地震に伴う災害リスク評価に基づく斜面補強の戦略的立案方法に関する一提案

大津宏康1・大西有三2・水谷守3・伊藤正純4

1 正会員 工博 京都大学大学院工学研究科土木システム工学専攻 助教授
（〒606-8501 京都府京都市左京区吉田本町）
2 正会員 工博 Ph.D 京都大学大学院工学研究科土木システム工学専攻 教授
（〒606-8501 京都府京都市左京区吉田本町）
3 正会員 工修 正会員 モダンエンジニアリングアンドデザイン
（〒162-0828 東京都新宿区袋町25-30-207）
4 正会員 工修 パシフィックコンサルタンツ大阪本社
（〒532-0011 大阪市淀川区西中島4-3-24）

本研究の目的は、地震に伴う災害リスク評価に基づく斜面補強を戦略的に立案する方法を提案するものです。具体的な事例としては、全国各都市での高速道路に隣接する斜面を対象とし、各地域での地震動特性および各斜面道路の利用状況に応じた被災度を基に、コストスピットへのリスク評価を実施した。そして、その算定されたリスクに基づく費用節正解析により、同じ形状の斜面であっても、その補強対策は地盤動の地域性および各斜面道路での損失の大きさの相違によって異なることが定量的に表現可能となることを示した。これららの結果より、本研究で提案する手法は、合理的に斜面の補強策を立案する上で極めて有効であることを示した。

Key Words：risk, slope stability, stochastic finite element analysis, cost-benefit-analysis

1. はじめに

急峻な地形からなり野々畑の少ない日本の国士では、斜面の安定は、長老からの伝承に、「海は何し、山何れ離れて暮らす」という言葉があるように、古くから身近な工学的問題であったといえる。すなわち、上記の伝承に示されるように、台風・地震による斜面崩壊は、津波や洪水と同様に重大な災害として認識されてきた。そして、現状でも台風・集中豪雨による土石流・地滑り、地震による斜面崩壊および、急傾斜地での落石事故等は、依然として重大な自然の脅威であると位置付けられる。

このように斜面は一層崩壊すると、重大な被害を引き起こすことが知られており、具体的には、斜面の崩壊に伴う被害とは、住宅地域での人身・家屋に関する被害だけでなく、斜面を含む施設の機能（性能）喪失に関連する。例えば、高速道路や鉄道等に隣接する斜面の崩壊は、事業主には料金収入の停止による損失、一方利用者にはサービスの中斷に伴う迂回による損失や営業機会の損失という様々な被害を引き起こす。このため、合理的に斜面の安定性を論じる上では、その機能が斜面崩壊の形態・規模によりどのように損なわれるかを関連づけることが重要となる。したがって、昨今施設の性能に着目した性能設計（Performance Based Design）の概念が注目されつつあるように、本来斜面の安定性を考える上では、対象とする斜面の機能（性能）を定義し、その機能が喪失すればどのような損失が生じるかを考慮することが必要である。

一般に、斜面を管理する事業主体者は、高速道路に代表されるように、施設内に多くの斜面を保全しなければならない。その場合には、どの斜面からどの程度の補強工事を実施するかを判断する必要がある。さらには、グランドアンカー等による斜面補強を立案するのには、機能喪失に伴う損失を抑制するための投資と捉えられるため、最適な斜面補強を実施するためには、いわゆる投資対効果を考慮することが必要となる。特に、これまでの取引上の経済状況での建設投資が潤沢であった時代から、昨今の成長経済の下で建設投資の妥当性が問われる時代には、投資対効果の議論は極めて重要である。また、このような社会経済学的な要素を考慮した設計の取り組みは、昨年新たなインフラ施設建設の契約方式として注目されていた PFI（Private Finance Initiative）を導入する上で不可欠な要素になるものと推察される。

こうした課題に対処するため、筆者らは高速道路に隣接する斜面の補強策を対象とし、斜面崩壊
に伴い発生する損失の評価に基づくリスク管理手法を提案してき、このリスク管理手法での斜面のリスク評価では、リスクを Benjami and Coodi に基づく研究の分析において、代替価を基準に変動する傾向を示すものと考えられる。上記の定義の下で算定される斜面の災害リスクは、災害として地域を想定した場合には、地震等の地域性および、斜面の重要度な

