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Recent experiments on pre-cracked beam conducted by the authors pose challenge to the numerical
analysis in the field of reinforced concrete mechanics. The numerical requirements of pre-cracked
beam problem are identified as (1) multi-step loading paths and path-dependency transfer, (2)
multidirectional cracks with crack interaction and (3) highly anisotropic shear along pre-crack plane.
Four-way fixed crack approach is judged to fulfil the above numerical requirements. The finite clement
analysis of pre-cracked beam is conducted. It is verified that the four-way fixed crack approach can
reliably reproduce the experimental results of pre-cracked beam
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1. INTRODUCTION

The influence of vertical pre-cracks on RC
behaviors subjected to shear has been investigated in
the experiments recently conducted by the authors®.
Experimentai results showed that vertical pre-cracks
could greatly affect shear behavior of RC beam in
terms of loading capacity, failure characteristics and
load-displacement relation. When vertical pre-
cracks exist, the loading capacity is greatly
increased.

It was found that the width of pre-crack is the
main factor that affects the failure behavior.
Rationale in mechanics of pre-cracked element
exists, which can explain all experimental resuits
and associated phenomena. This mechanics
rationale is based upon the shear anisotropy along
pre-crack plane.

This paper aims at analytically investigating the
behavior of pre-cracked members. The authors
suppose that the rationale in mechanics is the core
for the analytical simulation. However, the closed
form solution may not be easily obtained in the
structural or member level due to the complexities
of the problem. In this paper, the finite element
method is judged to suit the problem since the
overall member behavior can be assembled from the
element behavior. As a matter of fact, the rationale
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in mechanics can be reproduced in the finite element
analysis based upon the local crack behavior.

The first part of this paper reviews the authors’
recent experimental observations and findings.
Before the numerical investigation, the numerical
requirements of the pre-cracked beam problems are
indicated. It will be argued that not all crack
methods available in literature can solve the
problem. The authors then briefly review available
crack schemes and point out their limitations and
applicability. Finally, it is judged that the multiple
fixed crack approach may be most appropriate for
the pre-cracked beam problem. Then the finite
element analysis is conducted and the comparison
with experiment is discussed.

2. SHEAR TEST OF PRE-CRACKED
BEAMS: REVIEW OF THE AUTHORS’
EXPERIMENT

Before proceeding to the numerical investigation,
the brief review will be helpful for understanding
the phenomena and the numerical requirements of
the pre-cracked beam problem. Experimental outline
is shown in Fig.l. The loading procedure was
composed of two steps (Fig.1). The first step
applied reversed flexural loading to introduce
vertical pre-cracks penetrating the entire sections.



A

180 degree rotation  Turning upside down the beam

'
i 450

N

|

Second (reversed) flexure, Penetrating cracks

(a) First step reversed flexural loading

(b) Second step shear loading

Fig.1 Loading set up in the author’s experiment

The second step applied shear loading to cause
diagonal shear crack propagating across the vertical
pre-crack planes. In order to induce shear crack,
bearing supports were shifted towards beam mid-
span such that the shear span to effective depth ratio
was 2.41. Typical load-displacement relationship of
pre-cracked beam is shown in Fig.2 in comparison
with the non pre-cracked beam. It is seen that pre-
cracked beam shows considerably higher capacity,
ductility, energy consumption but lower stiffness.
Failure crack pattern of pre-cracked and non pre-
cracked beams is compared in Fig.3. The failure of
the non pre-cracked beam is due to the unstable
propagation of a single diagonal crack (Fig.3a). On
the contrary, the propagation of a diagonal crack in
the pre-cracked beam is not continuos, but arrested
by vertical pre-cracks. This results in the
phenomenon of crack arrest and diversion”, which
explains the large increase in loading capacity.

