトンネル構体の水平方向相対変位が1.32(mm)に到達すると、長さ3.82(m)の中柱が隆伏に至り、1.64(mm)になると曲げ圧縮破壊することが推定されていることから、本研究では、この検討結果を目的に、免震装置に対して1(mm)の水平変位および1/50の回転を想定することにした。図-9, 10に検討結果を示す。それぞれ上載土圧が異なるにも関わらず、3つの曲線はほぼ一致しており、また概ね線形を示している。このことは、免震装置の回転および水平方向の剛性が、ここに想定した程度の回転および水平方向変位を吸収する上で上載圧の影響をほとんど受けることなく、初期の値を保持できることがわかる。またこの時の免震装置の変形状態として、上下方向に9,800(kN)の荷重が与えられた状態を図-11(a)(斜線: 変形前)に示す。さらにその上下方向荷重を保持しながら回転を1/50(rad)まで徐々に加えた状態を図-11(b)に、同様に上下方向荷重を加え、それを保持しながら水平変位が10(mm)になるまで徐々に加えた状態を図-11(c)にそれぞれ示す。免震装置が安定な載荷状態にあることが視覚的に認識できる。

5. まとめ

トンネルの中柱の被害を軽減するための免震装置に要求される機能について、これまでに提案されているいくつかの免震装置の概念を示しながら整理するとともに、ゴムと鋼板からなる免震装置を想定して、その形状（インデンテーション）が免震装置の剛性に及ぼす影響を検討した。その結果、鉄筋方向には頑く、回転に対してはフレキシブルかつ上載荷重の影響をほとんど受けないような免震装置の形態を示すことが示された。このような上載荷重に対する依存性が小さい免震装置が開発されれば設計プロセスの簡便化につながるものと考えられる。今後はこの免震装置の回転と水平変位の連成の影響、三次元形状効果などについて詳細に検討するとともに、鋼板の座屈に対する危険性の照査や過大な変位を防止する安全装置についても検討する予定である。さらに優れた機能を有する免
けました．また中央復建コンサルタンツ勝川藤太氏より貴重なご助言をいただいたことに深く感謝致します．

参考文献
1) 矢野照夫，梅原俊夫，青木一二三，中村晋，江原雄一，末富岩雄：兵庫県南部地震による神戸高速鉄道・大開駅の被害とその要因分析，土木学会論文集，No.537/1-35，pp.303-320，1996．
2) 建設省土木研究所耐震研究室他：地下構造物の免震設計に適用する免震材の開発に関する共同研究報告書（その2）建築省土木研究所，1997．
5) 三神厚，小長井一男：ゴムと鋼板からなる免震装置の各自由度における剛性の設計，第25回地質工学研究発表会講演論文集第2分冊，pp.777-780，1999．
6) 三神厚，小長井一男：トンネル中核の免震装置，東京大学生産技術研究所所報，第51巻11号，pp.733-736，1999．
8) 日本免震構造協会：免震積層ゴム入門，オーム社，1997．
9) 例えば，鈴木俊康，金子善：中東有する地下構造物に適用する免震装置，構造と地下構造物の免震，制震，pp.145-148，1999．
10) 多田英之：免震，小学館，1996．
11) 川島一彦：地下構造物の耐震設計，鹿島出版会，1994．
12) 中村晋：準地変形に基づく地中構造物の横断方向の耐震設計法に関する提案，土木学会論文集，No.605/1-45，pp.217-230，1998．

(2000.5.22 受付)

STIFFNESS DESIGN OF ISOLATION RUBBER FOR CENTER COLUMNS OF TUNNEL

Atsushi MIKAMI, Kazuo KONAGAI and Tsutomu SAWADA

RC columns supporting the ceiling slab of Daikai subway station, a box tunnel constructed using the cut-and-cover method, totally crumbled in the 1995 Hyogo-ken-Nanbu Earthquake; that failure was followed by a couple of meters subsidence of its overburden soil over the entire 90 m extent of the crushed station. This damage stimulated a sharp rise in research activities for possible measures for avoiding that fatal destruction. Among a variety of tunnel members, center columns sustaining the weight of overburden soil are the most important key members, and therefore should not be destroyed. Insertion of a flexible joints on upper and/or lower ends of these columns would be a possible measure. This paper presents a possible shape of a column joint that will meet the necessary requirements for the device sustaining a heavy overburden soil mass and reducing the induced shear force and moment.