非関連流れ則を用いた有限要素解析によるシールドトンネル掘削時の変形解析

野口利雄12 垂水尚志2

1 正会員 (株)熊谷組 土木本部土木設計部 (〒162-8557 東京都新宿区津久戸町2-1)
2 フェロー会員 長崎 (財)鉄道総合技術研究所 研究開発推進室 (〒185-8540 東京都国分寺市光町2-8-38)

本報告は、非関連流れ則に基づくモール・クーロン-ドラッカー・プラガー混合法による弾塑性有限要素法を使用し、豊浦砂を用いた落とし戸実験での地盤の変位及びせん断ひずみの分布、落とし戸に作用する土圧について、弾性解析や関連流れ則に基づくモール・クーロン法による弾塑性解析に比べ、当手法が実験値を比較的精度よく表すことを示す。

次に実際のシールドトンネル施工時の地中変位の計測結果と対比させるため、掘削解放率を100%とし、泥水圧または裏込め注入圧を考慮した2次元解析を同手法を用いて実施した。その結果落とし戸実験と同様に、同手法は実用的に十分な精度で地盤変位を予測できることを示す。

Key Words: loosening pressure, underground structure, shield tunnel, numerical analysis, ground displacement

1. はじめに

近年の都市部における基盤整備、ライフライン整備において、非関節工法であるシールド工法は欠くことのできない存在となっている。最近のシールド工法は施工管理技術が大幅に向上し、周辺の地盤に与える応力・変形に関する影響は減少している。しかし、地表において起因する掘削解放力の発生は不可避であり、従来ではあるが地盤の変形が発生する施工例が多いのが現状である。

地盤の変形に関する予測の手法としては有限要素法・弾性解析法が比較的簡便であることから多く用いられている。だが、弾性解析法では、掘削時の地山の力学的挙動メカニズムを完全には追跡できないため、計測値と解析値との乖離が常に問題となる。

砂地盤は掘削時に、アーチング現象を呈することが過去の実験や現場計測から知られている。この現象は、掘削により降下しようとする土塊周辺で応力の再配分が発生し、掘削部周辺にいわゆるゆるみ領域が生じることに起因すると考えられている。

掘削部周辺におけるこれらの現象はトンネル掘削問題に特有なものであり、トネネル掘削時における地盤の応力、ひずみ、変位などを定量的に評価するためには、これらすべての現象を追跡可能な解析手法が必要となる。

そこで前段として、地盤中の変位とせん断ひずみの分布、および落とし戸に作用する荷重の分布が確認できる落とし戸実験に対する数値解析シミュレーションを実施した。次に落とし戸実験に対するシミュレーション結果の評価に加え、後段として実際のシールドトンネル施工時の地表面及び地中変位の計測結果と数値解析結果を対比させ、最終的な結論を導いた。

本論文は、上述の模型実験及び現場計測結果と筆者等の提案する手法による解析結果を対比させ、本解析手法の妥当性、有効性について考察を加えるものであり、より現実に近いトンネル掘削時の数値解析手法の提示を目指している。

2. 有限要素法を用いた数値解析(1)(2)(3)(4)

数値解析手法としては、弾性解析法（以下、弾性解析と称する）を基本とする。それに加え弾塑性解析ととしては一般的な降伏関数Fと塑性ボテンシャル関数Qともにモール-クーロン規準を用いた関連流れ則に基づく方法（以下、MC弾塑性解析と称する）、及び降伏関数Fにモール-クーロン規準を、塑性ボテンシャル関数Qにドラッカー-プラガー規準を用いる
非関連流れ則に基づく方法（以下 MCDP 弾塑性解と称する）、の 3 種類の解析法を用い、実験値と計算値に対する考察を加える。以下に MCDP 弾塑性解について説明する。なお弾性解、MC 弾塑性解については他に詳しい文献があるので、ここでは説明を省略する。

有限要素には 4 節点アイソパラメトリック要素を、また非線形解析法は、繰り返し計算の過程において応力補正が可能な修正ニュートン・ラプソン法を用いる。4 節点アイソパラメトリック要素の剛性マトリクスを求めるとときのガウス積分の次数は 2 次を用いる。端と戸問題は、端と戸端付において地盤に激怒せん断力を発生し、不連続的ともいえる変形モードが生ずる極限荷重問題とみなす。そのため弾塑性構成モデルとしては、降伏関数 F、塑性ボテンシャル関数 Q の取扱いが重要となる。一般に砂や粘土などの土構造物では F=0 の関係は成立しないと言われているため、ここでは F≠0 の非関連流れ則の場合を考える。48).