The failure in pre-cracked beam is caused by the
formation of several independent diagonal cracks
that combine together into a single crack along the
failure path. The behavior of pre-cracked beam can
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(b) Failure crack pattern of pre-cracked beam

Fig.3 Experimental Failure crack pattern

be explained in terms of the relative deformational
behavior between pre-crack and diagonal crack or
the crack interaction. Due to the mutual contribution
of pre-crack and diagonal crack, the crack formed in
pre-cracked beam has Z-shape pattern (referred to as
Z-crack as shown in Fig.3b).

Pre-cracks affect not only post-diagonal crack
behavior but also pre-diagonal crack behavior. The
load-displacement of pre-cracked beam (Fig.2)
shows initial non-linearity due to deformation of
pre-cracks. All experimental observations can be
explained by the shear anisotropy along pre-crack
plane”. Due to the anisotropy and shear slip along
pre-crack, principal stresses will not generally
coincide with principal strains. The imposed total
strain is mainly transformed into the slip along pre-
crack, thus, the diagonal stress is relaxed. This
explains the arrest of diagonal crack propagation at
the pre-crack plane.

204



REQUIREMENT |
Multi-step loading path,
Transfer of path dependency
information

REQUIREMENT 2

Multi-directional cracks
Crack interaction
Relative deformation mode

REQUIREMENT 3
Anisotropy in shear

Shear slip and shear transfer
along pre-crack interface

Fig.4 Numerical requirements of the pre-cracked beam problem

3. NUMERICAL REQUIREMENTS OF
THE PRE-CRACKED BEAM
PROBLEM

Before performing the numerical investigation, the
numerical requirements of the pre-cracked beam
problems are pointed out as follows (Fig.4),

(1) Multi-step loading path and path-dependency

transfer

In the experiment, two loading steps are
employed. The first step is reversed flexural loading
to introduce pre-cracks and the second step is shear
loading to apply shear crack penetrating the pre-
crack planes. It is noted that not only loading
condition but also support configuration changes
from the first to the second step. The loading pattern
is described as non-proportional multi-step loading
path.

In this case, the analysis cannot be carried out in
a single step. The analysis needs to be divided into
two sequential sub-steps with different loading and
boundary conditions. Therefore, it is necessary that
the pre-crack condition in the first step must be
transferred to the second step as the initial condition.
Not only pre-crack state, but also other state
variables and nodal degree of freedom have to be
properly managed. The state variables include state
of stress/strain and cracking information at Gauss
points. Nodal degree of freedom includes force and
displacement. The first requirement of the analysis
scheme is that it must be able to record and transfer
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path-dependency for the correct representation of
material states. '

(2) Multi-directional cracks with crack

interaction

The crack pattern in the pre-cracked beam clearly
shows that two systems of cracks co-exist, the pre-
crack and diagonal crack. It is discussed that the
behavior of pre-cracked beam is governed by the
crack interaction or the mutual contribution of pre-
crack and diagonal crack. Therefore, in the pre-
cracked beam problem, the analysis scheme must be
able to manage the multi-directional cracking
situation. It must be able to detect which crack is to
be active or dormant. In other words, the relative
deformational behavior of each crack in the element
or the crack interaction has to be handled properly
by the analysis scheme. It is noted that the shear
behavior of the non pre-cracked beam is less
complicated since it involves only one crack system.

(3) Highly shear anisotropy along weak plane of
pre-cracks.

The third requirement is the strong anisotropy
along pre-crack plane”. Due to pre-crack, the
element behavior cannot be defined as isotropic.
Principal stresses will not generally coincide with
principal strains. To take the shear anisotropy into
account, the normal crack stress release and the
shear transfer along the crack interface must be
explicitty modeled in the analysis scheme. In other
words, the shear behavior is no longer dependent on
normal action, but must be directly related to the
aggregate interlock along the crack interface.
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Fig.5 Representation of crack in FEM

4. CRACK SCHEMES IN LITERACTURE

In the previous section, three numerical
requirements of the pre-cracked beam problem have
been identified. The authors will take a brief review
of crack schemes available in literature and discuss
the one that can fulfil the above numerical
requirements.

