Hoek & Brown の破壊条件を利用した
岩石と岩盤のひずみ基準値について

武内邦文*1・芥川真一*2・桜井春輔*3

*1正会員 工修 (株)太田組東京本社 (〒108-8502 東京都港区港南2-15-2)
*2正会員 Ph.D 神戸大学助教授 工学部建設学科 (〒657-8501 神戸市灘区六甲台1-1)
*3正会員 工博 Ph.D 広島工業大学学長 (〒731-5193 広島市佐伯区三宅2-1-1)

岩盤構造物の安定性を定量的に評価する指標として、筆者の一人により提案された限界ひずみは、現在、トンネルや地下空間等で幅広く利用されている。しかし、この指標の岩石および岩盤面の破壊基準値として多くの実機を有する Hoek & Brown の破壊条件を利用して、比較的簡単な岩石および岩盤のひずみ基準値を推定する手法を提案し、各種試験結果と比較することにより、その特徴について考察した。その結果、この基準値は、岩石の場合には Mohr & Coulomb の破壊条件よりも拘束圧まで適用性に優れていることや、岩盤のひずみ基準値は一軸の場合には岩石とはほぼ同じであるが、三軸圧縮試験では岩盤の方がかなり大きくなる可能性があることがわかった。

Key Words : strain criteria of rock and rock masses, critical strain, failure strain, Hoek & Brown failure criterion, evaluation of rock mass stability

1. はじめに

トンネルなど岩盤内構造物では、事前調査で地山の力学特性や初期応力を正確に把握することが一般に困難なため、施工中に観察や計測を行い、事前設計や施工法の見直しを迅速に行う情報化施工が採用されている。岩盤安定性を定量的に評価する方法として、筆者的一人により提案された直接ひずみ評価法 (DSET [Direct Strain Evaluation Technique]) は、現場で測定された变形から、逆解析等を駆使して岩盤に発生しているひずみ分布を推定し、それを1つの許容値である“限界ひずみ”と比較することにより岩盤安定性を評価するものである。この方法は、その後のひずみ基準値に関する各種の研究成果等、とも相まって、現在では、標準的な施工管理指標のひとつとして定着している。

この限界ひずみの特徴は、岩石の一軸または三軸圧縮強度試験結果から簡単に算定できること、施工管理指標として、実用性の観点からは、岩石の限界ひずみを岩盤にも概ね適用できる、すなわち、岩盤の寸法効果の影響が小さいことである。なお、本稿では、岩石という場合には不連続面を含まない供試体を室温で試験すること、岩盤とはその影響を含む原位置での特性を意味するものとする。

直接ひずみ評価法では、Mohr & Coulomb の破壊条件を利用して限界ひずみへの拘束圧の影響を考慮する方法を示しており、その後、桜井ほかによって、この拘束圧の限界ひずみへの影響は小さいと報告されている。しかし、その後の岩石強度が比較的小さい多孔質凝灰岩で、しかも拘束圧は最大でも約 0.6 MPa と小さかったため、その結果を大きな強度や拘束圧まで適用できるかどうかは明確ではない。

そこで、本研究では、岩石のひずみ基準の問題点について考察しながら、Hoek & Brown の破壊条件を利用した一軸および三軸圧縮状態におけるひずみ基準値を算定する方法を提案し、試験結果と比較することによりその妥当性について検討する。同じく、岩盤のひずみ基準値についても、Hoek & Brown の破壊条件から求める方法を示し、その特徴について考察する。特に、限界ひずみに関して岩盤の寸法効果が小さいと言えるかどうかが重要なポイントとなる。

そして、最後に、本研究で提案した岩石および岩盤の限界ひずみ基準値の推定方法をまとめ、この指標が簡易に評価可能であることを示す。
2. Hoek & Brown の破壊条件を利用した岩石のひずみ基準値

筆者の一人が提案した岩石の限界ひずみ \(\varepsilon_0 \) は、一般的な試験である岩石コア供試体を用いた一軸圧縮試験結果を用いて、次式により求められる。

\[
\varepsilon_0 = \frac{\sigma_c}{E_{50}}
\] (1)

