摩擦とラフネスを考慮した
岩盤不連続面の一面せん断挙動のモデル化

岸田 潔¹・津野 究²

¹正会員 工博 京都大学助手 大学院工学研究科（〒606-8501 京都市左京区吉田本町）
²正会員 工修 鉄道総合技術研究所 トンネル研究室（〒185-8540 東京都国分寺市光町2-8-38）

岩盤不連続面の一面せん断挙動は、ラフネスをはじめとする多くのパラメータに支配されるため、その力学的挙動を統一的に把握するのが困難である。本研究では、岩盤不連続面のせん断挙動を支配する因子のうち、垂直拘束圧、材料強度、基底摩擦角、不連続面の表面形状（ラフネス）に着目し一面せん断試験を行い、各種要因がせん断挙動に与える影響を考察した。また、これらの要因を考慮に入れ、せん断挙動が統一的に表現できるモデルを構築、これを用いて一面せん断試験のシミュレーションを行った。シミュレーション結果と実験結果を比較することで、本モデルの妥当性を確認することができた。また、本モデルを用いることにより、せん断に伴うラフネス変化が予測できることを確認した。

Key Words : joint surface roughness, direct shear tests, friction, shear strength, dilatancy behavior, shear behavior modeling

1. はじめに

岩盤不連続面のせん断挙動に関する研究は、これまで、数多くの研究者により行われてきた。これらの中でも、Patton¹およびその研究を基とするLadanyi & Archambaults⁵の研究とBarton³、Barton & Choubey⁶の研究は特に有名である。

Barton³、Barton & Choubey⁶は、北欧を中心とした褶れや変形作用を強く受けた岩盤から供試体を採取し、比較的高い一軸圧縮強さを有する岩石供試体の不連続面の一面せん断試験を行った。これらのせん断試験の結果と表面強度から、次式に示すせん断強度式を提案している。

\[
\tau_p = \sigma_u \cdot \tan \left[JRC \cdot \log_{10} \left(\frac{JCS}{\sigma_u} \right) + \phi_f \right]
\] \hspace{1cm} (1)

ただし、\(\tau_p \) : せん断強度
\(JCS \) : 材料強度を表す係数
\(\phi_f \) : 基底摩擦角
\(JRC \) : チョークの組合せを表す係数
\(\sigma_u \) : 垂直拘束圧

式(1)において最も注目すべきことは、せん断強度式にラフネスの影響を表す \(JRC \) というパラメータを導入し、\(JRC \) 値とそれに対応する代表的なラフネス形状を図示した点にある。\(JRC \) 値は、せん断試験の結果から逆解析的に求められるもので、Barton³、Grimstad & Barton⁶の提案するトンネル掘削のための岩盤の判定システムにも用いられ、岩盤不連続面の表面形状を評価する指標として非常に代表的なパラメータとして世界中に受け入れられてきた。

\(JRC \) 値は、実際の不連続面を Barton の示す \(JRC \) の代表的な形状⁶と比較することにより簡便に決定できるが、一方で、主観的な値となっててしまうという欠点がある。

ラフネス形状の定量化に関してもさまざまな研究が行われている。Tse & Cruden⁷は、\(Z_2 \) 値という指標を定義しラフネスの定量化を行った。\(Z_2 \) 値は次式で計算できる。

\[
Z_2 = \sqrt{ \frac{1}{M-1} \sum_{i=1}^{M} \left(\frac{\Delta y}{\Delta x} \right)^2 } \] \hspace{1cm} (2)

ここで、\(\Delta x \) : 計測間隔
\(\Delta y \) : ラフネスの標高の差
\(M \) : 一計測ラインの計測点数

そして、\(Z_2 \) 値と \(JRC \) 値の間には次式のような相関関係式があり、次式と式(1)を用いることにより、せん断強度が予測できるとしている。
Table 1 Material properties of the specimens

<table>
<thead>
<tr>
<th>Contents of Kaolin [%]</th>
<th>Uniaxial compressive strength σ_c [MPa]</th>
<th>Tensile strength σ_t [MPa]</th>
<th>Young's modulus E [MPa]</th>
<th>Cohesion c [MPa]</th>
<th>Internal friction angle</th>
<th>Basic friction angle ϕ_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>43.29</td>
<td>4.80</td>
<td>14360</td>
<td>7.20</td>
<td>53.1</td>
<td>37.2</td>
</tr>
<tr>
<td>50</td>
<td>35.14</td>
<td>4.59</td>
<td>10639</td>
<td>6.43</td>
<td>50.6</td>
<td>34.6</td>
</tr>
<tr>
<td>100</td>
<td>22.44</td>
<td>3.21</td>
<td>7946</td>
<td>4.36</td>
<td>49.7</td>
<td>34.0</td>
</tr>
</tbody>
</table>

$JRC = 64.22Z_2 - 2.31$
(3)

また、谷本・岸田9は、表面形状を離散化データとして計測し、MEMによる周波数解析を行い、得られたパワースペクトルからラフネスの振幅特性（A）と周波数特性（f_0）を表現する指標をもとめ、これら二つの指標を用いてラフネスの振幅特性および周波数特性を同時に示すパワースペクトルモーメント（M_r）をラフネスの定量化指標として定義している。

$$M_s = A_s \times f_0$$
(4)

さらに、岸田・谷本9はBarton & Choubeyの示す代表的なラフネス形状より次式のようなM_s値とJRCの関係を示し、式(1)を用いることでラフネス形状の離散化データから不連続面のせん断挙動の推定を行っている。

$$JRC = \frac{\ln \left(\frac{M_s \cdot 10^3}{1.117} \right)}{0.23}$$
(5)

以上をはじめとして、まずラフネスの定量化を行い、それを基にしたせん断強度の予測を目的とした研究が、数多く行われてきた。確かに、実際の現場で安全側の設計を目標とし、従来から行われているcおよびϕを用いた設計基準の上では、ピーク時に着目せず断強度を明確に評価できれば十分である。しかし、近年の岩盤構造物が大規模化し、また維持管理の重要性が叫ばれる中、時々刻々の岩盤の状態を把握する必要が出てきており、一面せん断挙動に関する研究についても、ピークのみならず軟化から残留に至る全てのせん断過程を議論する必要があると考えられる。したがって、ピークからひずみ軟化と残留状態に至るせん断過程全てを網羅し、かつ、せん断に寄与するパラメータを用いて明確にせん断挙動を予測できるモデルを構築する必要がある。