(1) Discrete versus smeared crack approaches

In the finite element analysis, two main different
disciplines for representing cracks exist. They are
so-called discrete crack approach and smeared or
distributed crack approach.

In discrete crack approach?, cracks are idealized
as the separation between two adjacent finite
elements (Fig.5a). The interface elements are
installed to represent discrete crack directly. For the
problems in which the directions and locations of
cracks cannot be specified in advance, the use of
discrete crack approach may be inconvenient since
new elements and nodes must be added for each
formation of new crack. This results in the
modification of finite element mesh and may require
significant computational time and cost.

However, the use of discrete crack approach may
be helpful for problems where locations of
discontinuity can be clearly identified. These
include interfaces at the interconnection of RC
members with substantial difference in stiffness”,
interfaces between different material contacts such
as structural steel/concrete, concrete/soil and
reinforcement/concrete to model bond slip.

Another crack approach is the smeared crack
method®. In this method, cracked concrete is
considered as continuum with the same finite
element mesh preserved throughout the analysis
(Fig.5b). Cracking is modeled by changing the
material stiffness appropriately. The smeared crack
approach is relatively attractive for the problem in
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which the directions or locations of cracks are not
known in advance”,

(2) Classification of smeared crack approach

Fixed versus rotating crack scheme
a) Fixed crack approach

In the fixed crack approach™, crack is described
to be fixed upon its generation. The main idea of the
fixed crack approach is that it explicitly considers
Mode I normal crack stress release and Mode II
shear traction transfer. These two behaviors have
their real physical backgrounds in terms of
aggregate bridging and interlock, respectively. The
importance of mode I normal traction is clear since
it enables the objectivity regarding the mesh size for
the application of fracture mechanics in finite -
element analysis.

However, the modeling of mode 1I shear transfer
has not received much attention and the clear
understanding of shear fracture energy is not
available. The authors wish to point out that the
mode II shear transfer is also crucial for the correct
modeling of crack behavior. In the element level,
the fixed crack approach considers maximum degree
of freedom of the element. This allows the
independent treatment of shear and normal actions
(Fig.6), which is the basic requirement for the
anisotropy.

In the 2-D context, kinematic variables include
tensile strain normal to a crack, compressive strain
parallel to a crack and shear strain along crack
interface. Corresponding static variables include
tensile stress normal to a crack, compressive stress
parallel to a crack and shear stress along crack
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interface. The relationships between kinematic and
static variables are described by constitutive
equations.

Another prominent character of the fixed crack
approach is that the crack memory and path-
dependency are permanently recorded unless the
computation is finished. This enables the
appropriate treatment of path-dependency as one of
the numerical requirements.

b) Rotating crack approach

In the rotating crack approac , it is assumed
that the axis of orthotropy, i.e., axis along which
stresses are computed, coincide with the principal
strain direction. This implies that principal stress
vector coincides with principal strain vector, which
is known as the co-axiality principle. The co-axiality
principle is essentially equivalent to the isotropy.
Since shear stress vanishes on the continually
updated principal planes where stresses are
computed, the consideration of shear transfer is not
needed. Only normal stress-strain relations in the
direction normal and parallel to the crack axis are
needed.

Due to the isotropy assumption, the rotating crack
approach cannot treat shear slip and shear traction
transfer due to aggregate interlock. Furthermore, in
the rotating crack approach, only one crack is
considered at one time, thus, the path-dependency
needs not be recorded. Moreover, this also means
that the multi-cracking condition and crack
interaction cannot be taken into account. From this
discussion, it is concluded that the rotating crack
approach cannot fulfil any of the above numerical
requirements and thus not applicable to the pre-
cracked beam problem.

h6).7).8).9)

5. FOUR-WAY FIXED CRACK MODEL

From the above discussion, it is clarified that the
fixed crack approach may be more appropriate for
the pre-cracked beam problem. The fixed crack
approach records all cracks and thus allows multi-
cracks to be considered. The path dependency can
be transferred among load steps. The crack
interaction can be handled by the active crack
concept”. The shear anisotropy can be taken into
account by the explicit and independent treatment of
shear and normal stress transfer.