ここに、\(\sigma_c \)：岩石の一軸圧縮強度

\(E_{50} \)：強度値の 50%における接線弾性係数（軸方向および周方向のひずみゲージを供試体側面対称位置に 2 枚貼付して測定）

図-1 三軸圧縮状態における花崗岩の応力ひずみ曲線

\[
\varepsilon_{f1} = \frac{\varepsilon_0}{1-R_{f1}}
\] (3)

\[
\varepsilon_{f3} = M \varepsilon_{f1} = M \frac{\varepsilon_0}{1-R_{f1}}
\] (4)

\[
M = \left(1 + \frac{a_3 \tan \phi}{c} \right)(1-R_{f1})
\] (5)

ここに、\(\varepsilon_{f1}, \varepsilon_{f3} \)：一軸および三軸圧縮強度の破壊ひずみ

\(a_3 \)：拘束圧（小主応力）

\(c, \phi \)：粘着力および内部摩擦角

しかし、上記論文の実験成果は、比較的強度と拘束圧が小さい条件下でのものであったため、これが荷重材料の一般的な特徴であるとは言い難い。そこで、高強度で高拘束圧条件下におけるひずみ特性について検討するため、一軸圧縮試験（断面 55MPa）の花崗岩供試体（φ50mm×高さ 100mm）に対して、拘束圧が 30MPa までの三軸圧縮試験を実施した。

図-1 が拘束圧を変化させた場合の軸圧縮応力と、ひずみゲージを供試体側面対称位置に 2 枚貼付して測定した軸ひずみ関係であり、岩石材料に対して異なる、この図の場合には、最大強度を拘束圧の影響で大きくになっているのに対して、最大強度の 50%における接線弾性係数はほぼ等しい。すなわち、三軸圧縮状態の限界ひずみ \(\varepsilon_0 \) は \(\varepsilon_0 \) よりも少し大きくなっている様子がわかる。

また、非線形性及び拘束圧の影響を受ける岩石の破壊ひずみ \(\varepsilon_0 \) については、Mohr & Coulomb の破壊条件を利用し、式(3)および(4)より限界ひずみから算定できる。この間、式(5)は一軸と三軸圧縮試験の \(E_{50} \) をほど等しいと仮定することにより導かれるもので、岩石材料によって異なると考えられるが、図-1 のようにこの仮定は概ね妥当と考えた。

\[
\varepsilon_{f1} = \frac{\varepsilon_0}{1-R_{f1}}
\] (6)

\[
\varepsilon_{f3} = M \varepsilon_{f1} = M \frac{\varepsilon_0}{1-R_{f1}}
\] (7)

\[
M = \left(1 + \frac{a_3 \tan \phi}{c} \right)(1-R_{f1})
\] (8)

ここに、\(\varepsilon_{f1}, \varepsilon_{f3} \)：一軸および三軸圧縮強度の破壊ひずみ

\(a_3 \)：拘束圧（小主応力）

\(c, \phi \)：粘着力および内部摩擦角

式(3)におけるパラメータ \(R_0 \) は、桝井により定義された一軸圧縮試験における限界ひずみから破壊ひずみを簡易に推定するための応力ひずみ関係の非線形性を表す値である。式(5)におけるパラメーター \(R_0 \) は三軸圧縮試験におけるものである。これは一軸と三軸圧縮状態で異なると考えられ、試験結果で得られた、同じ桝井によれば、岩石に対しては 0.05～0.6 程度の値となる。なお、施工管理指針としてのひずみを採用する場合に、最も安全側を考えるときには実用上 \(R_0 = R_0 = 0 \) として問題ないとしている。

具体的には、図-1 で実験した花崗岩に式(4)および(5)を適用して、ひずみ基準値を計算する。まず、図-2 は一軸と三軸圧縮強度試験の成果であるモールの破壊応力円をまとめて示したものである。これより、Mohr & Coulomb の破壊条件を利用して岩石の \(c, \phi \) の値を求めた結果、拘束圧条件を重視した時には \(c = 12.2 \text{MPa}, \phi = 44^\circ \)、拘束圧では \(c = 23 \text{MPa}, \phi = 30^\circ \) となった。すなわち、このように拘束圧により大きく変化する。この値を式(5)に代入すれば、ひずみの係数 \(M \) は拘束圧の関数として示される。図-3 は試験から得られた係数 \(M \) の実験値で示すと拘束圧の関係を式(5) （実験で示す）と比較したものが、図中で示実験で示した部分の \(\kappa \) の値は、\(\kappa = (1-R_0)/(1-R_0) \) に依存した設定値である。この図から、1 級の \(c, \phi \) を変化させパラメータとして \(M \) が拘束圧 \(\sigma_3 \) と線形関係となる式(5)の有用性には問題があることがわかる。
上式は、限界ひずみの拘束圧依存性を Hock & Brown 定数で示した関係であり、この関数形からわかる通り、拘束圧依存性が双曲線的に表われる特性がある。ここで、m_{3}はひずみをベースとした Hock & Brown 定数とでもいうべきものであり、三軸圧縮試験において限界ひずみを限定すれば式(7)に代入して直接求められる。ただし、非線形性等の影響により、この値は応力による Hock & Brown 定数 m_{3} とは異なる可能性があることに注意しなければならない。