一方で、本来ラフネスとその他のパラメータは相互に影響し複雑に絡み合っているため、ラフネスのみを取り出してせん断挙動を論じることはできないはずである。ピークから残留に至るせん断挙動の全過程を精度良く予測した研究は未だなく、せん断挙動が決定的に解明されないのは、不連続面全体のラフネスを1つのパラメータを用いて定量化することに固執しつづけ、ラフネスその他のパラメータから切り離して考察しているためであると考える。

以上を踏まえて、本研究では、岩盤不連続面のせん断試験を実施し、過去の研究を含めてラフネスの定量化の有効性・妥当性を議論する。その上で、垂直拘束圧、材料強度、基礎摩角、3次元的に広がる不連続面の表面形状を入力すれば、せん断変位-ダライレーショング関係およびせん断変位-せん断応力関係、さらには、せん断によるラフネスの割れまで予測できるような一面せん断挙動のモデルを構築する。

2．一面せん断試験

(1)供試体とラフネスの計測

本研究では、モルタルで作製した不連続面の寸法が12 cm×12 cmの供試体を用いて、前節に示した一面せん断試験および自然のラフネスを持つ面の一面せん断試験を行った。自然のラフネスを持つ面に実際の岩盤不連続面に石膏を流し込んで型どりした3種類の不連続面を、シリコンゴムで型どりし、モルタルで複製した。この3種類の不連続面（ラフネスA, B, および C）のZ_2値7を用いて計算したJRC値8は、11.3, 15.4, および8.6である。算出は、せん断面方向に沿ったラフネス形状の計測線毎にZ_2を求め、面全体の平均値を求めている。供試体作製には、早強ポルトランドセメントを使用し、細骨材にはケイ砂6号を使用した。そして、セメント・砂・水に1:2:0.65で配合したものにセメントに対する重量混合比が0, 50, 100%のカオリンとカオリンの液体限界の1.4倍の水を混ぜることにより、3種類の一致圧縮強さをもつ材料を用意した。供試体打設は恒温恒湿下で行い、不連続面に気泡が残ら

246
ないように注意を払った。また、下部供試体を用いて上部供試体のラフネスを型取りすることにより、かみ合わせが良くなるように工夫した。その後、恒温恒溼下で28日間水中養生させた。材令28日での一軸圧縮試験および割裂（プラジリアン）試験により求められた材料物性をTable 1に示す。

ラフネスの計測は、非接触式変位計（最少スポット径0.05 mm、測定範囲40.0 mm±5.0 mm、分解能0.5 μm、LB-1000）を用いたセンサー部とX-Yロボット（MXY-series）によるコントラーラ部で構成される3次元ラフネスプロファイラー10)を使用し、0.5 mm間隔で計測を行った。

(2) 実験装置および実験パターン

一面せん断試験は、Fig.1に示す一面せん断試験機10)を用いて行った。本試験機はフィードバック機構を有する完全閉ループ方式の電気、油圧サーボシステムで、バーソナルコンピュータにより載荷をコントロールしている。せん断箱は、取り換えて使用できるカセット方式で、あらかじめカセットを試験装置から外して供試体をセットする。せん断箱と負荷装置の間には、摩擦によるダイレクタンシー発生を防ぐため、ベアリングを介している。本試験では、せん断荷重、せん断変位、垂直荷重、垂直変位の4項目を計測しており、これらのデータは自動的にバーソナルコンピュータに収録される。垂直変位に関しては、直接供試体の左右両方に変位計を取り付け計測を行い、その平均値を垂直変位としている。

本研究では、(1)で述べた3種類の材料を用い、垂直拘束圧一定およびせん断変位速度0.2 mm/minの条件下で、滑らかな面および自然のラフネスを持つ不連続面の一面せん断試験を行った。自然のラフネスを持つ不連続面の一面せん断試験については、各パターンにつき3個の供試体を用意し、最終せん断変位をピークせん断応力発現時2 mm、12 mmの3種類に設定してせん断を行うことにより、せん断が進むにつれてラフネスが変化する様子を観察した。滑らかな不連続面を有する供試体の一面せん断試験の
実験パターンは、材料強度 3 種類（一軸圧縮強さ σ_c = 43.29, 35.14, 22.44 MPa）、垂直拘束圧 5 種類（σ_n = 0.1, 0.3, 0.5, 1.0, 2.0 MPa）の計 15 パターン、せん断変位 12 mm まで実験を行った。自然のラフネスを有する供試体の一面せん断試験の実験パターンは、材料強度 3 種類（一軸圧縮強さ σ_c = 43.29, 35.14, 22.44 MPa）、ラフネス形状 3 種類（JRC = 11.3, 15.4, 8.9）、垂直拘束圧 4 種類（σ_n = 0.1, 0.5, 1.0, 2.0 MPa）、せん断変位 3 種類（ピークまで、2 mm、12 mm）の計 108 パターンである。

(3) 滑らかな不連続面の実験結果

Fig.2 に、一軸圧縮強さが 43.29 MPa の材料で作製された供試体による滑らかな面の一面せん断試験結果を示す。Fig.2(a)より、せん断変位・せん断応力関係にピークは発現せず、立ちあがりの部分を除いてせん断応力が一定になることが確認できた。また、当然のことであるが、ダイレーションの発現は全く見られない（Fig.2(b)）。これらの傾向は、材料強度を変化させても同じである。そこで、Fig.3 に示すように垂直拘束圧と一定となったせん断応力の関係をプロットし、線形近似した直線に Coulomb の破壊規準を適用して粘着力 c、摩擦角 ϕ を求めた。その結果、粘着力 $c = 0$ となることから、せん断応力 τ と垂直拘束圧 σ_n の間には次式が成立する。

$$\tau = \sigma_n \tan \phi$$ (6)

