応答スペクトルの距離減衰式に基づく
地点增幅特性と地形・表層地質状況との関係

山内 洋志1・山崎 文雄2・若松 加寿夫3・Khosrow T. SHABESTARI4

1正会員 修(工) 国土交通省河川局河川計画課（〒100-8918 東京都千代田区駿河台2-1-3）
2正会員 企画 東京大学生産技術研究所（〒153-8505 東京都目黒区駒場4-6-1）
3正会員 博(工) 東京大学生産技術研究所（〒153-8505 東京都目黒区駒場4-6-1）
4正会員 博(工) 防災科学技術研究所地震防災フロンティア研究センター（〒673-0433 三木市三木山2465-1）

地震動分布を予測するためには、震源、伝播経路、および表層地盤の影響を考慮する必要がある。とく
に広域の地震動分布を簡便に推定するには、国土数値情報の土地分類データ等を利用し、日本全国や特
定地域の表層地盤の増幅度を推定する研究が行われている。しかしながら、これらの研究は、最大加速度
や最大速度などの指標についての増幅度を扱ったものであり、地震動のスペクトル特性を考慮に入れなか
るのでない。そこで本研究では、全国の地質観察調査における応答スペクトルの距離減衰式における地
点係数と地形・表層地質状況との関係を検討することにより、国土数値情報から全国任意地点の応答スペ
クトルの増幅度を簡便に推定する手法を提案した。

Key Words: station coefficient, JMA-87-type accelerometer, geomorphological land classification, Digital
National Land Information, response spectrum

1．はじめに

地震による地表面の地震動分布の推定は、耐震設計や
防災計画などの基本条件となるばかりでなく、地震発生
後の被害推定や緊急対応などにおいても重要である。と
くに、地震被害想定1)や早期被害推定システム3)などへ
の利用を考えると、広域の地震動分布を一般化入る可能
なデータに基づいて簡便に推定する手法が望まれる。

地震動の大きさは、マグニチュードで表される震源
特性、断層面からの距離で表される伝播経路、それに
増幅率で表される表層地盤の影響などで支配され、
地震動分布を簡単な推定方法として、これ3つの要因を簡便な関数型で表した距離減衰式があり、加震記
録の統計解析によりさまざまなモデルが提案され、地震
被害想定5)や地震危険度解析などに多用されている。こ
れらの多くは、最大加速度6)、最大速度7)、計測値8)、
などの地震動強度指標についてのものであるが、応答ス
ペクトルについての距離減衰式9)10)も幾つか提案されて
いる。

Molas and Yamazaki11)および Shabestari and Yamazaki12)は、気象庁87型強震計による観測記録を用い、こ
らの地震動強度指標あるいは応答スペクトルについての距離減
衰式を構築しており、本研究では、これら距離減衰式に
おける観測地点の相対的な揺れやすさを表す地点係数
を地盤増幅特性データとして用いる。

地盤増幅特性を簡便に推定する方法としては、日本全
国を1kmメッシュでカバーしている国土数値情報13)に含
まれる地形・地質等の情報を用いる研究が最近幾つか行
われている。

松岡・翠川14)15)は、関東地方のデータを用いて、国土数
値情報から平均8波速度を介して最大速度の地盤増幅度
を推定する手法を提案した。西脇・福丸16)17)は、国土数
値情報の標高・地形・表層地質を説明変数として、名古
屋・東海地域の地盤応答解析による最大加速度と最大速
度について回帰分析を行い、増幅度を求める予測式を提
案した。大西ら18)は、気象庁87型強震計データに基づく
距離減衰式における地点係数と土地分類基本調査19)20)等
に基づく地盤分類と地質関係を検討し、国土数値情報
の地形・表層地質データから、最大加速度、最大速度、
計測値についての地盤増幅度を提案した。これらいず
れの方法によっても、日本全国の地盤増幅度を1kmメッシュ
単位で簡便に推定することが可能である。