次に、破壊ひずみ ε_{B} を推定するため、式(4)に示すように、一軸の限界ひずみと三軸の破壊ひずみが線形関係で示されることを前提に、次式が成立することが仮定する。

$$
\varepsilon_{B} = \varepsilon_{0} \left(\frac{m_{3}}{m_{3} + 1} \right)^{0.5}
$$

これから提案した式(7)および(8)の軸ひずみ基準値の岩石への適用性を検討するため、前述の花崗岩の三軸圧縮試験結果として得られた限界ひずみを、その試験結果を用いて定数 m_{3} と m_{5} を算定し、式(7)および(8)に代入してその拘束圧依存性を算定した結果を図-4で比較した。結果として、m_{3} の値は 0.3 ～ 3.0 の範囲で、その平均値は 3.1. m_{5} は 0.3 ～ 10.0 で、平均値は 5.4 となり、式(7)および(8)により算定した限界ひずみと実験結果の小さい拘束圧から大きくなる全般において良好に一致している。したがって、提案した岩石の限界ひずみ基準値の花崗岩への適用性は優れていると考えられる。

次に、この限界軸ひずみのその他の岩石への適用性を検討するために整理した結果が図-5であり、花崗岩の一軸圧縮強度は約 110MPa、安山岩は約 88MPa、凝灰岩は約 0.72MPa の岩石供体試験を用いた場合の限界ひずみを評価した。なお、この試験でのひずみは全て軸および周方向のひずみゲージを供体試験側面対称位置に 2 枚添付して測定した。これより、岩種だけでなく軸ひずみの場合と拘束圧比が小さいときにも、実験で示した限界ひずみ基準値は実験値と概ね良好に合致することが明示された。なお、この図中、凝灰岩に関しては拘束圧依存性が極めて小さく無形 m_{5} もほぼ 0 で、限界ひずみが減少しているのず計測誤差と考えられる。

したがって、ここで提案した限界ひずみおよび破壊ひずみの決定式は岩石の基準値としては概ね妥当であると考えられる。

3. Hock & Brown の破壊条件を利用した岩盤のひずみ基準値

前章同様、桜井は、岩盤の限界ひずみ ε_{0} が式(9)の関係で表されるが、岩盤不連続面が少なく多く存在し、かつ不規則な配置の場合には(m_{3})の値は 1.0 ～ 3.0 程度となり、安全側を考慮した施工管理指針として利用する観点からは、その値を 1.0 として実用上問題がないと報告している。
条件は式(10)〜(13)で示される。この中で原位岩盤の条件を表すGSI (Geological Strength Index)は表-1に示すように、経験に基づき概略算定する方法が示されている9)。

\[\sigma_1 = \sigma_3 + \sigma_c \left(\frac{m_b}{\sigma_c} + s \right) \] (10)

\[m_b = m_1 \exp \left(\frac{GSI - 100}{28} \right) \] (11)

GSI>25の場合

\[s = \exp \left(\frac{GSI - 100}{9} \right), \quad a = 0.5 \] (12)

GSI<25の場合

\[s = 0, \quad a = 0.65 - \frac{GSI}{200} \] (13)

本研究では、上式のうち、GSI>25の場合、すなわち式(12)を対象として議論を進めることにする。その理由は、GSI<25の場合には土質条件が極めて近い岩盤のため、岩盤科

表-1 地質条件に基づくGSIの推定9)

<table>
<thead>
<tr>
<th>岩盤構造</th>
<th>表面状態</th>
<th>地質条件</th>
<th>GSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ブロック (BLOCKY)</td>
<td>準確</td>
<td>原位</td>
<td>85</td>
</tr>
<tr>
<td>ブロック (BLOCKY/DIS-TURBED)</td>
<td>準確</td>
<td>原位</td>
<td>65</td>
</tr>
<tr>
<td>ブロック (DIS-INTEGRATED)</td>
<td>準確</td>
<td>原位</td>
<td>45</td>
</tr>
</tbody>
</table>

