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In this study, the frictional resistance at the deviators is incorporated in the calculation of cable strain.
The equation of cable strain, which is based on the deformation compatibility of cable, is expressed in the
general form for the analysis of externally prestressed concrete beams with normally external cable as well
as externally prestressed concrete beams with large eccentricities. Application of the developed equation in
the numerical analysis is carried out to verify its accuracy. It is found that the structural behavior of
externally prestressed concrete beams can satisfactorily predict throughout the entire loading range up to
failure. A good agreement with experimental data is found. .
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1. INTRODUCTION

External prestressing is defined as prestress by the
high strength cable, which is placed outside of the
cross section and attached to the beam at some
deviator points along the beam. In an external
prestressing system, depending on the location of
deviators, there are twe kinds of beam, namely,
prestressed concrete beam with normally external
cables (below referred as  typical beam) and
prestressed concrete beam with large eccentricities
(beam with large eccentricities). In the former, the
deviators are located within the depth of cross section.
In the latter, the deviators can be located outside of the
depth of cross section, above the top surface or under
the bottom surface. In the analysis of externally
prestressed concrete beams, questions are always
raised in the calculation of cable strain. Because, there
is no bonding between the concrete and the cable, thus
the cable strain cannot be maintained at the critical
section as in the conventional prestressed concrete
beams. The strain variation in the external cable is

considered to be a function of the overall deformation |

of the beams. Meaning that the strain change in the
cable is member-dependent and is influenced by the
initial cable profile, span.to depth ratio, deflected
shape of the beam, friction at the deviator, etc "
When the structural behavior of externally

prestressed concrete beams is investigated, many

researchers have calculated the cable stress either by
using the equations, which are provided in the codes
or by adopted assumption that the total elongation of
the cable element is equal to the total elongation of the
concrete element at the cable level. This assumption is
considered to be a effective tool for the evaluation of
cable strain in the analysis of internally unbonded
prestressed concrete beams as well as the typical
beams, and good agreement with e‘{perlmental data
has been reported 2

For the analysis of the typical beams, an analytical
methodology, which is based on the deformation
compatibility between concrete and a cable, has been
developed ¥. In principle, the analysis of the beam
with large eccentricities can use the analytical
methodology for the typical beams. However, the
only additional point is to be considered in the case of
the beam with large eccentricities, .namely
eccentricity of the cable due to the location of the
external cable. The difference in the analysis of both
kinds of the beams with external cables is that the
overall deformation of the beam in terms of the
concrete strain, which is usually used in the
calculation of cable strain for the typical beams,
cannot be used in the analysis of the beam with large
eccentricities. Because, in the case of the beam with
large eccentricities, almost the cable portions are
located outside of the depth of cross section, thus the
concrete does not exist at the cable level.
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Therefore, there is a need to have a computation
method for the cable strain that should take account of
the cable eccentricity, friction at the deviators and
continuity of the structure, and the method can be
used in the analysis of both kinds of the beams with
external cables. To satisfy these conditions, the
elongation of the cable must be in consistent with its
deflection and to that effect, geometrical deformation
of the cable must be correctly evaluated regardless of
the deformed configuration of the beam. One of the
possibilities is that the cable strain depends only on
the deformation of the points, to which the cable is
attached. It turns out that the cable strain depends on
the total length variation of the cable between the
extreme ends. Therefore, before an analysis model is
carried out, a proposed formulation, which is to be
used in the analysis of externally prestressed concrete
beams, should be expressed in the general form for the
evaluation of cable strain of the beams as above
mentioned.

2. RESEARCH SIGNIFICANCE

A perusal of the relatively limited number of
analytical studies available on the behavior of
externally prestressed concrete beams reveals that
several investigators attempted to calculate the cable
stress by their formulations with some parameters
involved for the certain cases of the beams with
external cables. However, there were extremely few
formulations or developed method, which were
common use for the analysis of both kinds of the
beams as above mentioned. It will be useful
contribution towards to develop a method of analysis
of externally prestressed concrete beams that will be
included the eccentricity of cable and the friction at
the deviators. Also, the strain variation in the cable
can be correctly evaluated by the same method for the
analysis of the typical beams and for the beam with
large eccentricities.