以上の研究は、最大加速度、最大速度などの強度指標
についての地盤増幅度を扱ったものであり、地震動のス
ペクトル特性を考慮に入れたものではない。構造物の地
震応答は地震動のスペクトル特性に影響されるため、広

195
図-1 加速度スペクトルおよび速度応答スペクトルの距離減衰式の回帰係数 (減衰定数 5%)

域の応答スペクトル分布を推定することは、構造物の耐震設計や地盤被害推定において極めて重要である。また、最新の地盤計ネットワークでは、地震発生後、即座に応答スペクトルを収集するものもある6)。

このような背景により、本研究では、日本全国に適用できる周期ごとの地盤増幅度の簡便な推定方法の提案を目的として、大西ら8)の研究を発展させ、応答スペクトルの距離減衰式における地点係数と地形・地質条件との関係を検討することにより、国土数値情報を用いた応答スペクトルの地盤増幅度の推定について検討を行う。この研究成果を用いることにより、ある地盤による基盤面における応答スペクトルが与えられる場合、もし地表面での応答スペクトル観測値を空間補間することによって、日本全国の地表面での応答スペクトルの面的な分布を簡易に推定・予測することが可能となることが期待される。

2. 応答スペクトルの距離減衰式

本研究で用いた地震波形記録はMolas and Yamazaki7)および安ら8)によって整理工されたものであり、気象庁の全国77箇所の87型地震計で1988年8月1日から1996年3月31日までに観測された1,020の地震による3,990組の記録である。記録の中には、1993年釧路沖地震、1993年北海道南部沖地震、1994年北海道東方沖地震、1994年三陸はるか沖地震、1995年兵庫県南部地震など、最近の被害地盤の記録が含まれている。これらの地盤記録は、マグニチュード4.0以上の地震によるもので、水平2成分がともに1.0Gal以上のものを選択している。

これらの波形データを全て用いて、減衰定数5%の絶対加速度応答スペクトルおよび相対加速度応答スペクトルを計算した。水平成分の応答スペクトルは、各地域波形において水平2成分の応答スペクトルを計算し、その大きさを用いた2)。

回帰分析には、以下の関数型を用いた。

\[\log_{10} y(T) = a_0 + a_1 T + a_2 T \log_{10} \sigma + a_3 T h + c_i(T) \]

(1)

ここで \(y \) は加速度応答スペクトルまたは速度応答スペクトル、\(M \) は気象庁マグニチュード、\(r \) は断層面での最短距離 (km)、\(h \) は観測深さ (km)、\(a_0, a_1, a_2, a_3, c_i \) は回帰分析により求める係数、\(c_i \) は地表観測地点 \(i \) における係数である。これら回帰係数が全て周期 \(T \) の関数である。最大速度などの強度指標値の距離減衰式との違いである。回帰分析の方法等は文献9)を参照されたい。
図2 加速度応答スペクトルおよび速度応答スペクトルの距離減衰式における地点係数の例

地点係数は、距離減衰式の補正項として導入した地点ごとの揺れやすさを表す係数で、観測点における地盤条件、地形効果、地質計の設置条件などの影響が重なったものと考えられている。全観測点の地点係数の平均値は0であり、地点係数が正の地点は平均より揺れやすいことを、また負の地点は揺れにくいことを表している。大西らの研究では、最大速度などの強度指標の地点係数と地形・表層地盤等級の関係について検討した。

本論文では、応答スペクトルの地点係数について同様の検討を行う。応答スペクトルの地点係数は、観測地点における、各周波数の自由度系の相対的な揺れやすさを表すものであり、地点ごとにそれぞれ固有の振幅形を示す。