非関連流れ則の場合の弾塑性応力ひずみマトリクス [Dep] 以下に示す。

\[
[D_{ep}] = \left[\begin{array}{c}
\frac{\partial \sigma_1}{\partial \sigma_1} & \frac{\partial \sigma_1}{\partial \sigma_2} & \cdots & \frac{\partial \sigma_1}{\partial \sigma_6} \\
\frac{\partial \sigma_2}{\partial \sigma_1} & \frac{\partial \sigma_2}{\partial \sigma_2} & \cdots & \frac{\partial \sigma_2}{\partial \sigma_6} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \sigma_6}{\partial \sigma_1} & \frac{\partial \sigma_6}{\partial \sigma_2} & \cdots & \frac{\partial \sigma_6}{\partial \sigma_6}
\end{array}\right]
\]

ここに,

\[[D_{ep}] = \text{弾塑性応力ひずみマトリクス,} \]

\[\frac{\partial F}{\partial \sigma} = \text{降伏関数の応力に関する微分,} \]

\[\frac{\partial Q}{\partial \sigma} = \text{塑性ボテンシャル関数の応力に関する微分,} \]

\[\frac{\partial F}{\partial \varepsilon_p} = \text{ひずみ硬化(軟化)に相当する項,} \]

土の降伏条件としては三次元変形を考慮したモール・クローンの規準が比較的よく現実の土の挙動を再現すると言われている。しかしこの規準は正常平面（主応力 \(\sigma_1, \sigma_2, \sigma_3 \) がすべて等しい平面）上でピラミッド状の多角形を成し、その頂点は特異点となり塑性ひずみ増分の方向が決定できなくなる欠点があるため、塑性ボテンシャル関数として採用するには問題がある。そこで降伏関数としてはモール・クローンの規準を用い、塑性ボテンシャル関数としては \(\pi \) 平面上に特異点がないドラッカー・ブラガーの規準を用い、この 2 つの規準の長所を混合して使用する。このことにより、初期変形から終了までを連続的に追従した解析を行うことができる。この組み合わせはマトリクスが非対称で計算が複雑になるが、厳密な解析が要求される場合に適している。

モール・クローン、ドラッカー・ブラガーの両規準についての降伏関数 F は以下の式で表される。

\[F = \sigma_m \sin \phi + \sigma \cos \theta - \sigma \frac{\sin \phi \sin \phi - c \cos \phi}{\sqrt{3}} = 0 \] \((2) \)

ドラッカー・ブラガーの降伏条件

\[F = 3\sigma_m + \sigma - K = 0 \] \((3) \)

\[\alpha = \frac{2 \sin \phi}{\sqrt{3} (3 - \sin \phi)} - \frac{6 c \cos \phi}{\sqrt{3} (3 - \sin \phi)} \] \((4) \)

ここに, \(\sigma, \sigma_m, \theta = \) それぞれ応力の 1 次, 2 次, 3 次不変量に相当する項, \(c= \) 粘着力, \(\phi = \) 内部摩擦角である。

実験に用いる豊浦砂の応力レベルにおけるせん断弾性係数 G の低下率は以下の式を使用する。

\[G = G_0 (2.17-e)^2 \frac{(1+e)^2}{(1+e)^2} \] \((5) \)

ここに \(e= \) 間隙比, \(G_0= \) 初期せん断弾性係数である。
3. 落とし戸実験結果と解析

(1) 実験方法
実験は長さ150cm、奥行き30cm、高さ80cmの土槽内の豊浦砂を用いて地盤を構築し、底版に設けた幅12.5cm、奥行き30cmの落とし戸を降下させて、落とし戸部分の土圧、地盤の変位を測定する。図-1に実験装置の概略を示す。
一枚の落とし戸は幅方向に2分割したセグメントそれぞれにロードセルが取り付けられ、落とし戸内の土圧分布測定が可能である。図-2にセグメントの詳細を示す。落とし戸の奥行き30cmのうち両側のそれぞれ10cmはダミー部であり、中央の10cmが計測部である。落とし戸番号とセグメント記号はそれぞれ丸数字とL、Rで表記（①-L、②-R等）する。

(2) 実験ケース
地盤高さを落とし戸幅の3倍、37.5cmとし、落とし戸①を3mm降下させる。落とし戸の降下量0.1mmごとに落とし戸①と落とし戸⑥に作用する荷重を測定する。また落とし戸⑥を3mm降下させた段階で、地盤変位とせん断ひずみ測定用に写真撮影を行う。

(3) 地盤の構築
気乾状態の豊浦砂を所定の高さから自動撒きだし装置を用いて撒きだし地盤を構築する。構築したがら1.5cmごとに色砂を壁面に沿って散布し、これに2cmごとに歯形を付ける。この歯形部は落とし戸の移動に伴う地盤の変形を写真撮影する際の標点となるものである。

(4) 解析モデル
解析モデルは実験土槽と同寸法とし、横150cm、縦37.5cmである。境界条件は側方で水平方向固定、鉛直方向自由、底部は両方向とも固定である。戸の降下は0.1mmきざみの強制変位を作用させることにより表現する。図-3に解析で用いる有限要素メッシュを示す。節点数661、要素数600である。落とし戸同士が接する点は、互いに独立した節点を設けている。この措置により落とし戸の降下時に隣接戸の要素を変形させてしまう現象を回避し、実際に近い変形モードを再現できる。また解析上の局部的な多大なせん断力の発生を抑し、収束計算時の解の発散を防ぐ意味でも効果ある。図-4に落とし戸降下時の変形モードを示す。