3. REVIEW OF COMPUTING METHOD
FOR CABLE STRAIN

As mentioned earlier, when the externally
prestressed concrete beam is subjected to bending, the
deflection of the external cable does not follow the
beam deflection except at the deviator points. As a
result, the cable strain cannot be determined from the
local strain compatibility between the concrete and
the cable. When the structural behavior of the typical
beams was investigated, while calculating the cable
strain, two extreme cases are usually considered,
namely, free slip (no friction) and perfectly fixed (no
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Fig.1 Effect of friction at the deviator

movement) at the deviators. In the first case, the cable
moves freely throughout the deviators without any
restraint and the cable is treated as an internally
unbonded cable. The cable strain variation is constant
over its whole length and it can be expressed as:

: dx (1)

where Ag,,Ag,, is the increments of cable strain and

concrete strain at the cable level, respectively; / is the
total length of cable between the extreme ends.

For the second case, the cable is considered
perfectly fixed at the deviators. This means that the
cable strain variation of each segment is independent
of the others. The increment of cable strain depends
only on the deformations of the two successive
deviators or anchorages, to which the cable is attached.
The strain variation in a cable can be expressed as:

Asy ==t @)

where Al,,/; are the incremental and original lengths
of a cable segment under consideration, respectively.

For the former, if the frictional resistance at the
deviators is neglected, deflection and cracking may be
overestimated at the service loading range. For the
latter, if the cable is assumed to be a perfectly fixed,
the ultimate loading capacity may be overestimated b,
This phenomenon can be seen in Fig.1 by showing the
effect of bond condition of the cable at the deviators in
the analysis of three cases (free slip, slip with friction
of 0.2 and perfectly fixed), which has been reported in
Virlogeux, M.'?.

In many studies , when the structural behavior
of the typical beams was investigated, most analytical
approaches are usually based on the assumption in
that the total elongation of the cable element must be
equal to the total elongation of the concrete element at
the cable level between the extreme ends. This can be
expressed in the following equation:

4)~9)
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where Ag,;,Ag, are the increments of cable strain

and concrete strain at the cable level, respectively; /; is
the length of a cable eleément under consideration, / is
the total length of cable between the extreme ends.

From the analytical resuits, it points out that the
strain variation in the cable mainly depends on the
overall deformation of the beams because of the lack
of bond between the concrete and the cable.

Some researchers ¥ © 7 extended this approach
for the analysis of externally prestressed concrete
beams with large eccentricities by the additional
assumption of an imaginary concrete strain at the
cable portion, at which the concrete does not exist.
However, this extension seems to be limited because
of the difficulties in defining value of the imaginary
concrete strain at the cable level.

Virlogeux, M.'” proposed another approach based
on a geometrical compatibility of external cable. Due
to the rectilinear shape of external cable between the
points, at which the cable attaches to the concrete
beam, the strain variation of cable can be defined on
the basis of deformations of the contacted points.
Therefore, the cable strain can be evaluated regardless
of the deformed shape of the concrete beam and it
depends only on the deformations of the deviator
points. By using this concept, Eakarat, W. ct al.® have
been developed a computing program for the analysis
of simply supported beam with large eccentricities
and good agreement with experimental data had been
reported. However, the effect of cable friction at the
deviator did not consider in the Eakarat’s calculation.

Normally, there is a frictional resistance between
the cable and the deviator, and the cable strain
depends on the coefficient of friction. In previous
study . when the friction at the deviators is
considered, the increments of cable strains at the both
side of the deviator are different. The difference in the
strain increment can be expressed in terms of the
friction coefficient, &, as:

Lt
[ C

i+l + f 0
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where Ag,;,Ag,;,, are the strain increments of (/) and
(i+1) cable elements, respectively; Ae,, is the
increment of concrete strain at the cable level; / /.,
are the length of (i) and (i+1) cable elements,
respectively.

In Eq.(4), the friction coefficient 4, is not known
at present and is assumed to be a function of the
inclination angle of cable, and have a value between 0

Fig.2 Force equilibrium at deviator

and 1.0. The value of the friction coefficient indicates
the extent of fixity of the cables at the deviator. When
the beam is subjected to bending, according to the
deflected shape of the beam, the inclination angle of
cable will change. As a result, the friction coefficients
at the deviators will change as well. Therefore, the
value of friction coefficients is not constant during the
loading step and should be changed depending on the
loading condition. For a beam with having many
deviators or multiple span continuous beams, the
value and sign of this coefficient are often arisen in
the calculation and the computing process should be
repeated until a desirable result is obtained. Moreover,
this friction coefficient is not familiar in the
engineering design for the prestressed structures, and
it only has the mathematical meaning. To overcome
these difficulties, a formulation of the cable strain
based on' the force equilibrium condition at the
deviator, will be presented hereinafier.