斜面崩壊に伴う損失の関数として評価される。その結果として、斜面をどのように補強するかという意

向決定問題において、従来の安全率を緩和とする方法に代わりリスクという指標に基づく検討方法を適用す

ることで、投資対効果を考慮した合理的な対策を立案

できる可能性があることを明らかにした。

本研究では、上記の知見を明確にするための応用例として全国主要都市での高速道路に近接する斜面を

想定し、地域内の地域特性および、各高速道路の利用状況に応じた被害推定に基づくリスク評価結果を

示すと共に、投資対効果を考慮し斜面の補強策を合理的に立案する方法について示すものとする。

2. 斜面の地震リスク評価の基本概念

本研究では、斜面の補強対策を合理的に立案する

一環として斜面の災害リスクの評価を行うが、その検

討対象は複数の斜面によって定的な地域一帯での災害で

なく、高速道路に近接する個別斜面が引き起こすもの

とする。また、斜面の補強方法については、グラン

ドアンカー工法に限定する。

前述のよう、本研究で取り扱うリスクという指

標は、次式の通りに定義する。

\[R = P \times L \] (1)

ここに、R はリスク、P は斜面の破壊確率、L は

斜面崩壊に伴い発生する損失である。

この定義式に示すように、リスクは破壊に伴う損

失の期待値と表現されることになり、これによって破

壊に対する危険性をより明確化した場合の被害規模とい

ったものを合わせて考えることが可能になる。

上記の前提条件下の下で、本研究で示す斜面のリス

ク評価を行う手順は、以下のように要約される。

1）県内各地域における地震動レベル

a とその地

震動レベルを上回る地震動が発生する確率（年間

超過確率）を規定する地震ハザード曲線を設定す

れる。

2）様々な地震動レベル α に対する斜面の条件付き

破壊確率をモンテカルロシミュレーションにより

算定する。

3）地震動レベル α に対する年超過確率と条件付き

破壊確率の情報を利用させてくことで年間破壊確

率を算定する。

4）式（1）に基づき年間破壊確率と斜面崩壊に伴

う損失の関数として年間リスクを算定する。

5）年間リスクに基づき斜面の耐用年数に相当する

累積リスクを算定する。

6）2）～5）の手順を様々なグランドアンカーの

導入力に対して繰り返す。

7）上記の手順で算定される年間リスクに基づき

最適な斜面の補強対策（最適アンカー導入力）を

決定する。具体的には対策工としてグランドアン

カーの打設によるリスク低減率が算定されれば、

その低減率は対策工を施工することによる便益と

みなされるため、いわゆる費用便益分析（Cost-

Benefit-Analysis）が可能となる。

上記の1）～7）の検討手順を、地震ハザード情報

の異なる地域ごとに実施することで、地震動の地域

特性を考慮した最適な斜面の補強対策（最適アンカー

導入力）の立案が可能となる。

なお、上記の検討手順については、参考文献 3）に

詳細を示しているため、ここでは累積リスクの算定方

法の概要と、損失の算定方法についてのみ示すものと

する。

（1）斜面の累積リスクの算定

本研究で採用する地震ハザード曲線は、Cornell により

による提案以来 Der-Kiureghian and Ang 7）等の研究によ

って改良を加えられたものであり、確率論的地震危険度

解析の代表的な方法である。

その基本的な考え方は、地震強度 Y が 1 年間に少

なくとも 1 回以上 y を越える確率 \(P(y) \) を次式のように

ポアソン型時系列モデルで表すものである。

\[P(y) = 1 - \exp \left\{ - \sum_k w_k \right\} \] (2)

ここで、\(w_k (p_0) \) は地震活動域 k の地震で注目地点

に y(p0) 以上の地震動をもたらす地震の年発生率であり,

次式のように表される。

\[w_k (p_0) = v_k \cdot \sum_{i,j} R_i (Y > y(p_0)) m_i d_j \cdot P_k (m_i) \cdot R_k (d_j) \] (3)

上式で、v_k は地震活動域 k における地震の年発生
数である。\(P_t(Y\, (\rho_t), m, d) \) は \(k \) で発生するマグニチュードが \(m \)、距離が \(d \) の地震により \(Y \) の閾値を超える確率であり、これが地震動の距離減衰モデルとなる。また、\(P_t(m) \), \(P_t (d) \) はそれぞれ、地盤活動域 \(k \) で発生する地盤のマグニチュード \(M \), 距離 \(D \) の確率関数である。