(5) 土質定数
豊浦砂の密度は、1.51g/cm³、間隙比は0.74、含水比は0.3%である。今回の実験は地盤高さが37.5cmなので、落とし戸直上では、鉛直土圧が5.6×10⁶kPa、水平土圧が2.4×10⁶kPa程度と低拘束圧下の条件となっている。坂元は拘束圧5.0×10⁶kPaにおける砂の三軸試験を実施しており、その結果から、内部摩擦角を推定する。試験結果は主応力比と最大せん断ひずみの関係で示されており、主応力比Rと内部摩擦角θには以下の関係がある。

$$\phi = \arcsin \frac{R-1}{R+1}$$ (6)

結果によると主応力比は最大せん断ひずみが1%時点で約4.5、4%程度のピーク時で約5.3であり、式(6)を用いて内部摩擦角を求めると、それぞれ約40°、約43°と、計算に関係してくる領域におけ
図-6 落とし戸降下後の地盤の変形状態

落ちの変化は比較的小さいことがわかる。そこでこの領域における代表値として、最大せん断ひずみが1%点での値 40°を採用する。砂の撒きだしが実験終了までの間に実験槽に作用する荷重をパソコンに接続したロードセルにより測定する。図-5に実際の予測曲線を示す。

ROWEのストレスダイレイタンシー式によれば、

\[
\frac{\sigma_1}{\sigma_3} = K \cdot \left(\frac{\varepsilon_1}{\varepsilon_3} \right)
\]

であり、この式が成り立つと次式が導かれる。

\[
\sin \psi = -\left(K - 1 \right) \sin \phi \left(K + 1 \right) \sin \phi \left(K - 1 \right)
\]

\[\sigma_1, \sigma_3 = \text{主応力}, \quad \varepsilon_1, \varepsilon_3 = \text{主ひずみ増分}, \quad K = \text{係数}, \quad \phi = \text{内部摩擦角}, \quad \psi = \text{ダイレイタンシー角} \]

ここで得られたピーク応力時の三軸圧縮試験を実施し、\[\sigma_1/\sigma_3 \quad \text{と} \quad -\varepsilon_1/\varepsilon_3 \quad \text{との関係} \]

ことを示している。この関係は砂の密度や応力レベル、拘束圧の影響を含むことから、\[K \approx 3.1 \]

である。K=3.1を式(8)に代入すると式(9)となり、今回は式(9)によりダイレイタンシー角を決定する。

\[
\sin \psi = \frac{-2.1 + 4.1 \sin \phi}{4.1 - 2.1 \sin \phi}
\]

粘性土では0°とする。

以下に材料定数を示す。密度は実測し、相対密度は密詰めの状態を想定して決定した。

せん断弾性係数：G=19.61MPa
内部摩擦角：\[\phi = 40^\circ\]
粘着力：\[c = 0.01MPa\]
ポアソン比：\[\nu = 0.3\]
相対密度：\[D_r = 0.70\]

図-7 とし戸上部の地盤内変位分布

図-8 とし戸上部の地盤変形（MDP型弾塑性解）

密度：\[\gamma = 1.51 \times 10^3 \text{kg/m}^3\]
初期間ゲキ比：\[c_0 = 0.74\]
ダイレイタンシー角：\[\psi = 11.2^\circ\]

図-6に実験装置、及び落とし戸を5mm降下させたときの地盤の変形状態を示す。実験装置の落とし戸の降下量は3mmであるが、変形と実験状況を明確に示すため、5mm降下時の図を使用した。落とし戸の上部にゆるみ領域が発生しているのがわかる。

a）落とし戸上の変位分布

落とし戸を3mm降下させた時間での変位分布について、図-7に実験値、解析値を併記して示す。また図-8にMDP型弾塑性解の変形を示す。点線が変形前、実線が変形後の状態である。

実験値は、底面からの距離10cm程度まではほぼ落とし戸の降下量3mmと同程度の変位を生じるが、それより浅い部分では急激に変位が減少する。底面
からの距離 20cm 程度で変位は 0.7mm 程度になり、そこから変位はその後減少してゆき、地表面での変位は約 0.6mm である。

MCDP 弾塑性解は、床面からの距離 10 〜 20cm の範囲で実験値と比較してやや差が生じるが、全体的には実験値に最も近い変位形状を示す。

b) 落とし戸部分のせん断ひずみ分布

図-9 に落とし戸部を 3mm 降下させた時のせん断ひずみ分布について、実験値、解析値を併記して示す。

実験値は、最大せん断ひずみが 0.01 の領域が、深さ方向に厚さ幅の約 2 倍、25cm 程度まで広がっている。水平方向には厚さ戸端部から外側に厚さ厚さ幅の約 20%程度広がっている。また最大値は 0.05 まで発生している。