4. FORCE EQUILIBRIUM CONDITION AT
DEVIATORS

Fig.2 shows that F;, F,,, are tensile forces in the
cable segments (i) and (i+1) at the deviator,
correspondingly, 8,,6,,, are cable angles, respectively.
Thus, the force equilibrium condition at a deviator on
the X direction can be expressed as:

F, cos, +(~1)" y(F; sin6, + F;,, siné,,,) = F,, cosf,,,

&)
where
- 1 if  Fycosb,>F, cosb,,
12 if  Fcosf; <k, cosb,,
and coefficient, &, depends on the slipping

direction; ¢ is a friction coefficient at the deviator
and is assumed to be known at each deviator.
Dividing both sides of Eq.(5) by £ »sA4 s » the force

equilibrium condition can be expressed in terms of the
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increments of cable strain as:

sing, +Ag

si+

Asg;cosf +(— I s, ,8in,, ) = Ag,; i cosl,

Si+ i+

leost) + (-1 psing |ae, +|-cos, + (1) asing JAs

where £,,and A, are the elastic modulus and area of
the prestressing cable; Ag,;,As,,, are the increments
of cable strains at both sides of the deviator.

5. FORMULATION OF CABLE STRAIN

Unlikely the previous assumptions for the
calculation of cable strain in the analysis of the typical
beams, for the beam with large eccentricities, instead
of using the overall deformation of the concrete beam,
the only deformations at the extreme top of the
deviators are considered in formulation of the cable
strain. In the case of cable having perfectly fixed at
the deviators, the cable strain of cach segment is
independent of the others and the strain variation can
be defined as in Eq.(2). On the other hand, the cable
can be allowed to slip at the deviators, the total
clongation of cable must be equal to the total cable
length variation of each segment and expressed as:

Yihe, =Y AL )
i=l i=]

where /;, Ag; are the length and strain increase of the
cable element under consideration, respectively; Al
is the cable length variation of the cable element.

The cable length variation A/, can directly derive
from the deformations of the deviators, for example
the deviators 1 and 2 are shown in Fig.3. Before
deformation, the coordinates of the deviators 1 and 2
at the extreme top are x,y; and x,y,, respectively.
After deformation, the deviators 1 and 2 shift to new
positions and their coordinates are x, -+ Ax,, y, + Ay,

and x,+Ax,,y,+4Ay, . Thus, the cable length
variation can be calculated as:

&= [("2 +A5 X _A’Cl)z +(n + Ay, - 3 —A)ﬁ)z}yz -
3

where /, is the original length of the cable segment
under consideration.

After some manipulations with neglecting the high
order terms, the cable length variation A/, is

(xz_x]) (yz_y)
l
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or

©)

Al =cos8(Ax, — Ax,) +sin6(Ay, — Ay,)
where @ is the angle of the external cable to the
horizontal line; Ax,,Ax, and Ay,,Ay, are called as
increments of the horizontal and the vertical
displacements at the deviators 1 and 2, respectively.

" Based on the displacement functions for the beam
clement ¥, these incremental displacements can be
defined. It should be noted that the nodal displace-
ment vector {d*} at the extreme top of the deviators
should be used instead of the nodal displacement
vector {d} for the beam element. Therefore, the cable
length variation between the deviators 1 and 2 can be
rewritten in Eq.(10) as:

Al, = cos 0([N,,zl{d} lN ]{ }
+ sin H(IN,%[,]{ [ vb]{d })

where @'Y =4ar d}=bs v 6wl vy 63}
is the nodal dlsplacement vector at the extreme top of
the deviators; [N, ,,]-[ N, ]and v, ]= {Nib Nfb}
are the displacement functions for the beam element
in the horizontal and the vertical directions,
respectively and are defined in the fqllowing:

0 o]
f] :
2
—ﬁ+12§ +(1+£< (z+613<}\1+-159 20
L L L L L [

6K 3 , 2 16> 2K| (6K 1), 1 4
— =X ——3x.3 ; ——— |*| = X
2 L g L)\l L 5

(10)