本研究では、このハザード曲線からある想定地震動を決定するというではなく、あらゆる地震動の発生を想定した上で統合被害リスクを評価するという立場をとる。具体的には次式に示すように、ある地震動 \(\alpha \) を想定したときの斜面崩壊確率 \(P_t(\alpha) \) と、その想定地震動の年発生超過確率 \(P(\alpha) \) を用いて合算することによって、比較的頻繁に発生する小規模な地盤から極めて稀にしか発生しない大地震までを、一年当たりにいたした形で組み入れる。

\[
p_a = \int_0^\infty P_t(\alpha) \frac{dP(\alpha)}{d\alpha} \, d\alpha
\]

（4）

上式に示すように想定地震動ごとに得られる条件付き破壊確率 \(P_t(\alpha) \) に、その地震動が一年間に発生する可能性を重みづけた形で合算することにより、年間破壊確率 \(p_a \) として求めるものである。

この方法では、従来の設計法での地震動のように具体的な想定地震を考えるわけではなく、小規模な地震から大規模なものまであらゆる地震動に伴い斜面が破壊する可能性を考慮することになる。これは、無数に存在する斜面に対して兵庫県南部地震のような大地震に備えた設計を行うことが経済的に不可能であることを考えると、より効果的な投資を目的とする検討を行う上で有効である。また、このように、斜面の破壊確率として年間破壊確率を用いることで、斜面の耐用年数を考慮することが可能となる。すなわち、供用開始から \(i \) 年目で斜面が破壊する可能性を \(p_t \) とすると、耐用年数 \(n \) 年間での累積リスクは、次式に示すように算定される。

\[
R^{(n)} = \sum_{i=1}^{n} \left[p_i \times L \times \left(\frac{1}{1+\rho} \right)^{i-1} \right]
\]

\[
= \sum_{i=1}^{n} \left[p_a (1-p_a)^{i-1} \times L \times \left(\frac{1}{1+\rho} \right)^{i-1} \right] \]

（5）

ここに、\(R^{(n)} \) は供用期間 \(n \) 年中の累積リスクで、\(p_a \) は斜面の年間破壊確率、\(\rho \) は社会的割引率、\(L \) は斜面崩壊に伴い発生する損失である。

なお、社会的割引率 \(\rho \) は、累積リスクを算定する際常に将来発生するリスクを現在価値に直すための補正率であり、日本では一般に 0.04 に設定される。

（２）斜面破壊に伴う損失額の評価

本研究では、複数の斜面による地域一帯での損失ではなく、高速道路に近接した個別斜面が引き起こす災害として、以下記した損失を考慮するものとする。

（a）堆積土砂の搬出および崩壊斜面の復旧費用 \(L_1 \)
（b）道路開閉に伴う高速道路の料金収入の減少 \(L_2 \)
（c）迂回にともなう時間・走行費用損失 \(L_3 \)
（d）通行車両および搭乗者に対する損害 \(L_4 \)

これらの損失額について、これまで筆者等は具体的な算定を行わず、発生する合計損失が崩壊体積に比例するものとしてパラメータスタディを行ってきた。しかし、本検討では以下に示すような方法で具体的に金銭価値の算定をするものとする。

（a）堆積土砂の搬出および崩壊斜面の復旧費用 \(L_1 \)
搬出費用、復旧費用 \(L_1 \) は、次式の通り崩壊土砂体積に比例するとする。

\[
L_1 = L_{1,0} \cdot \frac{V}{V_0}
\]

（6）

ここに、\(L_{1,0} \) は崩壊土砂基準体積あたりの搬出・修復費用（円）、\(V_0 \) は崩壊土砂基準体積（m³）、\(V \) は崩壊土砂体積（m³）である。