このとき、$\tan \phi$ は滑らかな面の摩擦係数 μ であるといえることから、滑らかな不連続面の一面せん断試験で求められる ϕ を基礎摩擦角 ϕ_b とする。各材料の基礎摩擦角 ϕ_b を Table 1 に示す。

(4) 自然のラフネスを有する不連続面の実験結果

つぎに、自然のラフネスを有する不連続面の一面せん断試験の結果の一例を Fig.4 に示す。Fig.4 は、ラフネス C (JRC = 8.9)、一軸圧縮強さ σ_c = 35.14 MPa の供試体を用い、垂直拘束圧を変えてせん断変位 12 mm までせん断させた場合の結果である。これより、垂直拘束圧が大きいほどせん断応力は大きいか（Fig.4(a)）、ダイレーションは小さい（Fig.4(b)）ことが確認できる。

また、同じラフネスを有するが材料の異なる 3 種類の供試体を用い、垂直拘束圧を固定して、材料物
性がせん断挙動に及ぼす影響を把握した。Fig.5 は、ラフネス A (JRC = 11.3)、垂直拘束圧 $\sigma_s = 1.0$ MPa の条件下で 12 mm までせん断させた場合の結果である。これより、材料強度が大きいほどダイレーショング大きいかがわかる。せん断応力に関しては、材料強度が大きいほど、せん断強度は大きく、残留強度は小さくなる傾向がみられる。Fig.5(a)において、$\sigma_s = 43.29$ MPa の供試体のピーク後の挙動で急激にせん断応力が変化しているが、これは計測上のノイズであり、実際にはスムーズに軟化しているものと考えられる。

Tanimoto ら 11)は、材料の一軸圧縮強さ σ_c を 28.0, 52.0, 100.0 MPa と変化させて、垂直拘束圧 1.0 MPa 以下で自然のラフネスを有する岩盤不連続面の一面せん断試験を行っている。それによると、ラフネス形状によっては材料強度が大きいほうがピークせん断強度が小さいケースも見られる。この結果は、本研究の結果と異なることになる。岩盤不連続面のせん断挙動は、不連続面全体で起こっている現象ではなく、ごく限られたラフネス（アスペリティ）のせん断破壊で支配されているものと考えられる。すなわち、せん断に寄与するラフネスの形状、拘束条件および材料強度の関係によっては、アスペリティを破壊せず乗り上げ、破壊したとしてもごく一部となり、材料強度の大きい供試体においてもせん断強度を発現しにくい条件があるものと考えられる。Fig.6 に示すように、本研究においても拘束圧領域では必ずしも材料強度の大きい供試体が高いせん断強度を発現することは限らない結果を示している。そこで、せん断過程においてどのようなアスペリティが破壊されるのかを観察し、岩盤不連続面のせん断挙動を議論する必要がある。

(5) せん断に伴うラフネスの削れ
0.5 mm 間隔で計測したラフネスデータを用い、全ての計測点間についてせん断方向に対する傾斜角 (Fig.7) を計算した。そして、正の傾斜角に関して、1° 間隔で傾斜角分布のヒストグラムを作成した。

の一軸圧縮強さ $\sigma_c = 35.14$ MPa、垂直拘束圧 $\sigma_s = 2.0$ MPa、ラフネス C (JRC = 8.9) で 2 mm せん断させた場合についての結果を Fig.8 に示す。その結果、せん断前 (Fig.8(a)) とせん断後 (Fig.8(b)) のヒストグラムを比較しても、明確な違いが確認できない。そこで、せん断後の傾斜角分布のヒストグラムからせん断前のヒストグラムを引きことにより、せん断前後のアスペリティの増減を調べた 12) 13)。一軸圧縮強さ $\sigma_c = 35.14$ MPa、垂直拘束圧 $\sigma_s = 2.0$ MPa、ラフネス C の場合の結果を Fig.9 に示す。Fig.9 は、それぞれの角度を持つアスペリティの数が、せん断によりどれだけ増加する（減少する）かを示している。マイナスの部分が、せん断により減少したアスペリティの数であり、せん断により削られアスペリティの数を示している。これより、全計測点間 (56882 点) に比べマイナスの部分はごく一部であることから、傾斜角が変化する（削られ）アスペリティは、全計測点に比べごく一部であることが確認できる。Fig.9(a) では、全体から見て数パーセントのアスペリティ角の変化を示されている。ここでは、もっともわずかしか存在しない 40 度以上の角度を持
つアスパリティの変化が確認できる。40度以上の角度を持つアスパリティの変化はせん断の進行に伴って増加することはない（Fig.9(b), (c)）。代わりに、角度の小さいアスパリティの変化が増大してくる。以上から、角度の大きいアスパリティから削除はじめ、せん断が進むにつれて角度の小さいアスパリティに削除が移行していく様子も確認できる。岩盤不連続面のせん断挙動は、ごく一部のラフネスが削除することによりせん断応力が発生し、ピークせん断強度の発生には角度の大きなアスパリティが寄与しているものと考え、その後、角度の小さなアスパリティを削りながら残留状態へ移行する。

3. ラフネスの定量化指標の適用性

1. で述べたように、岩盤不連続面のラフネスを評価する手法としては、Barton の提案した JRC 値が代表的である。本章では、JRC 値との相関性が示されている Zr 値 \(^7\)および Ms 値 \(^8\)を用いてラフネスの定量化を行う。そして、JRC 値を Barton のせん断強度式（式(11)）に代入することにより、せん断強度を予測する。この結果と一部せん断試験結果を比較することにより、ラフネスの評価指数としての JRC 値の有効性について検討を行う。さらに、Zr 値および Ms 値を用いて換算された JRC 値により、せん断中のラフネスの変化を検討する。

なお、ここでの議論は 2. で説明した実験で用いた供試体だけでなく、坂上 \(^9\)、藤崎 \(^10\)が行った実験結果を含めて議論を行う。これらの実験は、不連続面の寸法が 42×42 mm の角柱供試体を一面せん断試験機（DAT-176）でせん断変位 4 あるいは 5 mm までせん断させている。供試体に用いられたセメントは、ジェットセメントまたはデンシットバインダーである。供試体の配合および材料物性を Table 2 に示す。なお、Table 2 の "Sand type" 内で示す割合は、数種類の砂をブレンドした割合である。