一軸圧縮強度の岩盤及び岩盤の限界ひずみをほぼ同じになることは、ひずみが不連続面の影響をあまり受けない材料固有のものであることを示唆し、原位のひずみを実験で推定可能といえる。この限界ひずみをトンネル内含未知の計測測定に適用して良好な結果を得たことからも6)，安定性評価指標としての限界ひずみの有用性は確認済みと考えられる。しかし、トンネル周辺の岩盤安定性問題のようす調査面では一軸圧縮強度と考えられ、したがって、この限界ひずみが有効な指標となったが、多様なき裂が存在する岩盤の、三軸圧縮強度への適用性は未確定である。

そこで、前項と同じく、岩盤に関するHock & Brownの破壊条件を利用して岩盤の一軸および二軸圧縮強度のヒズみ基準値について考察してみる。

一般に、き裂を含む中硬岩から、極めて土に近い軟岩のような岩盤に対して、Hock & Brownの一般化した破壊試験条件は式(10)〜(13)で示される。この中で原位岩盤の条件を表すGSI (Geological Strength Index)は表-1に示すように、経験に基づき概略算定する方法が示されている9)。

\[\varepsilon_{0R} = \frac{\sigma - \varepsilon_c}{E_R} \] (9)

ここに、\(\varepsilon_c \)：岩盤の一軸圧縮強度
\(E_R \)：岩盤の変形係数
\(m, n \)：強度及び変形係数の低減率

(n は岩石一軸圧縮試験の 50%強度接続弾性係数から岩盤の変形係数への低減率)

なお、前項と同じく、岩盤に関するHock & Brownの破壊条件を利用して岩盤の一軸および二軸圧縮強度のヒズみ基準値について考察してみる。

一般に、き裂を含む中硬岩から、極めて土に近い軟岩のような岩盤に対して、Hock & Brownの一般化した破壊条件は式(10)〜(13)で示される。この中で原位岩盤の条件を表すGSI (Geological Strength Index)は表-1に示すように、経験に基づき概略算定する方法が示されている9)。
すなわち、式(14)は、岩盤の三軸圧縮状態の限界ひずみが岩石と岩盤の変形係数比、岩石の限界ひずみ、Hock & Brown のひずみをベースとした定数 (m_b, s, a)、および岩盤の一軸圧縮強度と拘束圧の比から算定できることを示している。式(14)は、岩盤の応力ひずみ関係の非線形性がない場合には、左辺の E_R と破壊ひずみ E_{BR} と等しくなるが、これは常に成立しないため、岩盤に対する破壊ひずみ基準も同じく下式のように示すことができる。

$$\varepsilon_{r3R} = \frac{E_{bf}}{E_{R}} \varepsilon_{bf}(\frac{\sigma_3}{\sigma_c} + s)^a$$

$$m_{bf} = m_b \exp \left(\frac{GSI - 100}{28} \right)$$

ここで、m_{bf} は同じくひずみをベースとした定数であり、
岩盤試験は容易に行えないことから、石材のm_b との間に式(18)に示すような関係が成り立ちものと仮定した。また、Hock と Brown によれば、岩盤の変形係数 E_R は経験的に次式により算定することを提案している。

$$E_R (GPa) = \sqrt{\frac{\sigma_c}{10}} \frac{GSI - 100}{40}$$

これにより、式(14)および(17)のひずみ基準値は、簡易な試験である供体体側面のひずみゲージで軸ひずみを測定する岩石一軸圧縮試験結果および測定の岩盤条件を評価した GSI から簡単に推定できることになる。

この限界ひずみ基準値の特徴を考察するため、ここでは、適切なm_b を設定（ここでは、図-4の花崗岩試験から得られた 3.1 を採用）し、GSI およびσ_3/σ_c をパラメータとして、式(14)から岩石と岩盤のひずみ比 E_{BR}/ε_0 を算出した。その結果を整理したものが図-6である。

この結果より、$\varepsilon_0=0$ すなわち一軸圧縮状態の場合には、GSI の値によらず、限界ひずみ比例 E_{BR}/ε_0 はほぼ 1.0 に、つまり岩石から岩盤への伝播効果が小さいことがわかる。したがって、式(9)のm_b を 1.0 として岩盤安定性評価指標として用いることは、トンネル壁面のように一軸圧縮状態となる場合には、図-6 からも妥当であると考えられる。