（b）道路閉鎖に伴う高速道路料金収入の減少 \(L_2 \)
本検討では、高速道路の区間をインターチェンジで区切って考え、全ての区間に迂回路が存在すると仮定する。したがって、斜面崩壊時には、崩壊斜面の存する期間のみが閉鎖されることを仮定し、1 区間あたりの料金収入額の損失を考えるものとする。この料金収入の減少額は対象区間の日料金収入額と通行止め日数の積で表されるものである。料金収入の減少額を考える場合には、対象とする斜面が存在する区間の区間料金収入を用いることになる。ここでは利用するデータの制約により、1 区間を 1 日閉鎖する場合の損失額を、高速道路全体の日料金収入を区間数で除した額とする。また、通行止め日数は崩壊土砂体積を基にした比例計算により算定する。

\[
L_2 = \frac{1}{n_{e}} \left(n_0 \times \frac{V}{V_0} \right)
\]

（7）

ここに、\(I \) は一日当たりの総料金収入（円/日）、\(n_e \)
<table>
<thead>
<tr>
<th></th>
<th>死亡</th>
<th>重傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>総務庁資料</td>
<td>31,533</td>
<td>9,374</td>
</tr>
<tr>
<td>（社）日本損害保険協会（平成7年度）</td>
<td>29,430</td>
<td>10,390</td>
</tr>
<tr>
<td>ドイツEWS（1997年版）</td>
<td>116,800</td>
<td>10,390</td>
</tr>
<tr>
<td>イギリスCOVA1995</td>
<td>231,000</td>
<td>5,110</td>
</tr>
<tr>
<td>アメリカ（1990）</td>
<td>87,800</td>
<td>2,406</td>
</tr>
<tr>
<td>オーストラリア（1992）</td>
<td>55,810</td>
<td>7,360</td>
</tr>
<tr>
<td>ニュージーランド</td>
<td>240,000</td>
<td>8,400</td>
</tr>
</tbody>
</table>

単位（千円）

はインターエンジン数。n_0 は基準通行止め日数、V_0 は基準崩壊砂体積（m3）、V は崩壊砂体積（m3）である。

(c) 迅速に伴う時間・走行費用損失 L_3

迅速に伴って生じる走行時間および走行費用の増加についても、同様に金銭的価値を考える必要がある。このような考え方は、道路計画や事業実施の妥当性を判断するための手法として参考資料®や太田®の研究でまとめられており、その方法を引用するものとする。

これにより、時間費用損失 L_3^1、走行費用損失 L_3^2 は、次式のように表される。

$$L_3 = n \times \sum_m (A_m \times N_m \times \Delta T)$$ (8)

$$\Delta T = \frac{l^L}{u^L} - \frac{l^H}{u^H}$$ (9)

$$L_3^1 = n \times \sum_m N_m(B_m^L \times l^L - B_m^H \times l^H)$$ (10)

ここで、

n：通行止め日数

A_m：車種mの時間価値原単位（円/台・分）

N_m：車種mの日通行台数（台・日）

ΔT：損失時間（分）

l^L, l^H：迂回路および高速道路の走行距離（km）

u^L, u^H：迂回路および高速道路の走行速度（km/分）

B_m^L：車種mの迂回路における走行費用原単位（円/台・km）

B_m^H：車種mの高速道路における走行費用原単位（円/台・km）

したがって、迂回損失 L_3 は、次式のように表される。

$$L_3 = L_3^1 + L_3^2$$ (11)

ただし、迂回損失を考える場合には、NOx 排出に伴う大気汚染や交通廃棄物による迂回地域への騒音被害なども考えられるが、本研究においては、これらの環境費用の算定は行っていない。

(d) 通行車両および搭乗者に対する損害 L_4

斜面のリスクマネジメントとして、通行車両への損害を算定しなければならないとき、常に中的な話題として人命の価値が取り上げられる。確かに人命の価値の算定は非常に困難であり、我が国においても人命の価値のコンセンサスを得ることは不可能のように思わされる。しかし実際に人命の経済的価値を算定する方法はいくつか存在する。例えば、産生所得を基準とした算定方法、生命保険に基づく方法、裁判例に基づく方法などである。このような算定方法を自然災害を対象とした場合に直接用いることは問題があるが、林等®が示すように人命の価値を誰が死亡するか分からない場合（事前）に算定するのかも、誰かが死亡した後、あるいは誰が死亡するかが分かった場合（事後）に算定するのかも、全く性格の異なる問題として扱うとすれば国際的な対象として考えよう。すなわち、希少現象として生じる人命の損失について仮想的に議論する際の人命の価値と、人命の損失という具体的・個別の事実に直面した場合における人命の価値の問題は全く異質な問題と考えて、その評価方法を追求することは意味がある。後者具体的・個別的な人命の損失に対する補償の問題は本来司法を通じて議論する問題であり、道路交通の安全性と経済的評価を議論する場合には、前者の立場から人命の価値の算定をすることとなる。