(1) Ms 値を用いたせん断強度の推定

JRC 値は、せん断前後のラフネスの計測結果から Ms 値を求める。式(5)に示す Ms 値と JRC 値の関係式を用いることにより計算できる。そして、式(1)に示す Barton のせん断強度式に JRC 値を代入することにより、せん断強度を予測できる。ここでは、Ms 値を用いたせん断強度の推定結果を示す。ここでは、JCS の値は、Barton の示すとおり一軸圧縮強さの 1/4 の値を用いた \(^3\)。

Fig.10 に実験と推定によるせん断強度のプロットを示す。42 mm×42 mm の供試体では、全般的に推定値が実験値よりも小さい傾向にある。推定値が実験値の 2 分の 1 以下になるようなケースもあり、推定の精度が十分でない。また、120 mm×120 mm の
Table 2 水泥、砂、水分の組合せ状況と単軸圧縮強度（σ3）と基本摩擦角（ϕ）

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Cement type</th>
<th>Sand type</th>
<th>Cement : Sand : Water</th>
<th>σ3 (28th day)</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sakae(16)</td>
<td>Jet cement</td>
<td>Silica sand no. 6</td>
<td>1 : 1 : 0.375</td>
<td>52.0 MPa</td>
<td>38.0</td>
</tr>
<tr>
<td>Fujisaki(19)</td>
<td>Jet cement</td>
<td>Silica sand no. 6</td>
<td>1 : 2 : 0.65</td>
<td>28.0 MPa</td>
<td>38.6</td>
</tr>
<tr>
<td>Fujisaki(15)</td>
<td>Densit-binder</td>
<td>Silica sand no. 3 35.0 %</td>
<td>1 : 1 : 0.2</td>
<td>100.0 MPa</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Fig.10 比較実験と解析結果を示すM_{e}の値

供試体では、推定値が実験値より大きくなくなる傾向を示している。

これらの結果、M_{e}値を用いたせん断強度の推定は、十分な精度が得られない。これらの原因として、M_{e}値は、せん断の方向性を考慮に入れていない。また、せん断挙動がごく一部のアスペリティに支配されているが、面全体を評価するM_{e}値ではそれが考慮されていない、等と考えられる。

(2) Z_{2}を用いたせん断強度の推定

M_{e}値を用いたせん断強度の推定と同様、せん断前のラフネスの計測結果から式(2)を用いてZ_{2}を計算し、式(3)によりJRC値を求める。求められたJRC値を式(1)に代入することで、せん断強度の推定を行う。Fig.11は推定値と実験値を比較し、両者の関係をプロットしたものである。全体的に推定されたせん断強度は実験値より小さい傾向にある。この結果をみるとM_{e}値での推定より推定精度が悪くなるケースも見られるが、全体的には精度よく推定できているものと考える。特に、120 mm×120 mmの供試体において、M_{e}値による推定より、より精度のいい結果となっている。Z_{2}を用いることで、ある程度せん断強度の推定が可能であると考える。

(3) JRCを用いたラフネスの変化

本研究では、同じ拘束圧、材料物性およびラフネスの条件下で、最終せん断変位をピーク、2 mm、12 mmの3種類に設定し、すべり面のせん断試験を行っている。したがって、せん断変位がピーク、2 mmおよび12 mmに達した時のラフネスの形状を把握することができる。ここで、せん断中のラフネスの変化をJRC値の変化量を用いて把握することを試みた。一般的には、せん断によりラフネスが削られることにによる、JRC値は減少するものと予測できる。

ここでは、せん断後のJRC値からせん断前のJRC値を差し引くことににより、JRC値の変化量を計算した。JRC値の計算にあたる、前述のようにZ_{2}およびM_{e}値を用いて行った。

せん断変位とJRC値の変化量をFig.12、13に示す。

Fig.12はZ_{2}によりJRC値を求めたもので、Fig.13はM_{e}値により求めたものである。それぞれの図の(a)は一軸圧縮強さσ_{c} = 43.29 MPa、ランフネスA、(b)
は一軸圧縮強さ $\sigma_c = 22.44$ MPa、ラフネス C の結果を示す。これらの結果から、せん断変位の増加、すなわちせん断の進行に伴い JRC 値が増加するケースも見られる。せん断の進行に伴い、岩盤不連続面の凹凸が増し、面形状はスムーズになることが考えられる。本来まで、JRC 値は減少する傾向にあるべきである。

せん断に寄与しているのはごくわずかなアスペリティだけであり、せん断面全体のラフネス形状に与える影響は小さいと考えられる。一方で、M_r 値や Z_2 で求めた JRC 値は不連続面全体の形状を表すものである。したがって、面全体を表現している JRC 値を用いても、せん断に寄与する一部のアスペリティを特定できず。したがって、これらのパラメータを用いても、ラフネスの変化を把握できないと考える。

(4) Barton のせん断強度式の利点と限界
ここのでは、JRC 値とせん断強度の相関性が示されている Z_r 値および M_r 値を用いて、不連続面を定量化した。そして、JRC 値を計算した後 Barton のせん断強度式を用いて近似することにより、せん断強度の予測を行った。その結果、M_r 値を用いたせん断強度の予測に関しては、十分にせん断強度を予測できているとは言えない。一方で、Z_r を用いたせん断強度の予測に関しては、ある程度精度良く予測できると考える。

また、せん断中のラフネスの変化を、M_r 値および Z_2 から JRC 値の変化率を計算して把握することを試みた。その結果、M_r 値や Z_2 を用いても、ラフネスの変化を把握することができなかった。これは、面全体の形状を表す JRC 値では、ごく一部のアスペリティを特定できない。したがって、これらのパラメータを用いても、ラフネスの変化を把握できないと考える。
せん断中のラフネスの変化を把握することができないことから、これを用いてもピーク以後のせん断挙動を表現することは難しいと考える。したがって、ピーク以降のせん断挙動を予測するためには、あらかじめせん断変位に対してせん断に寄与する一部のアスベリティを特定し、せん断中のラフネスの変化を把握できるようなモデルを構築する必要があると考える。