MCDP 弾塑性解は、最大せん断ひずみ 0.01 の領域が実験値とほぼ等しく、領域の範囲は広がり最大値も 0.05 まで発生している。

c) 落とし戸内部の荷重分布

図-10 に各セグメント時の荷重比について実験値、解析値を併記して示す。

実験値は落とし戸部の降下により、落とし戸部の荷重比が減少し、落とし戸部のすべてのセグメントの荷重は初期荷重よりも大きくなる。セグメント単位で荷重比の増減を求めるとき、落とし戸部の荷重比は約 1.42 の減少が、落とし戸部、①部分で

図-10 落とし戸降下後の落とし戸内部の荷重分布

は約 1.55 の増加、落とし戸部ではほぼ 0 であったため、落とし戸部の荷重が、脇接する落とし戸部、⑥部分へほぼ全量配分されると考えられる。

MCDP 弾塑性解は落下した落とし戸とそれに脇接した落とし戸相互間の荷重の再配分について、傾向と値を精度よく表していることがわかる。

このように MCDP 弾塑性解は、変位、せん断ひずみ、荷重の各観点から評価した場合、最も適した解析手法であると考えた。

4. 現場計測結果と解析

前章で、トンネル掘削を模擬した砂地盤での落とし戸実験と有限要素法による数値解析との対比の結果を示し、次に本手法を実際のシールドトンネル掘削問題に適用することを試みる。

シールド掘削時の地盤挙動計測結果をもとに数値解析手法の評価を行う場合、周辺地盤に与える変位の影響が比較的大きい大断面シールドの計測結果が望ましい。そこで掘削外径 7.0m 以上の施工例から、掘削方式 (泥水式、土圧式) と土被りの異なる 3 現場の例を選定する。

（1）計測現場の概要

表-1 に 3 現場の工事要項を示す。

A 現場は東京都内に位置する地下鉄新線トンネルである。 Ned 砂質土續の仮橋台地上に位置し、土被りが約 30m と深い。掘削部分の土質は N 値 50 以上の硬質砂層だが、掘削天端付近に粘性土を挟む粘土層である。 B 現場は大阪市南区に位置する雨水鍛線としての放出線トンネルである。高圧地盤条件下での穏まっ

B 現場は大阪市南区に位置する雨水鍛線としての放出線トンネルである。高圧地盤条件下での穏まっ
表-1 計測現場の工事概要

<table>
<thead>
<tr>
<th>現場名</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>シールド形式</td>
<td>泥水式</td>
<td>土圧式 (泥水圧)</td>
<td>土圧式 (泥水圧)</td>
</tr>
<tr>
<td>掘削外径(m)</td>
<td>10.00</td>
<td>7.75</td>
<td>8.66</td>
</tr>
<tr>
<td>土質</td>
<td>主としてシルト</td>
<td>砂質、粘土</td>
<td>砂質、固結シルト</td>
</tr>
<tr>
<td>土被り(m)</td>
<td>30.2</td>
<td>26.5</td>
<td>13.8</td>
</tr>
<tr>
<td>地下水位 GL(m)</td>
<td>23.3</td>
<td>4.0</td>
<td>4.4</td>
</tr>
<tr>
<td>泥水圧(N/mm²)</td>
<td>--</td>
<td>0.40</td>
<td>0.33</td>
</tr>
</tbody>
</table>

（2）解析手法

解析手法は、基本的に落とし戸実験に対するシミュレーションと同じである。現実の掘削プロセスを考慮し、掘削される要素の掘削解放力と泥水圧を含む掘込時の注入圧を掘削周面に作用させる。掘削解放率は100%とし、弾塑性解析プロセスにおいて掘削解放力、泥水圧または掘込時の注入圧の分割数は10とする。各現場とも掘削される地盤は砂質土であり、掘削による変形は時間依存性が少ないと考えられるため、クリープや圧密変形は考慮しない。また各現場とも掘削される地盤はN値30以上の硬質地盤で、掘削後の地盤の変形はテールボイド内で収まると考えられるため、セグメントの存在を考慮しない。モーメントの境界条件は、側部では水平方向固定かつ鉛直方向自由とし、底部では水平方向及び鉛直方向ともに固定とする。

図-11、12にA現場とB現場について地中変位量の、図-13にC現場について地表面変位量の経時変化を示す。図中の記号は、層別沈下計の計測点の深度を示す。各現場の結果も、切羽が計測点を通過して10m程度で急激に変位が発生し、30m程度で収れんに向かう挙動を示す。その後の変位の発生はわずかであり、計測されている変位の最終値は切羽が計測点を通過して30m進行した時点の値と比較してA現場では16〜20%，B現場では5〜10%，C現場では約15%の増加である。この計測結果を実際の見地から判断すると、地盤変形に対する粘性の要因は支配的とは言えず、今回施設する粘性変形を考慮しない弾塑性解析での検討が適していると考えられる。解析値と対比する計測値は、変位の増加が収れんに向かう切羽が計測点を通過して30m以降の値とし、A現場で120m、B現場で50m、C現場で58m離れたときのものである。