本研究でも、この前者の立場に立って人命の価値の評価を行うこととする。参考資料®によれば交通事故での戦傷者一人当たりの人身損失額が表−1に示すように設定されている。交通事故であれば、これらの傷害に対してその発生期待値を考えることになるが、本研究のように自然災害を想定するときは死亡の可能性が極めて高いと考え、次のように通行車両への損失額 L_4 を算定する。
ここで，\(n_i \) は被災車両数，\(L_{v,c} \) は1件当たりの物的損失額，\(n_p \) は平均乗車人数，\(L_{t,p} \) は死亡損失額である。
したがって，損失 \(L \) は以上の4つの損失を足し合わせることにより算定される。

3. 解析事例（斜面の地震時リスク評価）

本章では，地震を外力要因（ハザード）として発生する斜面災害を考え，その斜面崩壊リスクを評価する事例を示す。モデルとする斜面の形状は，図-1（a）に示す斜面高20m，斜面勾配が約40°（1:2勾配）とし，円弧型の仮想的すぺリ面を持つものとする。図-1（b）は損失額を算定する際に崩壊土砂体積を設定する必要があるため，便宜的に奥行き方向の形状を想定したものである。同図に示すように，奥行き方向の形状を仮定して体積を求めると，崩壊土砂の体積は2,500 m³となる。

また，材料物性は表-2に示す通りで，各パラメータを正規確率変数としてモデル化する。

表-2 材料物性値

<table>
<thead>
<tr>
<th>材料物性</th>
<th>平均値</th>
<th>COV</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>弾性係数E</td>
<td>100 MN/m²</td>
<td>0.1</td>
<td>正規分布</td>
</tr>
<tr>
<td>ポアソン比μ</td>
<td>0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>密度γ</td>
<td>23 kN/m³</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>粘着力c</td>
<td>10 kN/m²</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>内部摩擦角φ</td>
<td>35°</td>
<td>0.077</td>
<td></td>
</tr>
</tbody>
</table>

（1）地震ハザード曲線
石川10）では，「確率論的地震危険度解析」の拡張問題として「想定地震」の諸元を決定するという試みを行っている。この中で，「確率論的地震危険度解析」に基づく地震ハザード曲線を全国主要8都市（札幌，仙台，東京，名古屋，大阪，広島，高松，福岡）に対して求めており，それによって発生地震動の特性を基盤加速度とその年発生確率の関係として地域ごとに評価している。

本研究では，上記の研究成果の内，4都市（札幌，仙台，東京，名古屋）での地震ハザード曲線の計算結果を引用する。ただし，この地震ハザード曲線は発生地震の年超過確率を最大基盤加速度（gal）によって規定しているため，本研究に適用できるように最大基盤加速度から水平震度へ変換することが必要である。このため，本研究では野川11）によって提案されている評価式を基にして，最大基盤加速度を水平震度に変換する手法を適用する。なお，この評価式を適用するために，着地面での地震動の幅揺が非常に小さいことを仮定していることに留意する必要がある。

上記の仮定条件の下で，最大基盤加速度 \(\alpha_{max} \) と水平震度 \(k_h \) の関係は，次式のように表される。

\[
k_h = \frac{\alpha_{max}}{g} = 200 \text{gal} \quad (13)
\]

\[
k_h = \frac{1}{3} \left(\frac{\alpha_{max}}{g} \right)^{\frac{1}{2}} \quad \alpha_{max} = 200 \text{gal}
\]

このように，本研究で用いる水平震度 \(k_h \) で規定された地震ハザード曲線は図-2のように設定される。
（2）斜面の条件付き破壊確率

本事例での斜面の条件付き破壊確率は、円弧すべり法のような極限平衡理論ではなく、2次元有限要素解析手法を用いたモンテカルロシミュレーションによる算定する。具体的には、斜面の破壊は仮想的なすべり面上の応力値から、モールカーロンの破壊基準を用いて判定するものとし、その方法を以下に説明する。