X X
N, |=|l-= 0 0 —
-1-% 0 0 7

2 2

El

12K ; K =—= is a stiffness ratio and
GA

where 7s =1+——

L is the length of a beam element.
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Substituting [N, ] and [va] into Eq.(10) and the

cable length variation between the deviators | and 2
can be expressed as:

=416} (v
where
(4= —cosﬂ(l—fj ; ‘Sing[ 2{_3)(2 XBJ
- L)’ Ts r r
smﬂ[ (ﬂ{ IQK") + ___) ‘(ZJ’%)“L st ;

S{x sind(6K 3 , 2 ;)
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L 7.3 r r r
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Fig.4 shows the arrangement of the external cable
in the beam with large eccentricities. The nodal
displacement vector at the extreme top of the
deviators can be expressed in terms of the nodal
displacement vector for the beam element as follows:

* *

vi=v 6 =6

0,=0,;

u =u, +e,0;
. . (12)
Uy =u, +e,0,; v, =v,;
where ¢; and e, are the eccentricities of cable at the
deviators 1 and 2 , respectively.
This nodal displacement vector can be rewritten in
a matrix form as:

u POel 0 0 0]«
vil (01 0 00 0]y,
6/ |00 1 00 0o
[ 100 0 1 0 e |lu,
v; 00 0 01 0fv,
6;) 100 0 00 1]8

Y= [8Xa) (13)

Substituting Eq.(13) into Eq.(11) to obtain the
cable length variation between the deviators 1 and 2,
which 1s directly related to the nodal displacement
vector for the beam element and expressed as:

a1, = [l }= (418X}

where matrices [4] and [B] are defined in Eq.(11) and
Eq.(13), respectively.

Substituting Eq.(14) into Eq.(7),
elongation of the cable can be expressed as:

(14

the total

(15)

> hae, =3 [4]8Ye}

Combining Eq.(15) with the force equilibrium
condition at the deviators, which is expressed in

Eq.(6), the increment of cable strain can be
incorporated in a matrix form as:
[ A L Lo
G+ s~ +(-1 s, 0 ...
0 o+(bos, —c+(-Dogs, o
0 0 i
i 0 o L
b Lo e A8
0 Ags?. = 0
0 Aé?ﬁ 0
_cn—l +(_D"n-z M‘n—l 0 Agsl;—l O
.cn—l +(—l)k”_l By G +(_1)k"_l 1, A&‘m 0
or [ Kae, }= [V Ha} (16)

where ¢;and s; are denoted as cosine and sine of cable
angle; the subscripts under these letters indicate the
cable angle number; /;is the length of cable segment.
@ = v 6 wu, v, 6] is the nodal disp-
lacement vector for the beam element.

Therefore, the increment of cable strain is defined
as:

e }=MT'[va}

By using Eq.(17), a numerical analysis of
externally prestressed concrete beams is carried out.
The analytical results are compared with the

(17)
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6. NUMERICAL EXAMPLES !
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A computer program, which was developed for the v o . P
cu A po

analysis of the typical beam ¥ is to be applied in this
study. The Eq.(17) is implemented in the program for
the evaluation of cable strain.

To demonstrate the applicability of the developed
formulation, a numerical analysis of two examples 1s
carried out. One of them is a typical beam and the
other is the beam with large eccentricities. An effect
of cable eccentricity on the structural behavior is also
investigated. Hereinafter, the analytical results in
comparison with experimental data and the analytical
results obtained by other investigators will be
presented.

(1) Introduction of analytical models

Fig.5 Stress-strain relationships

Table 1 Material properties (Mpa)

The numerical examples are carried out following

8). 9)

the experimental work ® %, which was conducted by
Sumitomo Co. In the analysis, the following
assumptions are adopted:

1. Plane sections remain plane after bending.

2. Shear deformations are considered.

3. Compatibility of cable deformation is considered
as that the total elongation of cable elements must
be equal to the total length variation of each cable
element between the extreme ends.

4. The ultimate limit state 1s defined when either the

. Typical Beam with large
Name of the beams beam eccentricilies
A 2.4 424
Concrete ;
E. 2.58x10" 2.58x10’
Reinforcing Tsy 364 364
stecl, bar | 2.1x10° 2.1x10°
T py 1600 1500
Prestressing | o
cable pu 1900 1750
Eys 1.98x10° 1.97x10°

W

concrete strain at the extreme compression fiber
reaches 0.0035 or the tensile stress of reinforce-
ment or prestressing cable exceeds the nominal
tensile strength.