しかし、三軸圧縮状態におけるひずみ比 E_{BR}/ε_0 は、拘束圧が大きくなるほど、また GSI の値が大きくなるほど大きくなる傾向を示す。この現象は岩盤条件が悪く、したがって、き裂が多くなるほど変形係数が小さくなり、拘束圧を受けた場合の変形能が大きくなるという自然的作業の理由から考えられる。
4. まとめ

岩盤安定性を定量的に評価するため、本研究で提案した岩石と岩盤の限界ひずみ基準を推定する方法を以下に示す。
① 岩石の一軸圧縮試験を行い、式(1)から限界ひずみ ε_0 を推定する。
② 一連の室内三軸圧縮試験で限界ひずみを測定し、式(7)の限界ひずみ ε_0^b を推定する定数m_bを算定する。
③ 以上、二軸圧縮試験結果から、式(8)に示すHoeck & Brown定数m_bを算定し、両者の関係を明確にしておく。
④ 表-1から岩盤条件としてのGSIを推定しておき、式(15)，(16)および(19)を式(14)に代入して岩盤の限界ひずみ基準値を推定する。

なお、限界および破壊ひずみは強度が大きく脆性的な破壊挙動を示す場合にはほぼ等しいが、軟岩や拘束压が大きい場合には破壊ひずみが大きくなる。

本研究では、Hoeck & Brownの破壊基準に基づいた岩石および岩盤の安定性評価に用いるひずみ基準値を推定する方法を提案し、その特徴を各種試験結果と比較することにより考察した。岩石試験結果との比較では、Mohr & CoulombよりもHoeck & Brownの破壊条件に基づいた推定式の方が高拘束圧までの適用性に優れていることが判明した。また、岩盤のひずみ基準値は、一軸圧縮状態の場合には岩石とほぼ等しいが、拘束圧の影響を受けた場合には岩盤のほうがかなり大きくなる可能性が指摘された。

謝辞：本研究で用いた岩石と岩盤の試験結果は、主に神戸大学の研究室で行ったもので、その実施に当たり中村研究員、足立孝年氏、および中山徹氏に感謝の意を表します。

参考文献
1) 櫻井春輔：トンネル工事における変位計測結果の評価法。土木学会論文集、第317号、pp.93～100、1982。
2) 櫻井春輔：武田邦文：トンネル掘削時の変位計測結果の逆解析法。土木学会論文集、第337号、pp.137～145、1983。
4) 櫻井春輔：NATMにおける現場計測と管理基準。土と基礎、34-2(337)，pp.5～10，1986。
5) 櫻井春輔、川崎義夫、大谷達彦：岩石の限界ひずみに対する環境要因の影響について。土木学会論文集、No.463/III-22、pp.177～180、1993。
6) 櫻井春輔、川崎義夫、大谷達彦、松村正一郎：トンネルの安定性評価のための限界せん断ひずみ。土木学会論文集、No.493/III-27、pp.185～188、1994。
7) 櫻井春輔、川崎義夫、土田晃、藤田裕雅、土田義一：変形性岩盤の限界ひずみについて。土木学会論文集、No.535/III-34、pp.185～190、1996。
10) 日本材料学会編：岩の力学，pp.555～558、1993。

(2000.5.10 受付)

STRAIN CRITERIA OF ROCK AND ROCK MASSES WITH A USE OF HOEK & BROWN FAILURE CRITERION

Kunifumi TAKEUCHI, Shinichi AKUTAGAWA and Shunsuke SAKURAI

For the purpose of evaluating rock mass stability around an underground opening, this paper proposes new strain criteria of rock and rock masses making use of the Hoek & Brown failure criterion, which has been widely accepted and utilized all over the world. One of the authors previously proposed the critical/failure strain, which has been used in tunnels or cavern constructions as a standard indicator of rock mass stability. It still has problems, however, that the critical/failure strain of an intact rock may not simply apply to rock masses and to the region of a large confining pressure. The results of this research imply that the new strain criterion for an intact rock can be made applicable to the region of a large confining pressure and to rock masses only in unconfined stress states. It should be noted, however, that the new criterion for rock masses is significantly larger than that for an intact rock in triaxial stress states.