破壊有限要素法を用いて、斜面の破壊確率を算定する場合、破壊の判定に用いる性能関数 \(Q_i(x_0, y_0) \) はすべり面上に作用する滑動モーメント \(M(x_0, y_0) \) とせん断強度による抵抗モーメント \(R(x_0, y_0) \) によって、次式で定義される。

\[
Q_i(x_0, y_0) = R(x_0, y_0) - M(x_0, y_0)
\]

\[= r^2 f_0^0 (\tau_{yj} - \tau) d \theta \]

\[= r^2 f_0^0 \tau_{yj} d \theta \]

ここに、\((x_0, y_0) \) は図-3に示すようにすべり円の中心座標を表し、\(r \) はすべり円の半径である。また、\(Q_i \) はすべり面上の要素に対する性能関数で次式のように表せる。

\[
Q_i = \tau_{yj} - \tau = e + \sigma \cdot \tan \phi - \tau
\]

この性能関数は、層理面でのせん断破壊に対する性能関数として使用的に良好に用いられるものである。

したがって、斜面の条件付き破壊確率は、表-2に示した強度定数（\(c, \phi \)）に代表される入力定数を破壊変数とし、その各破壊変数毎に乱数発生させて式（14）の性能関数を計算し、式（14）が負となる回数を全試行回数で除した値として求める。

そこで、全試行回数を500回とした条件付き破壊確率の結果を図-4に示す。図には、対策工としてグラウンドアンカーを導入した場合の条件付き破壊確率も同時に示しており、無対策時の結果はアンカー導入力が0.0 MN/mの場合に相当する。

（3）斜面の年間破壊確率および崩壊時の損失

（2）で求めた破壊確率は、作用する水平変位を固定した状態で求まる条件付き破壊確率であった。しかし、このような地震動の発生自体が不確定現象であり、対象とする地域によってもその性格は異なる。そこで、
この発生地震動自体の不確定性を考慮するために、
(1) で述べた 4 都市での地震ハザード曲線を用いる。
すなわち、条件付き破壊確率から式 (4) にしたがっ
て年間破壊確率を算定する。
こうして求めた年間破壊確率を用いて年間リスク
を算定する。年間リスクを求めるためには、斜面崩
壊に伴う損失額を算定しなければならない。この損失
の算定結果を以下に示す。

(a) 撤去・修復費用 L1
撤去・修復費用 L1 は、一般的な積算基準より式
(6) に \(V_0 = 2.5 \text{m}^3, L_{10} = 34.08 \text{ 千円} \) で
代入することで、\(L_1 = 2.5 \text{m}^3 \) の時の撤去費用
4,080 千円と簡単な修復費 30,000 千円とする。

(b) 道路閉鎖に伴う料金収入損失 L2
道路閉鎖に伴う料金収入損失 L2 を求めるためには、
地図ハザード曲線を用いる 4 都市について、札幌自動
車道（札幌）、東北自動車道（仙台）、東名高速道路
（東京）、名神高速道路（名古屋）を想定し、それぞ
れの都市に対する式 (7) に基づき \(V_0 = 2.5 \text{m}^3 \) の崩壊
規模で各道路を h = 30 日破壊時間に仮定して算定
する。その算定結果を表 - 3 に示す。

(c) 返還に伴う時間・走行費用損失 L3
返還に伴う時間・走行費用損失 L3 は、(b) の道路
閉鎖に伴う料金収入損失と同様に、式 (8) ～式
(11) に基づい 4 都市に対応する地域毎に算定する。
その算定結果を表 - 4 に示す。同表に示すように、返
還損失額が最も大きいのは名古屋であるが、これは一
区間当たりの平均交通量が他の道路に比べて多く、時
間損失が最大になることによる。時間平均距離が長い
東京では走行費用損失が最大であるが、時間損失額が
小さいために、合計した返還損失額は結果的に名古
屋よりも小さくなる。なお、ここでは、返還距離を
各高速道路の区間平均距離に 5km 足した長さとした。
図一5 50年累積リスクの比較（無対策）

(d) 通行車両および搭乗者への損害 L_4
通行車両および搭乗者への損害 L_4 は、表一1の総務庁資料を用いて算定する。ここで、被災車両数を2台、物的損失額を1件当たり447千円、平均乗車人数を1.5人とすると、

$$L_4 = 2 \times (447,000 + 1.5 \times 31,533,000) = 95,493,000$$

と算定される。

（4）累積リスク
斜面のような土木構造物は供用期間が比較的長いと考えられるため、一年間当たりのリスクで議論するよりも、耐用年数を考えた累積リスクを採用する方がより現実的である。