In the analysis, the stress-strain curve for the
concrete is assumed to be tri-linear, whereas it is
assumed to be a bilinear curve for the prestressing
cable as shown in Fig.5.



The layout of the analytical scheme for the typical
beam and the beam with large eccentricities is
presented in Fig.6.

The beams have a rectangular section, using two
cables type of 1T17.8 SWPR19 (2.084cm*/cable) for
the typical beam, and two cables type 1T12.4
SWPR7A (0.929cm*/cable) for the beam with large
eccentricities. Two beams were designed to achieve
the same ultimate strength, but with different
prestressing force. At the initial stage, the cables were
stressed approximately 50% of the ultimate strength
of the cable. Material properties are shown in Table 1.
Two loading points of the applied load are provided
on each span with the symmetrical loading condition.
During the test, the maximum values of the applied
load were about 308.0 kN and 315.0 kN, correspon-
ding to the maximum displacements of about 48.0mm
and 69.0 mm for the typical beam and for the beam
with large eccentricities, respectively. The crushing of
concrete was found in the compression zone in the
both cases. At the final stage of loading, the yielding
of the external cables was found in the case of the
beam with large eccentricities, whereas the cables did
not yield in the case of the typical beam. At the
ultimate state, the increase of cable stress was equal to
370.0 N/mm* and 780.0 N/mm? for the typical beam
and for the beam with large eccentricities,
respectively. »

It is assumed that at the center-support, the cables
cannot slip, meaning that they have a perfectly fixed
because of the symmetrical loading condition. While,
the cable can be allowed to slip at the deviators with
the friction coefficients £=0.12 and x¢=0.15 for

the typical beam and for the beam with large eccen-
tricities, respectively. For the no-slip points of cable,
the friction coefficients are referred to the previous
study ', which were assumed to be equal to 2.0.

(2) Discussion of analytical results
a) Load-displacement responses
Fig.7 and Fig.8 show the load-displacement
relationships at the midspan section for the typical
beams and for the beam with large eccentricities,
respectively. From these figures, it can be seen that
the predicted load-displacement responses are in full
- agreement with the experimental data. The maximum
values of the applied load are 310.8 kN and 310.2 kN,
corresponding to the maximum displacements of
about 50.0 mm and 69.8 mm for the typical beams and
for the beam with large eccentricities, respectively.
After reaching to the peak point, the applied load
gradually reduces, and simultaneously the crushing of
concrete occurs in the compression zone on the right
span of the typical beam and on the left span of the
beam with large eccentricities. This phenomenon
could be considered as a local failure of the structure.
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The crushing of concrete was also found in the
experimental observation, which is shown in
Fig.9. In comparison with results calculated by
Umezu, K. et al. ¥ %, which show by the dash-line, it
can be seen that the predicted results from the
proposed analytical model are somewhat closer to the
experimental observation. The difference between
two analytical models can be explained that the
proposed analytical model takes both the cable
friction at the deviator and the shear deformation into
account, whereas Umezu’s model did not. As a result,
the Umezu’s model shightly overestimated the
displacement after the decompression.

The effect of shear deformation in the comparison
with the total deformation of the beams is also
presented in Fig.7 and Fig.8. It can be seen that the
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affect of shear deformation is extremely small in the
non-cracked elastic zone. However, in the cracked
non-elastic zone, the shear deformation gradually
develops with further increasing the applied load. At
" the ultimate state, the shear deformation is about 12 %
and 11% of the total beam deflection for the typical
beam and for the beam with large eccentricities,
respectively. .
b) Stress increase in the external cable
Fig.10 and Fig.11 show the increase of cable
stress against the applied load for the typical beams
and for the beam with large eccentricities,
respectively. From these figures, it shows that before
the appearance of crack, the increase of cable stress is
very small. However, it gradually increases with
further increasing of the applied load after the
occurrence of cracks. When the crushing of concrete
happens in the compression zone, the cable stress
reduces a little; simultancously the applied load
reduces as well. For the typical beam, the stress in the
external cable increases only slowly so that when the
crushing strain has been reached in the concrete, the
stress in the cable is far below its uitimate strength.
The prestressing cable undergoes small stress and
remains in the elastic range. While, for the beam with
large eccentricities, the stress increases very fast and
almost  proportionally increases with  further
increasing the applied load after the decompression.
Finally, the cable stress increases approximately
366.0 N/mm?” at the ultimate state and it is about 80%
of the yielding strength of cable including the initial
stress at the prestressing stage for the typical beam.
For the beam with large eccentricities, the cable has
yielded when the applied load reaches about 285.0 kN
and the increase of cable stress is about 807.3 N/mm®
. at the ultimate state. The predicted responses have a
good accuracy with the experimental data. In
comparison with the results calculated by
Umezu, K. et al. ¥ ® showing by the dash-lines in
Fig.10 and Fig.11, it can be seen that for the Umezu’s
model, at the certain loading stage, especially after
cracking, the predicted value of the cable stress is
bigger than that in the experimental observation. This
can be understood that a big displacement induces a
big increase of cable stress by means of Eq.(1), which
had been used in the author’s calculation. From these
figures, it can be seen that the analytical model gives
somewhat better results in comparison with the
Umezu’s calculations.