本研究では、不連続面に含まれる個々のアスベリティに関して、傾斜角とその他のパラメータから接触を判定し、接触させてせん断に寄与する角度の大きいアスベリティに着目することにより、岩盤不連続面の一面せん断挙動のモデル化を行う。

4. 一面せん断挙動のモデル化

(1) せん断挙動の解析モデルの概要

ピークから軟化し残留状態に至る岩盤不連続面のせん断挙動を表現したモデルとして、Tanimotoらの研究が挙げられる。これらのモデルは、実験より得られたせん断特性との良い一致を示す。しかし、Tanimotoらの研究では、ラフネスを定量的バラメータであるSAX値とせん断強度との関係を、実験結果において相関が最も高くなるように設定している。したがって、Tanimotoらの研究で行った実験結果は異なる条件でのせん断挙動への適用性に問題がある。また、大西らの研究では、導入されたステップ1特性から逆解析的に求まる降伏点を用いる解釈が成り立つが、これにより軸圧縮試験および垂直拘束圧から導き出される場合、実験結果から求めた回帰式を用いる必要がある。しかし、回帰式の相関係数が十分に良くないという問題点と、導入された条件でのせん断挙動への適用性に関する問題点がある。

以上のように、ピークから軟化し残留状態に至る岩盤不連続面のせん断挙動を表現できるモデルは、いまだ十分ではない。そこで本研究では、垂直拘束圧、材料強度、基礎摩擦角の3次元的に広がる離散化ラフネスデータを入力すれば、せん断変位-ダイレイション関係およびせん断変位-せん断応力関係、さらには、せん断によるラフネスの削れを予測できるような一面せん断挙動の解析モデルを構築を行う。

まず、完全にかみ合った状態からせん断が開始される場合を考える。この場合、非常に大きい角度を持つアスベリティに応力が集中すると考えられ、削れが全く生じなければ、この大きな角度を持つアスベリティに沿って大きなダイレイション角でせん断が発生する。しかし、大きな角度を持つアスベリティは非常に少ないため、集中した応力を支えきれずに削れてしまう。したがって、次第に小さい角度のアスベリティまで接触するようになり、それともにおのダイレイション角が小さくなる。同時に、接触面積が増加し、個々のアスベリティに作用する応力は減少する。そこで、接触するアスベリティに作用する応力が支えきれるところ、ダイレイション角が決定すると考えられる。

せん断挙動において、垂直拘束圧は接触するアスベリティに応力集中する。一方で、接触面積はダイレイション角とラフネスの形状に依存することから、ダイレイション角を仮定すれば、接触する部分に集中する応力が決定できる。そこで、「接触するアスベリティに集中する不連続面に垂直方向の応力が、一軸圧縮強さと等しくなるように、ダイレイション角の値を決定する。」という考えに基づき、一面せん断挙動の解析モデルを構築する。本解析モデルは簡便な理論を用いており、あらゆる条件下において幅広く適用することができる。

(2) ステップ1

本解析モデルでは、ステップ間隔はラフネス計測間隔の増倍数である必要がある。本研究では、一面せん断試験において0.5 mm間隔でラフネスの計測を行っているので、1ステップにつき0.5 mmずつせん断させるとして説明する。

せん断方向に対して35°と25°の角度をもつアスベリティが存在する場合を考える。初期のダイレイション角を30°と仮定すると、35°の角度をもつアスベリティは接触するが、25°の角度をもつアスベリティは接触しない。本解析モデルでは、ダイレイション角以上の角度をもつアスベリティを仮定し、それに応力が集中すると仮定する。これら接触するアスベリティに作用する鉛直応力σ'は次式で計算できる。

\[\sigma'_0 = \sigma_0 \times \frac{T}{A} \]

ここで、σ_0 : 垂直拘束压
T : 計測点間の総数（アスベリティの総数）
A : ダイレイション角以上の角度をもつ接触するアスベリティの数

そこで、Fig.14のようにダイレイション角をθと仮定し、「接触するアスベリティ」を抽出する。この接触するアスベリティに作用する鉛直応力σ'は
およそせん断応力 τ は、不連続面に垂直方向の応力 P と平行な応力 Q に分解できる。P および Q は、不連続面の長さが $1/\cos \theta$ であることを考慮に入れ、次式で表せる。

$$ P = (\tau \sin \theta + \sigma_n \cos \theta) \times \cos \theta \tag{8} $$
$$ Q = (\tau \cos \theta - \sigma_n \sin \theta) \times \cos \theta \tag{9} $$

不連続面上では、次式に示す釣り合い式が成立すると仮定する。

$$ Q - P \tan \phi_n = 0 \tag{10} $$

ここで、ϕ_n は材料の基礎摩擦角である。この式(10)に式(8), (9)を代入すると

$$ \tau = \frac{\sigma_n (\sin \theta + \cos \theta \tan \phi_n)}{\cos \theta - \sin \theta \tan \phi_n} \tag{11} $$

となり、これを整理すると次式のような σ_n と τ の関係が導出される。

$$ \tau = \sigma_n \tan (\phi_n + \theta) \tag{12} $$

さらに、σ_n と τ の比と τ の比が等しいことを考慮に入ると、次式が成り立つ。

$$ \tau = \sigma_n \tan (\phi_n + \theta) \tag{13} $$

式(13)は、Pattonが提案した角度 θ の定型歯型を持つ供試体のせん断強度式と同じ形式をしている。本解析モデルのステップ 1 では、式(13)および(8)を用いて不連続面に作用する垂直方向の応力 P を計算し、一軸圧縮強さを比較することによりダイレション角 θ_1 を決定する。