そこで、式（5）に基づき累積リスクを算定する。例えば、斜面の耐用年数を50年と想定した時の、無対策での累積リスクは、各都市群に図一5に示すように算定される。こうして得られた無対策でのリスクを基準値として、最適な斜面補強策を立案することは、グラウンドアンカーによるリスク軽減効果と、そのグラウンドアンカーの打設に伴う建設コストを比較する問題となる。

4. 費用便益分析（CBA）に基づく最適アンカー導入力の設定

本研究で提案する費用対効果に基づき斜面の補強対策の立案する方法では、便益とは対策工を施すことによって低減されるリスクとみなす。また、費用は本来維持補修までを考慮する時には将来必要な費用とし

で現在価値に直して考える必要があるが、ここでは初期投資を含むアンカー設置コストのみを対象とする。したがって、本研究では、3. で示したリスクの算定結果を用いて、アンカーによるリスク低減量とアンカー打設に必要な建設コストに基づき、最適解を求めるための費用便益分析を行う。

（1）グラウンドアンカーの建設コスト

図一4に示した場合付破壊確率結果は、2次元FEMを用いたモンテカルロシミュレーションした結果であるので導入力の単位は、単位時間当たりとしてMN/mで表している。これに対して、累積リスクは図一1（b）に示すような便携的な形を考えて30mピッチでアンカーを実行値方向に10本打つとしたため、単位も実行値30mを考慮した値として示している。したがって、図一1（a）に相当する図としてアンカー導入力の大きさと建設コストの関係を求める必要がある。

そこで、グラウンドアンカー一本あたりの許容引張力を次式により算定する。

$$T_{ax} = \frac{1}{f_s} T_{ax}$$

$$= \frac{1}{f_s} \pi \cdot d_s \cdot L \cdot \tau$$

ここで、T_{ax} は許容引張力、T_{ax} は極限引張力、d_s は掘削径、L はアンカー定着長、τ は周面摩擦抵抗である。

式（16）に基づき、ある必要アンカー導入力に対して、何本（何段）のアンカーが必要になるかを算定し、そのアンカー設置コストを計算する。
図7 導入力と50年間で得られる便益の関係

ここでは、一般的なアンカーの設計値として各値を次のように設定する。すなわち、周面摩擦抵抗τは5×10^5 kN/m2、埋設径Dは0.115m、アンカーより着長Lは5.0mおよび、安全率は2.5とする。

この結果、アンカー本当たりの許容引張力は3.61×10^5 kNとなるため、1段当たり10本で最大3.61MNまでの導入力が得られることがある。

また、この方法での1本当たりのアンカー打設コストは通常約2,000千円と試算されるので、アンカー1段当たりの建設コストは20.00万円とする。

このようにして、アンカー導入力と建設コストの関係は、図6に示すように求められる。

（2）費用便益分析

まず、n年間で得られる便益を現在値に換算したものは次式より求まる。

$$B^{(n)}(T) = \sum_{i=1}^{n} \left[R(T = 0) - R(T) \right] \left(\frac{1}{1 + \rho} \right)^{i-1}$$

（17）

ここで、$B^{(n)}(T)$はアンカー導入力をT(MN)とするときの年次に得られる便益の現在値であり、$R(T = 0)$は現状で得られる年便益、$R(T)$はアンカー導入力をTとしたときに得られる年便益、ρは社会的割引率を表す。

なお、式（17）の右辺は、式（5）でアンカー導入力をそれぞれ0およびTとしたものである。よって、50年間で得られる便益の現在値は、図7に示すようにアンカー導入力の関数として求められる。

また、n年間で発生する費用を現在値に換算したものの$C^{(n)}(T)$も考える必要があるが、実際には初期投資だけを考えるため、図6に示したアンカー打設コストを直接用いることができる。