このような地震観測点によって、固有の振幅特性を有することに関する研究はかなり以前より行われている。例えば小林・長橋は、主として港湾に設置されたSMAC型地盤計による強震記録を用いて、変形的スペクトル増幅特性があることを指摘している。この結果を利用して、翠川・小林は、地盤基盤における入射波スペクトルのモデル化を行っている。また、最近においても、数多くの研究が見られる。しかし、このような地点スペクトル増幅特性を広域の地盤データベースと比較し、全国の面的なスペクトル分布推定に結びつける研究は見あたりない。

図2-1 速度応答スペクトルおよび速度応答スペクトルの回帰係数と図2-2に示す。

また、釧路、東京、松代の気象庁観測点における加速度および速度応答スペクトルの地点係数図2-3に示す。

図中、Sα、Sβは加速度応答スペクトル、速度応答スペクトルをそれぞれ表示し、αは水平成分を、βは垂直成分を意味する。

Molas and Yamazakiは、加速度応答スペクトルと速度
応答スペクトルのそれぞれについて地点係数を求めて、それらの振幅形状がよく似ていることを示した。彼らの用いた1988年8月1日から1993年12月31日までの2,166組の地震記録から、1996年3月31日までの1,824組の記録を加えた本研究においても、図-2に示したように、両者の形状は似ていることがわかる。加速度応答スペクトルと速度応答スペクトルは、振幅加速度応答スペクトルを介して関係づけが可能である。地点係数（スペクトル）は、地点間の相対的な揺れの大きさを表すので、加速度応答スペクトルと速度応答スペクトルの近似関係はそのまま保存される。したがって、図-2において、加速度応答と速度応答の地点係数スペクトルが近似するのは当然のことといえる。以上のことより、本研究では、速度応答スペクトル（水平成分）の地点係数について検討を行うこととする。

地点係数スペクトルの振幅は、その周期の自由度系の、平均的な地点に対する相対的な揺れやすさであり、伝達関数のような周期そのものに対する変化に意味があるものではない。しかし、その地点において、ある周期の自由度系が、他の地点の同じ周期の自由度系より揺れやすいということは、その周期がその地点の卓越周期となる可能性は大きい。したがって、地点係数スペクトルのピーク周期によって、地盤分類を行うことも可能と思われる。

このように、水平成分に対する地点係数スペクトルのピークは、S波伝達関数の卓越周期にほぼ対応すると考えられる。なお、強震観測において鉛直入射の実体波（S波とP波）が卓越する場合、動揺論でS波（水平動）とP波（上下動）が同じ方程式で表されることを考え合わせると、鉛直成分に対する地点係数スペクトルのピークは、P波伝達関数の卓越周期にほぼ対応すると仮定できる。図-2の水平および鉛直成分の速度応答スペクトルの地点係数（スペクトル）のピーク位置の関係は、この理論に対応しているといえる。この地点係数スペクトルの意味付けについては、以前の論文で詳しく論じているので参照されたい。なお、これ以降の部分では、水平方向の応答スペクトルに限定して議論を行う。

また、加速度応答スペクトルは、短周期域で地動最大加速度に漸近することにより、加速度応答スペクトルの地点係数も短周期域で最大加速度の地点係数に近似する。同様に、速度応答スペクトルは長周期域で地動最大速度に漸近することにより、その長周期域での地点係数は地動最大速度の地点係数に近似する。これまでの研究によれば、気象庁による強震観測地点のうち、最大加速度の地点係数が最大なのは構造物のある地点であり、最大速度の地点係数が最大となる地点は個別、個別となるのは松代である。本研究でも、加速度応答スペクトルの地点係数の短周期域、および速度応答スペクトルの地点係数の長周期域で、上記と一致する結果が得られた。

3. 地震観測点の地盤条件

応答スペクトルの地点係数と地盤条件との関係を明らかにするためには、77観測点の地盤条件を測る必要がある。しかしながら、全国47都道府県に広く分布する気象庁観測点のポーリングデータを全て入手することは極めて困難である。気象庁地震火災部、気象庁観測点については、以前に収集整理したものを保存するのものが、その後、官署の移設などに伴う調査資料の収集を行っていない。