各現場とも地表面の沈下はレベル測定、地中の変位は層別沈下計により計測されている。

(3) 解析モデル

図-14に土質柱状図と有限要素メッシュを示す。
表-2 土質定数の諸元

<table>
<thead>
<tr>
<th>層</th>
<th>土質</th>
<th>平均N値</th>
<th>変形係数</th>
<th>ポアソン比</th>
<th>粘着力</th>
<th>摩擦角</th>
<th>タンシー角</th>
<th>間隙極比</th>
<th>単位体積重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>粘性土</td>
<td>2</td>
<td>3.9</td>
<td>0.45</td>
<td>0.02</td>
<td>1.0</td>
<td>0.0</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>砂質土</td>
<td>32</td>
<td>49.0</td>
<td>0.30</td>
<td>0.01</td>
<td>35.0</td>
<td>5.0</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>砂質土</td>
<td>48</td>
<td>68.6</td>
<td>0.30</td>
<td>0.01</td>
<td>35.0</td>
<td>5.0</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>粘性土</td>
<td>30</td>
<td>29.4</td>
<td>0.45</td>
<td>0.14</td>
<td>1.0</td>
<td>0.0</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>砂質土</td>
<td>50</td>
<td>98.0</td>
<td>0.30</td>
<td>0.01</td>
<td>35.0</td>
<td>5.0</td>
<td>0.50</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>粘性土</td>
<td>5</td>
<td>12.3</td>
<td>0.45</td>
<td>0.03</td>
<td>1.0</td>
<td>0.0</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>砂質土</td>
<td>42</td>
<td>101.7</td>
<td>0.35</td>
<td>0.01</td>
<td>37.0</td>
<td>7.4</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>砂質土</td>
<td>30</td>
<td>74.2</td>
<td>0.35</td>
<td>0.06</td>
<td>34.0</td>
<td>3.8</td>
<td>0.74</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>粘性土</td>
<td>3</td>
<td>9.2</td>
<td>0.45</td>
<td>0.04</td>
<td>10.2</td>
<td>0.0</td>
<td>3.99</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>粘性土</td>
<td>7</td>
<td>8.2</td>
<td>0.45</td>
<td>0.04</td>
<td>2.1</td>
<td>0.0</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>砂質土</td>
<td>50</td>
<td>122.5</td>
<td>0.30</td>
<td>0.02</td>
<td>40.0</td>
<td>10.0</td>
<td>0.48</td>
</tr>
</tbody>
</table>

土層深度 N 値

![A現場](土層深度 N 値 A.jpg)

![B現場](土層深度 N 値 B.jpg)

![C現場](土層深度 N 値 C.jpg)

使用する。またB，C現場では網掛け部分が土質試験結果から得られた値である。以上が直接採用する値で、以下に未決定の土質定数の決定基準を示す。各定数うしろの括弧内の記号は関連する現場名である。

・変形係数 E（B，C現場）
砂質土では 2.5N(MPa) を、粘性土では 210c(MPa) を使用する。ここに、N=標準貫入試験の N 値である。

・ポアソン比 ν（B，C現場）
砂質土ではN≧ 50 の場合 0.3 を、N≦50 の場合 0.35 を、粘性土では 0.45 を使用する。（11）

・粘着力 c（B現場）
粘性土で c=N/160(MPa) とする。しかし、砂質土では設計計算時に安全側の値を採用するという見地から c=0 とする場合があるが、MC 弾塑性解析実施時に c=0 だと発散する場合があり、小さな値として c=0.01 MPa を採用する。この値は粘質土のせん断試験を実施すると粘着力として 0.01MPa 程度以上の値を得ることが多く、砂粒子のかみ合わせ効果も期待できる。また解析の実施例で砂質土での粘着力を c=0.02MPa とした例も存在する。という文献で示されている値と比較しても妥当なものと考える。

・内部摩擦角 φ（B現場）
砂質土で φ=√(12N+15) (°) とする。（13）この定数を用いる内部摩擦角は、砂質土の粘着力を同様に、設計計算時に安全側の値を採用するという見地から φ=0 とする場合が多いが、MC 弾塑性解析実施時に φ=0 だと発散する場合があり、小さな値として φ=1° を採用する。此の値は硬質粘土における一軸圧縮試験値と非圧密非排水三軸圧縮試験値の対比より φ≠
0 である結果の例が示されている。また、解析における粘性土での内部摩擦角のとりうる範囲をφ=0 ～10° とした例も存在する。という文献で示されている値と比較しても妥当なものと考える。

・初期間ゲキ比 α（A，B 現場）
既存の研究結果をもとに、粘性土で φ=0.5 を採用する。

・単位体積重量 γ（B 現場）
B 現場第一層は仮のため、γ=16.0kN/m³ とする。
・ダイレイタンシー角 ψ（A，B，C 現場）
3-(5) に準じる。

(4) 沈下圧、裏込め注入圧
シールド掘進時に発生する沈下は 3 次元的現象であり、様々な因子が重ねて生じる。沈下の要因としては、シールドテール部における応力解放、切羽部における土砂取り込み量と掘進速度の関係、粘性土盤の圧密、シールド周面の摩擦による地山の乱れなどが挙げられる。今回採用されたシールド方式、地盤条件から応力解放が沈下の主要因であると考えた。ここで沈下に対抗する要因として泥水圧および裏込め注入圧が考えられる。