本解析モデルのステップ 1 では、接触するアスペリティに作用する不連続面に垂直方向の応力 P が一軸圧縮強さと等しくなるように、ダイレション角を決定する。そこで、ダイレション角を θ と仮定する。そして、すべての計測点において Fig.7 に示すようなせん断方向に対する正の傾斜角を計算し、θ 以上の角度をもつ接触するアスペリティの数 A を求め、そこに作用する応力 σ_n を式(7)を用いて計算する。つぎに、式(11)を用いて τ を計算し、τ と式(8)に代入することにより連続面にかかる垂直方向の応力 P を求められる。ここで、P が一軸圧縮強さを比較し、P が一軸圧縮強さより大きければ、ダイレション角を $\theta = \theta - 0.1^\circ$ と仮定しない。同様の手順を繰り返す。そして、θ を 0.1° ずつ小さくしていく。P が一軸圧縮強さ以下になったときの θ をせん断変位 0.5 mm におけるダイレション角 θ_1 に決定する。せん断変位 0.5 mm におけるせん断応力は、式(13)に θ_1 を代入することにより計算する。ステップ 1 のフローチャートを Fig.15 に示す。

ところで、ステップ 1 では判定条件として連続面にかかる垂直方向の応力 P と一軸圧縮強さ σ_n を用いた。実際の摩擦の機構には、凹凸説と凝着説がある。凹凸説による摩擦の原因は 2 表面の凸部同士の引っ掛かりによるものである。これに対し、凝着説
は、2 表面の凝着が原因であるという分子論的な考え方で、この凝着部のせん断に伴い摩擦が発生するという考えである。図体の2表面を合わせた場合、表面の微小な凹凸同士が接触をし、幾何学的その接触面積は非常に小さいものであるとされている。トライポジションの分野では、完全な平滑面を想定しても表面には必ず凹凸があり、ごくわずかの本当に接触している面（凹凸）で摩擦や摩耗が発生すると考えられている。これらに接触している面では、全体としての载荷荷がごくわずかでも圧力が極めて高く、塑性流動が発生していると考えられている。接触面で塑性流動が発生することにより、外部表面層を破壊され、この部分では活性より凝着が生じ、これが摩擦の原因となる。凝着面では、凝着部にせん断応力が作用してその応力に対する抵抗が増大するという考えであるが、本研究では、それぞれの接触部での応力状態を、わずかの接触している凹凸がピラーン状になっており、接触部がごくわずかで高圧であることから一軸圧縮状態と想定する、この仮定に基づき、ステップ1では、判定条件として不連続面に作用する垂直方向の応力Pと一軸圧縮張さのσを用いた。このとき、破壊線と外部のアスペリティが移動する方向とは一致しないが、これに関しては次のように考える。まず、一軸に近い状態で不連続面近傍のアスペリティがクラックが入った後、次々と破壊が進行して粉々になるため、一番初めに起こる破壊がアスペリティの移動する方向を決定すると考えられない。したがって、破壊線の方向とダイレクションする方向が一致する必要はないと考えられる。

（3）ステップ終了時のラヌスネの形状

ステップ終了後には、上部供試体をステップで決定したダイレション角で0.5 mmせん断方向に移動させる。つまり、Fig.16のようにステップn開始以前の点(k, j)における下部供試体の標高をXn−, (k, j), 上部供試体の標高をYn−, (k, j)とし、ステップnでダイレクション角θを決定されたと、ステップn終了後の下部供試体の標高Xn (k, j), 上部供試体の標高Yn (k, j)は、次式で表される。

\[
X_n (k, j) = X_{n-1} (k, j)
\]

\[
Y_n (k, j) = Y_{n-1} (k-1, j) + 0.5 \tan \theta_n
\]

ただし、上部供試体と下部供試体が重なる場合（Xn (k, j) > Yn (k, j)）は、重なり合う部分の中心点で接触すると考え、Xn (k, j)およびYn (k, j)を以下のように置き換える。

Fig.16 Coordinates at the end of Step n

\[
X_n (k, j) = (X_{n-1} (k, j) + Y_{n-1} (k-1, j) + 0.5 \tan \theta_n) / 2
\]

\[
Y_n (k, j) = (X_{n-1} (k, j) + Y_{n-1} (k-1, j) + 0.5 \tan \theta_n) / 2
\]

（4）ステップn

ステップ2以降においても、ステップ1と同様の手順でダイレクション角θを決定する。つまり、ステップnでは、ステップn−1終了後のラヌスネに関して全ての計測点間の傾斜角を計算し、接触するアスペリティに作用する不連続面に垂直方向の応力Pが一軸圧縮張さと等しくなるように、せん断変位0.5×n mmにおけるダイレクション角θおよびせん断応力を決定する。ただし、接触アスペリティの数nに関しては、全てのアスペリティ（計測点間）においてWeight(W)を計算し、それを総和することにより計算する。

計測点(k−1, j)と計測点(k, j)の間におけるWeight(W)は、計測点(k−1, j)において上部供試体と下部供試体が接触する場合をしない場合に場合分けし、以下の手順で計算する。

まず、計測点(k−1, j)において上部供試体と下部供試体が接触する場合、下部供試体の傾きが仮定したダイレクション角θより大きい場合、接触すると考えW = 1とする。小さい場合は、接触しないと考え、W = 0とする。

つきに、計測点(k−1, j)において上部供試体と下部供試体が接触しない場合は、Fig.17に示すように左側の計測点における上部供試体のYn−1 (k−1, j)から傾きθの直線を引き、下部供試体との交点をTransit Contact Point (TCP)とする。TCPがXn−1 (k−1, j)とXn (k, j)の間にあるとき、TCPとXn (k, j)の間がせん断に寄与すると考え、
ここで、\(v_n \): せん断変位 0.5 mm におけるダイレーション
\(\theta_n \): ステップ \(n \) で決定したダイレーション角
また、各ステップ終了後において、その時点の標高データが出力されるため、せん断によるラフネスの変化を把握することができる。

5. モデルを用いた一面せん断挙動の推定

(1) 一面せん断試験のシミュレーション
本報で提案した一面せん断挙動の解析モデルを用いて、一面せん断試験のシミュレーションを行い解析結果と実験結果を比較した。Fig.18 は、一軸圧縮強さ \(\sigma_c = 22.44 \) MPa、ラフネス A の場合の結果である。また、Fig.19 は、一軸圧縮強さ \(\sigma_c = 43.29 \) MPa、ラフネス B の場合の結果である。