そこで、日本全国をカバーする数値地図の国士数値情報の利用が考えられるが、その地震・表層地質データは、縮尺1/20万分の領域表示の地形分類図および表層地質図に基づき、国土理測局による基盤地質メッシュ（約1km四方）ごとに、メッシュ内で最も広い面積を占める地形・表層地質区分をそのメッシュの属性としている。したがって、地震観測点のような特定の地点の地盤条件
図-3 道路橋示方書の地盤種別ごとの速度応答スペクトルの地点係数の平均値

図-4 各種土地分類法ごとの地点係数の平均値と実際値の相関係数

を調べる場合は、メッセージ表示の国土数値情報の利用と誤判定される可能性がある。

以上のことから本研究では、大西ら20)の研究と同様に、
地盤構成位置の地盤条件を決定するのでに際しては、土地分類基本調査21) 22)等によって調べた土地分類（地形、
表現地質、地質年代）および道路橋示方書23) 24)に示されている
地盤種別による分類を用いた。 geom観測点の詳細な
地分類結果は、大西らの論文25)に表として示されている。
また、大西らはgeom観測点を地層分類と表層地質を組み合
わせたグループに分類した場合、各グループ内の地震
動階級の地点係数のばらつきが最も小さくなること
を示した。本研究でも、上記の分類項目に加えて、大西
らによる11グループ(表-1)と速度応答スペクトルの地点
係数との関係を検討した。

図-3は、道路橋示方書26)で示されている地盤種別ごと
に、本研究で対象とする77地点27)（1種: 14地点、2種: 29
地点、3種: 18地点、4種: 16地点）について、速度応答スペクトルの地点係数の平均値を求めたものである。
Molas and Yamazaki28)は、これらが最大速度の地点係数の平均値
に長周期域で漸近していくことを示したが、4種の地盤
区分を見直した図-3においても、同様な傾向が認められ
る。また、それぞれの地盤種別がピークをとる周期は、
道路橋示方書に示されている地盤種別の卓越周期の範
囲とほぼ一致している。

図-4に、各種分類法ごとに、速度応答スペクトルの地点
係数の同一グループ内の平均値と実際の地点係数の
相関係数を示す。これを見ると、地形・表層地質による
11分類は、全ての周期において、他の分類法よりも高い
相関関係を示している。他の分類と比べて分類数が多い
ので相関係数だけでなく精度の議論はできないが、図-4の0.2
s以下で相関係数が相対的に高い地形分類と、0.2s以上
で相関係数が高い表層地質を組み合わせたものであり、
全国について簡単に適用できる利点がある。一方、地盤
種別による4分類は、分類数が少ない割には、0.6sより長
周期の領域で相関係数が高いが、ポーリングデータがな
いと分類が行えないなどの不便な点がある。

この地形・表層地質による11分類法は、土地分類基本
調査を用いること正確に、また1kmメッシュの国土數値
情報を利用すると空間的な精度は劣るもの地理情報
システム(GIS)上で簡便に行えることから、実用性も高い
と考えられる。以上のことから、以下ではこの11分類と
応答スペクトルの地点係数との関係について検討を行
う。
4. 応答スペクトルの地点係数と地形・表層地質条件との関係

大西らの11分類法によってグループ分けした速度応答スペクトルの地点係数を図-5に示す。各グループ内の地点係数は、地点ごとのばらつきが大きいものも見られるが、卓越する周期や全体の振幅形状において近似した傾向が見られる。

堆立地における「稀内」は、グループ内の他の3地点と著しく異なる地点係数スペクトルの周期变化が見られる。稀内観測点は、山地の縁辺に造成された小規模な堆立地上にあり、地表面下の浅所に岩盤が存在するなど、地盤特性から見てわが国の一般的な堆立地とは異なると判断されている。