泥水式シールドにおける泥水はシールドスキンプレートと地山の接触面を伝わりテールボイド部に満たしていると考えられる。またトンネル標準示方書にも、テールシールは所要の裏込め注入圧、地下水圧、泥水圧に耐えうるもの、という記述があり、裏込め注入圧との完全な分離は難しいものの、泥水圧シールド掘進中の泥水圧がテール部分での地盤沈下に関連しているという報告も存在する。そのため A 現場では、解析時にも切羽での泥水圧 0.32MPa をそのまま作用させるものとする。

これに対し土圧式シールドでは、掘削解放力に対抗する圧力は裏込め注入圧のみとなる。裏込め注入圧は泥水に比べ粘性が高く、管内圧力損失が存在し、注入元での圧力がそのまま地山に作用しないことが考えられる。そこで解析時の裏込め注入圧には、テールボイド中でのセグメント背面部での計測値を用いることが望ましい。B 現場では地盤挙動計測測断面において、セグメント背面に 1 リングあたり 8 個の土圧計をあらかじめ設置して、実施工時の裏込め注入の有効圧力が計測されている。解析では 8 点で計測された値の平均値 0.23MPa を使用する。このときの裏込め注入元の平均ポンプ吐出圧計測値は 0.40MPa であった。裏込め注入のポンプ吐出圧を p，セグメント背面での計測値を p，その比 p/p を r とすると、B 現場では r は約 0.58 であった。ここではセグメントからの即時注入であるため、ポンプ吐出圧計測値と吐出口の距離は約 50cm 短いが、圧力は半分近くに低下している。C 現場では注入元での圧力が 0.33MPa と土被り圧（約 0.28MPa）を上回っている。これは裏込め注入材に早期強度発現タイプを使用し、かつポンプ吐出圧計測値と吐出口の距離が約 3m と長くなるシールド機からの同時注入であるため、注入管内圧力損失が過大であったと判断される。そこで当該工事はほぼ同様の土圧条件、
（5）裏込め注人圧に対するケーススタディー
裏込め注人圧はシールドが1回で掘進する1リング分のチールボイドに作用し、このときの裏込め材料はゲル状態で液体性状を有するため、圧力の方向は主として掘削面に対し直角方向であると考えられる。そのため裏込め注人がなされた1リング分に限定すれば裏込め注人圧によるシールド前方への圧力の作用および変形の発生は少なく、平面ひずみ状態に近いと仮定した。実際に裏込め注人圧や量に応じて地表面沈下量が変化する現象は、過去にも現場計測14）や模型実験15）から報告されている。そこで掘削面に作用する有効裏込め注入圧が計測されているBシールドを対象とし、裏込め注人圧が地盤の変状に与える影響を確かめるため、裏込め注人圧を変化させるケーススタディーを実施する。施工における裏込め注入圧計測値0.23MPaを基本ケースとして、裏込め注人圧を1.5倍と0.5倍にしたケースについて解析を実施する。

（6）計測結果と数値解析結果の対比
円形トンネル掘削問題は側とし戸端部のような不連続点が発生しない応力解放問題であるため、解析は側とし戸端に関する比較等が容易となる。
図15にシールド掘削時に地盤沈下量の計測結果と解析結果の対比を示す。着目測線は、A現場は計器位置の関係からシールド中心から 3.3m 離れた鉛直測線、B、C 現場はシールド中心を通る鉛直測線である。解析結果は、落とし戸実験の場合と同様に弾性解、MC 弾塑性解、MCDD 弾塑性解の結果を併記する。図は縦軸に地盤深度を、横軸に沈下量を表している。沈下は鉛直方向に生じるが、見やすくするために便宜上水平方向に表示する。
A 端部では計測最終端部で、計測値が0.65cm、MCDD 弾塑性解が0.73cmであり、MCDD 弾塑性解は全深度にわたり計測値とよく一致している。計測最終端部では各解析値は計測値を上回っている。地表面では計測値が0.40cm、MCDD 弾塑性解が0.33cm、弾性解が0.90cmである。弾性解は全深度で沈下量を過大に評価していることがわかる。MC 弾塑性解は弾性解とほぼ同様である。
B 端部では計測最終端部で、計測値が1.15cm、MCDD 弾塑性解が1.01cmと、MCDD 弾塑性解は計測値とよく一致するが、それ以浅の区間では計測値のほぼ2倍程度の値である。地表面では計測値が0.18cm、MCDD 弾塑性解が0.40cmである。弾性解は計測最終端部からそれ以浅すべての深度で計測値から離れて、地表面で0.81cmと沈下量を過大に評価している。計測値に対し約4.5倍程度である。MC 弾塑性解はB現場でも弾性解とほぼ同値である。
C 端部では計測最終端部で、計測値が0.92cm、MCDD 弾塑性解が0.99cmと計測値に近いが、それ以浅の区間ではGL0.0mからGL-8.0m でMCDD 弾塑性解は計測値とやや差がある。地表面では計測値が0.56cm、MCDD 弾塑性解が0.43cmである。弾性解はほぼ全深度にわたり沈下量を過大に評価している。
MC 弾塑性解は弾性解より3〜4%大きな値を示す。
図16に、A、B、C 各現場でのシールド掘削時ににおける地中沈下計所装置での地盤沈下量の計測結果とMCDD 弾塑性解の対比を示す。MCDD 弾塑性解はB現場を除きシールド中心部を通る鉛直測線部のみならず、鉛直測線部より外側の領域でも計測結果と比較的よく一致していることがわかる。