(3) Effect of cable eccentricity on the structural
behavior of the beam »

To show the effect of cable eccentricity, the
predicted results and also the experimental data of
both kinds of the beams will be compared to each
other and discussed in this section.
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Fig.12 shows the load-displacement responses of
the beams against the applied load. It can be seen that
in the elastic zone, both kinds of the beams behave the
same and indicating no influence of the arrangement
of the external cables. However, in the non-clastic
cracked zone, the displacement responses deviate
from each other. For a given the applied load, the
larger deflection is found in the beam with large
eccentricities than that in the typical beam. It is clearly
shown that in the non-elastic cracked zone, the
eccentricity of cable has a significant effect on the
displacement response of the beams. Even though, the
ultimate load capacity of the beams is nearly the same,
but the maximum displacements are significantly
different at the ultimate state and they are about 50.0
mm and 69.8 mm for the typical beam and the beam
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with large eccentricities, respectively. The difference
in displacement could be mainly attributed to the
lower prestressing force applied in the beam with
large eccentricities at the prestressing stage than that
in the typical beam. Moreover, the external cable in
the beam with large eccentricities reaches the yielding
strength before the ultimate load capacity of the beam.

Fig.13 shows the increase of cable stress of the
beams against the applied load. It can be clearly seen
that at a given the applied load, the stress increase in
the cable of the beam with large eccentricities is
greater than that in the typical beam. This is because
the stress increase in the cable is a function of the total
clongation of cable and essentially depends on the
deformation of the beam. Therefore, the large
deflection in the beam with large eccentricities would
contribute to the great cable stress than that obtained
in the typical beam. Moreover, at the prestressing
stage, the beam with large eccentricities was

prestressed with lesser prestressing force, which was

approximately 45% of the prestressing force in the
typical beam. For the typical beam, the prestressing
cable remains in the elastic range even if at the final
loading stage. While, for the beam with large
eccentricities, the prestressing cable yiclds before the
applied load reaches the ultimate load capacity of the
beam.

Therefore, it clearly shown that for the beam with
large eccentricities, the ultimate load capacity is
almost the same as in the typical beam, while the
required amount of the prestressing cable reduces
significantly. The external cable in the beam with
large eccentricities can reach to the yielding point
before the ultimate state, ie. utilized the cable
material leaded to economical structures.

From analytical results, it can be concluded that by
using the developed method, the structural behavior
of the typical beam and the beam with large
eccentricities can satisfactorily predict from the zero
loading stage up to the ultimate loading stage. Good
results are found in comparison with the experimental
data. The structural responses are predicted very well
in both cases.

7. CONCLUSIONS

A nonlinear analysis of prestressed concrete
beams with external cables is carried out by using a
finite element algorithm including coupled effects of
the shear deformation and the friction at the deviators.
The following conclusions can be made in this study.
1. A new equation of cable strain is formulated and

it can be satisfactorily predicted the structural
behavior of externally prestressed concrete beams
from the zero loading stage up to the ultimate
loading stage. The predicted responses for the
displacement and the cable stress are in very good
agreement with experimental data.

2. The formulated equation for cable strain is in the
general form, and it can be used in the analysis of
the typical beam as well as the beam with large
eccentricities.

3. A big eccentricity of cable induces a great strain
variation in the cable. Therefore, in the same
conditions, the increase of cable stress in the
beam with large eccentricities is usually greater
than that in the typical beam at the certain loading
stage after the decompression.
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