また、山地において、「松代」と「網代」は、他の3地点と大きく異なる振幅形状を示しているが、これらの地点では、地質計の設置場所が、岩盤トンネルと山地の崖頭地盤にそれぞれ対応するという他は条件が著しく異なる。

図-6は、図-5に示した速度応答スペクトルの地点係数について、各グループ内の平均値を示したものである。地点係数の平均値を求める際として、大西ら26と同様に、地点係数が特異になっている「松代」「網代」「稀内」の3地点を除外した。

図-5よりも、地点係数のピークは三角州性低地などの柔らかい地盤は長周周期に、丘陵地や山地などの固い地盤ほど短周周期にあることがわかる。地点係数の大きさを見ると、三角州性低地は長周周期で揺れやすく、丘陵地や火山台地・台地は短周周期で揺れやすい。また砂礫台地や岩石台地は全周周期において平均的な揺れやすさを示し、山地は周期0.2秒より短周期域において揺れにくい。火山台地は全周期において揺れやすいが、これは、火山台地と岩石台地または砂礫台地を基盤として、その上に比較的柔らかい火山灰が堆積しているためと考えられる。

このように、地形と表層地質を組み合わせた11分類は、周期に依存する地点固有の揺れやすさの傾向を大まかに表現しているといえる。これより、国土数値情報の地形・表層地質データを用いることにより、マグニチュードと震源位置を与えれば、式(1)によって日本全域の応答スペクトル分布を概略推定することが可能となった。

5. 応答スペクトルの地盤増幅度

地形と表層地質を考慮した応答スペクトルの推定は、上記により可能となった。しかし、地表面における応答スペクトルの推定に際しては、基盤面での応答スペクトルに、表層地盤でのスペクトル増幅度を乗ずることも一般的に行われる。したがってここでは、適当な基準地盤を決めて、それに対する地盤分類ごとのスペクトル増幅度についても求めておくことにする。

加速度または速度応答スペクトルをy(T)とすると、それらの地盤増幅度は、地表面での値をy0、基準面での値をy0として、

$$A_R(T) = y(T)/y_0(T)$$

で与えられる。ここで、地表面および基準面における距離減衰式を用いると

$$y_0(T)/y_0(T) = 10^{a(T)-a(T)}$$

となる。これより、スペクトル増幅度は次式で与えられる。

$$A_R(T) = 10^{a(T)-a(T)}$$

基準地盤としては、大西らの研究と同じく「山地」を用いることにした。地形・表層地質によるグループごとに、「山地」を基準とした速度応答スペクトルの地盤増幅度を求めた結果を図-7に示す。これら、「山地」を基準としたスペクトル増幅度は、周期約0.2秒以上の領域で、地形・表層地質分類においても「山地」よりも大きいことが分かれる。

この応答スペクトルの地盤増幅度は、想定地盤による地動分布の予測に利用できるばかりではなく、地表面の地質計によって応答スペクトルが観測された場合、これを面的に補間して地表面での応答スペクトル分布を求めるのにも利用できる。方法的には、既に最大加速度や最大速度について提案されている、距離減衰式をトレンド成分とする基盤面でのKriging法30と同じで、これを周期ごとに繰り返すことになる。

しかし、ここで提案した応答スペクトルの地盤増幅度と地形・表層地質分類との関係は、広域の地動動態推定のための概略的なもので、詳細な地盤データがある地点の増幅度については、地盤応答解析などを行うことが望ましい。
図-5 地形・表層地質に基づく11分類によるグループごとの地点係数
図-5 地形・表層地質に基づく11分類によるグループごとの地点係数（続き）
6. 結論

本研究では、周期ごとの地盤増幅特性と地形分類との関係を明らかにすることを目的として、気象庁の全国77箇所の87型地盤計で過去8年余りに観測された1,020の地震による3,990組の記録を用いて、速度応答スペクトルの距離減衰式における地点係数と各種土地分類との関係を検討した。その結果、速度応答スペクトルの地点係数について、大西らが提案した地形と表層地質を組み合わせた11のグループに基づく分類法は、全ての周期において他の分類法よりも高い相関を示すことが判明した。また、グループごとに地点係数スペクトルを見ると、短周期域についてはばらつきがやや大きいものの、揚れやすさの大きさとそのピークをとる周期が、グループごとに異なることが確認できた。