せん断変位-せん断応力関係の解析結果に関しては、せん断変位の増加とともにピークから軟化、残留変位へ移行する様相が表現できている。せん断変位-ダイレーション関係の解析結果に関しては、せん断変位の増加とともにダイレーションは増加する。また、ダイレーションの増加は、せん断の進行とともに減少する傾向が表現できている。Fig.18 のように材料強度が小さい場合、実験結果と解析結果は良く一致し、精度良くシミュレーションができている。ところが、Fig.19 のように、材料強度の大きい（一軸圧縮強さ \(\sigma_c = 43.29 \) MPa）場合、実験値のせん断応力が解析結果より小さい値を示し、残留変形では、実験値の残留強度が、\(\sigma_c \times \tan \theta_b \) より小さい値を示す。これに関しては、材料強度が大きい場合、せん断によるアスペリティの削えによって生じた「削れ粉」がテクニクの役目をし、せん断応力を低下させていることが原因であると考えるが、詳細は本文 (4) で考察を行う。

以上のように、本研究で用いた解析モデルは岩盤不連続面のせん断挙動の特性をとらえており、せん断挙動の推定に有用である。

(2) 実験結果と解析結果の比較
(1) で行ったシミュレーションのうち、せん断強度に着目し、実験結果と解析結果を比較した。
Fig.20 は、本研究で行った 108 パターンの自然のラフネスを持つ不連続面の一面せん断試験に関して、本解析モデルを用いたシミュレーションから予測したせん断強度の推定値と実験値を比較したものである。
Fig.18 Comparison of experimental results and analyses ($\sigma_s = 22.44$ MPa, Roughness A)

Fig.19 Comparison of experimental results and analyses ($\sigma_s = 43.29$ MPa, Roughness B)

Fig.20より、せん断強度の推定値と実験値がよく一致しており、精度良く推定できているものと考えられる。

供試体サイズの異なる実験に対しての本解析の適用を行うため、3と同様、坂上14、藤崎15の実験結果をもとに解析の適用を行った。Fig.21にせん断強度の推定値と実験値の比較を示す。推定値と実験値が精度よく一致を示していることが確認できる。これにより、実験条件の異なるせん断試験に対して、本解析モデルが適用可能であると考える。また、Figs.10, 11とFigs.20, 21を比較すると、明らかに本解析モデルによる推定値がJRC値を用いたBartonのせん断強度式より精度が高いことが確認できる。

(3) せん断によるラフネスの削れの予測
本研究で提案した一面せん断試験の解析モデルでは、各ステップ終了後の標高（ラフネス）データが出力できる。そこで、シミュレーション後に出力されるラフネスデータが、実際のせん断後のラフネスを表現できているかを検討するために、実験後のラフネス計測結果と比較する。その上で、本解析モデルを用いてラフネスの削れの把握を検討する。

本研究では、同じ垂直拘束圧、材料強度およびラフネスの条件下で、最終せん断変位を、ピーク値、2mm、12mmの3種類に設定して一面せん断試験を行っている。そこで、せん断前後のラフネスを比較し、正の傾斜角ψ以上（高さに換算すると0.0437mmに相当）減少した場所を「削られた」と判定することにより、3種類の最終せん断変位（ピーク、2mm、12mm）について削られた場所を図示した。
Fig.20 Comparison of peak shear strengths (Specimen size: 120 mm × 120 mm)

Fig.21 Comparison of peak shear strengths (Specimen size: 42 mm × 42 mm)

の3種類に設定し、一面せん断試験と同じ条件下でシミュレーションを行い、出力された解析後のラフネスデータを用いて「削れた場所」を図示した。そして、一面せん断試験より得られる「削れた場所」と本解析モデルを用いて推定した「削れた場所」を3つのパターン（ピーク、2 mm、12 mm）について比較した。一軸圧縮強さσ1 = 35.14 MPa、垂直拘束圧σ3 = 1.0 MPa、ラフネスCの結果をFig.22に示す。解析結果に注目すると、せん断変位の増加とともにラフネスが削れていく様子が表現できている。また、実験結果と解析結果を比較するとき、解析結果で削れた場所は、実験結果でも削れている、以上より、本解析モデルが、ラフネスの削れの進行および削れの位置を表現できていることが確認できる。

Fig.22 Variation in rock joint surface roughness before and after direct shear tests (σ1 = 35.14 MPa, σ3 = 1.0 MPa, Roughness C)

(4) 考察

残留状態では、基礎面摩擦角による滑り摩擦に収束し、せん断応力がσ3tanφである。ところが、先に述べたように、材料強度が大きい供試体（特に一軸圧縮強さσ1 = 43.29 MPaの場合）において、残留状態におけるせん断応力が、滑らかな面の一面せん断試験で発現するせん断応力（σ1 tanφ）よりも小さくなっている。

本研究で提案した解析モデルは、ダイレーション角θとせん断応力τの間には、式(13)に示す Patonの式が成り立つとしている。ここで、式(13)のσ1に実験で載荷した垂直拘束圧、σ3およびθに実験結果より求まるせん断応力、ダイレーション角を代入し、逆解析的に基礎面摩擦角の計算を行った。Fig.23に、一軸圧縮強さσ1 = 43.29 MPa、ラフネスCの場合の結果を示す。

Fig.24は、全ての実験に関して逆解析的に基礎面摩擦角を計算し、材料強度ごとにその平均をとることにより、せん断変位と逆解析的に求めた基礎摩擦角の関係を示したものである。Fig.24より、材料強度の大小い軸圧縮強さσ1 = 22.44 MPaの場合、基礎摩擦角はおよそ35°付近で一定値をとる。一方、
材料強度の大きい一軸圧縮強さ \(\sigma_c = 43.29 \) MPa の場合、せん断開始直後から基礎摩擦角は急激に減少し、せん断変位 2 mm 以下では 20° 付近に収束する。そして、一軸圧縮強さ \(\sigma_c = 35.14 \) MPa の場合は、両者の中間の結果を示し、30° 付近に収束する。