以上の定義の下で、図6および図7から費用便益分析で考えられる次の2つの基準が定められる。

1）純現在価値に基づく費用便益差（NPV）

$$NPV(T) = B^{(n)}(T) - C^{(n)}(T)$$

（18）

2）費用便益比（CBR）

$$CBR(T) = \frac{B^{(n)}(T)}{C^{(n)}(T)}$$

（19）

図8および図9に、費用便益差（以下NPVと称する）および費用便益比（以下CBRと称する）の算定結果をそれぞれ示す。本検討のように単一プロジェクトを対象とするとき、両者は、本質的には同じ情報を与える。つまり、次のような関係が成立立つ。

$$NPV(T) \geq 0 \Leftrightarrow CBR(T) \geq 1$$

（20）

ただし、複数のプロジェクトを比較する場合にはCBRが小さくてもNPVは大きくならない場合がある。つまり、大規模プロジェクトであれば収益率が小さくても（CBRが小）、収益額が大きく（NPVが大）なる場合がある。

図8に示す結果を見ると、東京および名古屋では、アンカー導入力が3MNのときにNPVが正の最大値をとるが、それ以外の道路ではNPVが常に負となるため投資の効果が乏しいという結果となる。さらに、図9に示す結果を合わせて考えると、東京および名古屋において投資効果が最も優れていると考えられるのは、CBRが最も大きいアンカー導入力が3MNの場合であることが分かる。したがって、いずれの指標を見てもアンカー導入力は3MNとすることが望ましいことになる。そして、それ以外の道路ではグラウンドアンカーを施す必要がないことになる。
このように、最適アンカー導入力は、地域によって異なる値となる。つまり、同じ形状の斜面であっても、その補強対策は地震動の地域性および各道路での損害の大きさの相違によって異なることが、定量的に表現可能となる。

筆者らは、これまでに斜面補強対策としての最適なグランドアンカーの導入力を定めるための方法として、総コスト最小化の原理を用いてきた。以下、その方法とここに示す費用便益を用いた方法との関連について考察を加える。

ここで、総コストをアンカー導入力 \(T \) の関数として \(TC(T) \)、その時のアンカー打設コストを \(C_{\text{init}}(T) \)、リスクを \(R(T) \) とすると、総コストは次式のように定義される。

\[
TC(T) = C_{\text{init}}(T) + R(T)
\] (21)

この場合では、\(R(T) \) は式 (5) の \(R^0 \) に相当する。次に、式 (21) は式 (18) を用いて次式のように変形される。

\[
TC(T) = C_{\text{init}}(T) + R(T)
\]

\[
= C_{\text{init}}(T) + \left[R^0(T = 0) - B^0(T) \right]
\]

\[
= R^0(T = 0) - B^0(T) - C_{\text{init}}(T)
\]

\[
= R^0(T = 0) - \text{NPV}
\] (22)

したがって、式 (22) に示すように、総コストが最小となるアンカー導入力 \(T \) は、費用便益差が最大となる値に一致する。

5. まとめ

本研究では、自然災害の中でも特に地震をハザードとして起こる斜面災害に着目し、全国主要都市での高速道路に近接する斜面でのリスク評価結果を示すと共に、投資対効果を考慮し斜面の補強策を合理的に立案する方法について示した。この手法の特徴は、検討の対象とする各地域での地震活動度および、道路の利用状況に基づく損益を定量的に評価することであり、また補強対策の効果を費用便益解析により判定することである。

この結果として、補強対策を実施するか否かの判定を行った結果として、地震動の地域性および各道路での損害の大きさによって、同じ形状の斜面でも異なる最適アンカー導入力が得られることが明らかにした。

参考文献
2) 大津宏誠、大西有三、水谷守：高速道路に近接する斜面
THE PROPOSAL OF THE METHODOLOGY ASSOCIATED WITH DECISION-MAKING OF REINFORCEMENT OF SLOPES BASED ON COST-BENEFIT-ANALYSIS

Hiroyasu OHTSU, Yuzo OHNISHI, Mamoru MIZUTANI and Masazumi ITOU

This paper presents the methodology related to Decision-Making of Reinforcement of Slopes Based on Cost-Benefit-Analysis. As for an example to show the applicability of the proposed method, the slopes closed to highway, which are located at four major cities in Japan, were focused on. In detail, by considering the locality of seismic activity and losses due to slope failure quantitatively, risk was evaluated. Furthermore, by regarding the amount of risk mitigation by means of the installation of ground anchor as the benefit, cost-benefit–analysis was carried out to obtain the optimum countermeasures. The results showed that the proposed method has great possibility to determine the reinforcement of slope rationally.