さらに、グループごとの地点係数の平均値を見ると、柔らかい地盤ほど揚れやすさのピークが長周期域に、固い地盤ほどそれが短周期域にあることがわかった。また、地点係数の大きさを見ると、長周期域において揚れやすいとか、全周期域において揚れにくいなど、グループによってその性質が異なることが明らかになった。

本研究により、国土数値情報という一般に入手可能なデータベースを用いて、広域において1kmメッシュで周期ごとの地盤増幅特性を推定することが可能になった。
これを距離減衰式に取り入れることにより、想定地盤に対する日本全域の応答スペクトルの分布を推定することができる。また、観測地盤振動スペクトルの空間補間にも利用できる。

しかし、今回検討に使用した気象庁87型地盤計の観測点の総数は77箇所とさほど多くなく、地形・表層地質分類によっては、平均的な傾向を把握するのが十分な数とえないものもある。また、ボーリングデータが無いために、分類の仕方にも個人差が生ずる可能性もあった。今後は、K-NETなどのボーリングデータとより多くの観測点を有する地盤計ネットワークから得られた地盤記録を用いて地盤分類との関係について同様の分析・検討を行い、さらに細かいグループ分けを行うことで、地盤増幅度の推定精度を上げることが可能になると考えられる。

参考文献
1) 消防科学総合センター：地盤被害予測システムに関する検討調査報告書，1997。
2) 塩害統計局：地盤被害想定資料集，地盤の被害調査報告書28，1998。
3) 山崎文雄：リアルタイム地盤災害システムの現状と展望，土木学会論文集，No.577/41，pp.1-16，1997。
4) 翠川三郎：リアルタイム地盤災害システム実用化と課題，地震ジャーナル，No.28，pp.52-65，1999。
5) 東京都：東京における直下地盤の被害想定に関する調査報告書，1997。
8) 司宏俊，翠川三郎：断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式，日本建築学会構造系論文報告集，523，pp.63-70，1999。
12) 安中正，山崎文雄，片平冬樹：気象庁87型強震記録を用いた最大地動及び応答スペクトル推定式の提案，第24回地震工学研究発表会論文集，pp.161-164，1997。
14) 国土計画調査局，国土地理局：国土数値情報（改訂版），国土情報シリーズ4，大蔵省印刷局，1992。
15) 翠川三郎，松岡広志，作川孝一：1987年千葉県東方沖地震の最大加速度・最大速度における地盤特性の評価，日本建築学会構造系論文報告集，第442号，pp.71-78，1992。
16) 松岡広志，翠川三郎：国土数値情報を基にした地盤の平均応答速度の推定，日本建築学会構造系論文報告集，第443号，
RELATIONSHIP BETWEEN GEOMORPHOLOGICAL LAND CLASSIFICATION
AND SPECTRUM AMPLIFICATION RATIO DERIVED FROM ATTENUATION
RELATIONS
Hiroshi YAMAUCHI, Fumio YAMAZAKI, Kazue WAKAMATSU and
Khosrow T. SHABESTARI

The relationship between the site amplification of the response spectra and the ground condition was investigated using a total of 3,990 strong motion records measured at 77 JMA stations in the period of over 8 years. The site amplification ratios of the response spectra were obtained from the station coefficients of the attenuation relationships derived from the JMA records. The combined use of the geomorphological land classification and the surface geology was found to give the best estimate of the spectrum amplification ratios, the same as the cases for the peak ground acceleration and velocity. This result suggests that the Digital National Land Information may be conveniently used for the estimation of the response spectrum distribution in a large area in Japan.