材料強度の大きい場合に基礎摩擦角が減少する理由として、基礎摩擦角は一定ではなく、接触部分に作用する応力の増加に伴い減少することと、ラフネスが削れることによって生じる「削れ粉」がベアリングの役目を果たし、せん断応力を低下させていることの 2 つの仮説を立てた。

まず、接触部分に作用する応力と基礎摩擦角の関係を明確にするため、一軸圧縮強さ \(\sigma_c = 43.29 \) MPa の場合に関して、垂直拘束圧と基礎摩擦角の関係をプロットした。ここでは、2 で行った滑らかな不連続面の一面せん断試験の結果を用いているが、垂直拘束圧 \(\sigma_c = 4.0 \) MPa、8.0 MPa および 16.0 MPa の場合についても同条件で実験を行い、結果を補足している。結果を Fig.25 に示す。この結果、垂直拘束圧が増加しても基礎摩擦角の変化が確認できなかった。したがって、接触部分に作用する応力が増加しても、基礎摩擦角は一定である。

つぎに、2 つの滑らかな面に介在物がある場合について基礎摩擦角を比較した。ここでは、接触面積が明確である滑らかな不連続面に関し、TiII 試験機を用いて基礎摩擦角を求めた。介在物として、供試体の材料として用いたケイ砂 6 号 0.10 g またはカオリナ 0.10 g 用いた。結果を Table 3 に示す。これより、介在物の存在が、基礎摩擦角を減少させ、また、介在物の種類が、基礎摩擦角に影響を与えることが確認できた。本研究では、材料強度の大きい場合、ラフネスが削ることによって生じた「削れ粉」が、ベアリングの役目を果たし、せん断応力を低下させていると考える。そこで、削れ粉がせん断挙動に及ぼす影響を把握し、この影響をどのように本解析モデルに組み入れるかの考察を加える。

Fig.24 より、一軸圧縮強さ \(\sigma_c = 22.44 \) MPa の場合、逆解析的に計算した基礎摩擦角が滑らかな面の一面せん断試験より求めた基礎摩擦角と等しく、かつ、せん断変位が増加しても値が一定であるため、削れ粉のベアリング効果を考慮しなくてもせん断応力が正しく評価できる。一方で、一軸圧縮強さ \(\sigma_c = 43.29 \) MPa の場合には、せん断開始後に基礎摩擦角は低下し、滑らかな面の一面せん断試験結果より求められる基礎摩擦角より小さい値に収束する。したがって、削れ粉の影響を考慮しなければならない。せん断応力の推定値が実験値より大きくなる。

以上より、本解析モデルでは、基礎摩擦角の値を調節することにより、削れ粉の影響を考慮すること
6. まとめ

本研究では、ピークから軟化、残留状態に至るまでの、岩盤不連続面の一面せん断挙動をモデル化した。そして、このモデルを用いて一面せん断試験のシミュレーションを行い、その妥当性と問題点について考察を行った。以下に、本研究で得られた知見をまとめる。

せん断挙動を支配するパラメータである垂直拘束圧、材料強度、基礎摩擦角、不連続面の表面形状を用いて、一面せん断挙動の解析モデルを構築した。この解析モデルは、ピークから軟化、残留状態に至るまでの垂直拘束圧一定条件下のせん断挙動を表現できる。

本研究で提案した解析モデルを用いて一面せん断試験のシミュレーションを行い、実験結果と比較することにより、モデルの妥当性を示した。さらに、本解析モデルを用いることにより、せん断中のラフネスの変化を表現することが可能となった。

材料強度が大きい場合、ピーク以降において、本解析モデルを用いて行ったせん断応力の予測値より実験値が小さくなった。この原因として、ラフネスの削れによって生じた削れ粉が、ペアリングの役目をしてせん断応力を低下させていると考える。本解析モデルでは、削れ粉のペアリング効果を基準摩擦角の変化として組み込むことにより、削れ粉の影響が考慮できると考える。

また、本研究の問題点および今後の課題を以下に述べる。

現段階では、削れ粉がせん断挙動に及ぼす影響を十分に把握していない。本解析モデルでは、削れ粉のペアリング効果を基準摩擦角の変化として組み込むため、削れ粉が基準摩擦角に及ぼす影響を、実験および力学的考察から定量化する必要がある。

Fig.26 Results of the simulation in consideration of the effects of the bearing (σc = 43.29 MPa, σf = 1.0 MPa)

本研究で検討した、断面が 120×120 mm および42×42 mm の不連続面においては、計測間隔を 0.5 mm にすれば、精度良くせん断挙動を推定することが可能である。しかし、サイズの異なる不連続面における解析モデルを適用する際には、計測点間隔に関して検討し、アスペリティのサイズを無次元化する必要がある。

以上のように、本解析モデルを用いることにより、垂直拘束圧一定の条件下における岩盤不連続面の強度・変形特性が把握できる。今後は、垂直拘束圧可変の条件下におけるあらゆる応力状態において、本解析モデルの適用性の検討を要する。その上で、本解析モデルを FEM, DEM をはじめとする数値解析
THE MODELING OF THE SHEAR BEHAVIOR OF ROCK JOINTS IN CONSIDERATION OF THE MATERIAL FRICTION AND THE JOINT SURFACE ROUGHNESS

Kiyoshi KISHIDA and Kiwamu TSUNO

It is difficult to effectively grasp the mechanical behavior of rock joints, since it depends on certain factors, such as the confining conditions, the material strength, the material friction, and the joint surface roughness. In this paper, direct shear tests on rock joints are carried out and the mechanical behavior of the rock joints is discussed in consideration of the normal confining condition, the material strength, the material friction angle, and the joint surface roughness. Then, a model for shear behavior is proposed, and the shear behavior of rock joints is estimated using the model. In comparison to the simulation in the experimental results, this model can reasonably present the shear behavior of rock joints. Moreover, it is able to anticipate changes in joint roughness during the shear process.

(2000. 8. 18 受付)