図-16 地中沈下計設置位置での計測値とMCDD 弾塑性解の対比
図-17 裏込め注入圧と沈下量の関係

図-17に裏込め注入圧の変化と沈下量の関係を示す。裏込め注入圧に対するケーススタディは、有効裏込め注入圧に対し圧力1.5倍にした0.44MPaのケースでは、裏込め注入圧が1.0倍のケースに対し地表面で0.12cm、計測最下端部で0.30cm、沈下度が減少した。同様に圧力を0.5倍とした0.24MPaのケースでは、地表面で0.29cm、計測最下端部で0.61cm、沈下度が増加した。このことから、裏込め注入圧は沈下に対し、無視できない要因であることが理解できる。

図-18にトンネル掘削問題の一例として、解析上の変位が最も大きく算出されているC現場の掘削時における掘削周辺部近の最大せん断ひずみ分布を、MDCP弾塑性解と弾性解について示す。両解法ともトンネルの上下端部に0.001以下の領域が発生する。トンネル側部でMDCP弾塑性解は0.004以上の領域があるのに対し、弾性解では0.002以上0.003以下の領域となっているが、トンネル上部での0.002の等高線位置は互いにほぼ等しい。落とし戸実験値と比較し最大せん断ひずみ値は約1/10であり、ひずみレベルは小さい領域にあることを示している。

5. まとめ

以上の現場計測結果及び解析結果とそれらの考察に基づき、本研究により得られた知見を以下に要約する。

(1) 落とし戸実験のシミュレーションにおいて、弾性解は地盤内の変形について実験値と傾向が一致せず、ひずみも過小な評価がなされ、落とし戸に作用する荷重についても表現不可能であるため、使用は向きである。モール・クーロン弾塑性解での変形モード、偏斜としては弾性解よりも実験値に近いものの、値はむしろ弾性解のほうが近く、ひずみについても弾性解と比較すると実験値に近い傾向を示すが、その差は大きい。荷重においても降下した落とし戸に隣接した戸の、降下した戸と落とし戸に対して反対側の部分では実験値とほぼ等しいが、それ以外の部分では実験値が存在する。これらの事柄から応力の再配分現象の定性的評価には至らないと考える。

モール・クーロン・ドラッカー・プラガ弾塑性解は変形について実験値と若干の誤差があるものの、その傾向及び絶対値を比較的よく表現している。ひずみについても領域の双方の観点から実験値に最も近く、荷重については各戸と戸ご含む対象における値が実験値を精度よく表現できている。このように今回用いた3種類の解析法のうち、落とし戸実験における試料の再配分現象を変位、ひずみ、荷重の各観点から捉えたとき、使用に適する手法はモール・クーロン・ドラッカー・プラガ弾塑性解であることが確認できた。

(2) トンネル掘削解析のシミュレーションは、泥水圧・裏込め注入圧が作用するので、応力レベルは低く、極限荷重值問題には至らない。そのため塑性領域に達するのが分割した荷重ステップの後半であり、弾性解とモール・クーロン弾塑性解の差はほとんどない結果となった。弾性解及びモール・クーロン弾塑性解で得られた変位は計測値の2～4.5倍程度であり、過大評価となっている。このため掘削解放の概念を導入しないと結果が一致しないことに
なる。それに対しモール・クーロンドラッカー・ブラガー弾塑性解析は掘削解放力を100%作用させた状態で計算值を精度よく表している。C現場における掘削周面付近の最大せん断びずみ及び最小主応力を見るとき、弾塑性よりもモール・クーロンドラッカー・ブラガー弾塑性解析のほうが値が大きいのは、落とし戸実験と同様の傾向である。

(3) トンネル掘削の地盤変状を着目した場合、泥水式シールドの場合は泥水圧をそのまま作用させた弾塑性解析の実施により計算値に近い地中沈下量の値が得られた。また土圧式シールドでは、有効圧込率注入圧が計算されている今回のようないくつかの事例では、比較的高い精度で地中沈下量の値が得られたことが確認できた。よって地盤変状に対する圧力の評価は十分に検討すべき因子であると考えられる。

(4) 総括として、モール・クーロンドラッカー・ブラガー弾塑性解析は、強制変位による解析を実施する場合と戸実験のシミュレーションについて、変位、ひずみ、応力の各項目に対し、掘削荷重外力を作用させる解析を実施するトンネル掘削問題のシミュレーションについて、変位に対し、計算値を実用上問題のない精度で再現できる結果を示した。

ここでモール・クーロンドラッカー・ブラガー弾塑性解析の実用に要した時間はNEX製パソコンPC-98NX MAK40H(Celeron400MHz、メモリ160MB)を用いて、落とし戸実験モデルで約30分、トンネル掘削モデルで最も節点数の多いB現場のケースでも、約10分であった。

6. おわりに

本研究の目標は、現実に実施されている落とし戸実験の荷重を主として捉えたシミュレーションにより実験に対する再現性が確認された。非従来流れ則に基づくモール・クーロンドラッカー・ブラガー弾塑性解析を用いて、応力解放の概念を導入せず、トンネル周辺の地盤に存在する変位を実用的に再現することである。

このようにシールド掘削時の地盤変状を予測する影響解析には、今回提案した有限要素法モール・クーロンドラッカー・ブラガー弾塑性解析が有効であることを示した。使用する土質定数の数が多いので弹性解析よりは有限に時間と手間を要するが、解析時間や使用ハードウェアの点からは実行の障害となる要因は希少であると考えている。しかし本解析法においても、地下水の影響が考慮されていない、粘性土地盤での検討が不足している、などの課題が存在する。ここで変形係数Eやポアソン比などの力学定数と、粘着力cと内部摩擦角φのせん断強度定数はひずみレベル依存性を有することが知られている。今回の解析では土質定数の決定において、豊浦砂の内部摩擦角φやダライゼンシー角φは微小ひずみ領域での実験結果を用いているが、トンネル掘削問題での変形係数や、いくつかの内部摩擦角の値は経験式を基にしている。そのため土質定数の決定根拠において、厳密な意味での統一性が欠けるという問題点が存在する。このような状況下で、ひずみレベル依存性を考慮した土質定数の決定と解析プログラムの開発が可能となるべき、実施工に対する解析精度の更なる向上を望むと考えており、将来的な課題と認識している。

今後は基礎的な実験・解析による検討も含めることから、シールドトンネル掘削時の地盤挙動計測結果に対する検討を追加して、より実際的な評価を行い、土質力学、数値解析の両分野に立脚し、かつ実務者からの支持を得られるような解析環境の整備を目指して研究を進めていきたいと考えている。

参考文献

1) 重水尚志、山本征彦、大田 弘、野口利雄：砂地盤中のトンネル掘削に伴う荷重の再配分落とし戸実験に基づく基礎的検討、土木学会、トンネル工学研究発表会論文、報告集、第2巻、pp.27-34、1992.10。
2) 重水尚志、山本征彦、野口利雄：落とし戸実験など面的な荷重に伴う荷重分布、土木学会、トンネル工学研究発表会論文、報告集、第3巻、pp.95-102、1993.11。
3) 野口利雄、重水尚志：落とし戸実験による応力解放の影響評価（その3）－既設地中構造物への影響の検討－、土木学会第49回年次学術講演会、pp.1320-1321、1994.9。
4) 野口利雄、重水尚志、砂地盤中のトンネル掘削に伴う荷重の再配分に関する基礎的研究、土木学会論文集、No.534/VI-30、pp.77-85、1996.3。
5) たとえば、川本統方、林正夫：地盤工学における有限要素法、土質力学と岩盤力学へのアプローチ、培風館、pp.77-76、1978。
6) なお、ずい土質力学原論、(社) 土質工学会、pp.1-44、pp.203-243、1988。
7) 田中忠生、酒井雅典：有限要素解析による進行性破壊とスケール効果の検討、農業土木学会論文集、第153号、pp.1-10、1991。
8) 田中忠生：序断帯を伴うひずみ軟化構成モデルと有限要素法による地盤の支持力解析、農業土木学会論文集、第154号、pp.83-88、1991。
9) 仏元 信：極低圧下における砂の変形強度特性、東京大学大学院修士論文、1985。
STUDY ON GROUND DEFORMATION ANALYSIS DURING SHIELD TUNNELLING BY NONASSOCIATED FLOW RULE-BASED FEM

Toshio NOGUCHI and Hisashi TARUMI

This paper presents an analytical simulation procedure by a hybrid FEM based on nonassociated flow rule for ground deformation during shield-tunneling. Firstly, trap door test results for sand are analyzed in terms of load, displacement and shear strain through three kinds of FEM and their applicabilities to the analysis of ground behaviors are estimated. Secondly, actual field measurement results of ground deformation are analysed without stress release rate in accordance with the execution sequences by the same analytical methods.

Consequently the hybrid elastic-plastic FEM method, though roughly estimated soil properties are adopted for the calculation, is concluded to be effective for analysis and prediction of ground deformation during shield tunneling.