One of the recent developments in line with the
fixed crack scheme is the multi-directional four-way
fixed crack approach proposed by Fukuura and
Maekawa'®'", This crack scheme was installed in
the WCOMD?® general nonlinear path-dependent
finite element analysis program, which will be used
for the numerical investigation in this paper.
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Four-way fixed crack model can be regarded as
the generalization of two-way cracking approach”,
implemented such that up to four cracks in arbitrary
orientations at any Gauss point can be covered. The
active crack hypothesis is still preserved but the
applicability has been extended to the co-ordinate
level.

In the scheme of four-way cracking concept, a
maximum of two orthogonal co-ordinates can be
established at the integration point of the element. In
each co-ordinate, at most 2 cracks are allowed. Two
cracks associated with a co-ordinate system need not
be perfectly orthogonal but must satisfy the quasi-
orthogonal condition that the angle between them is
larger than 67.5° but less than 112.5°. Upon the
generation of the first crack, the first co-ordinate
system is established. If the next crack is generated
and meets the aforementioned angular criterion, it
will be treated in the same co-ordinate, otherwise,
the second co-ordinate is set-up. The assignments of
the co-ordinate systems and the generation of new
cracks will be implemented according to this rule
until up to four-way cracks have been induced into
the Gauss point of RC element.

- Fig.7 describes the flow of stress computation in
this scheme. The active crack concept is based on
the fact that under the multi-cracking condition,
overall non-linearity is generally prevailed by
certain cracks while others are hardly activated. The
crack of which normal strain is smaller is considered
dormant due to its relatively higher stiffness. In each
co-ordinate, the stress computation will be
undertaken along the selected active crack. Then
the active co-ordinate will be judged by comparing
the normal strain of the active crack in each co-
ordinate. Ultimately, the final stress output of the
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element will be entirely governed by the crack in the
selected active co-ordinate. Regarding revision of
path-dependent parameters, since the concrete
stresses along normal and parallel to cracks are
highiy-path dependent, the update of path-dependent
parameters is carried out in both active and dormant
co-ordinates. However, the evolution of shear is
hardly mobilized in the dormant co-ordinate, thus
shear related path dependency is not revised in the
step computation.

Fig.8 shows the coverage of four-way fixed
crack approach applied to RC smeared elements
with 2, 3 and up to four-way cracks in arbitrary
directions. In general, any number of cracks can be
covered by adding more orthogonal co-ordinate
systems and refining the criterion for introducing
these co-ordinates. However, such implementation
is hardly justified since it may be quite rare to
encounter cracked elements of more than four
independent directions. Moreover, adding more co-
ordinates not only complicates the analysis but also
requires more computational time for recording
path-dependent parameters and stress computation
process. The authors judge that four-way fixed crack
approach is sufficient for dealing with cracked
reinforced concrete in most engineering situations.

6. LOCAL CONSTITUTIVE MODELS

In line with the fixed crack approach, the local

constitutive laws are formulated along the crack axis.

The global imposed strain vector of a RC element is
transformed into local strains along the crack and
reinforcement directions by the transformation rule.
Then, local constitutive laws are applied to compute
local stresses from decomposed local strains for
both concrete and reinforcing bars. Once again,

through the transformation rule, these local stresses
will be transformed back to the global system.
Through compatibility, total stress vector of a RC
element in the global co-ordinate is obtained from
the direct superposition of concrete and
reinforcement stress vectors.

.

(1) Concrete'™ "

The local strain vector of concrete consists of
strain normal to a crack, &, strain parallel to a crack,
€, and the shear strain along crack interface, Y.
Input variables for local constitutive laws are local
strains defined above as well as necessary path-
dependent parameters. The local constitutive laws
are formulated for both envelope and internal loops.
The constitutive laws can be defined as the uni-axial
relations between the average stress and average
strain as follows,

o, =0(5nrennl,2....n) (1)
O, =0(&;,€0 Npe1,.20) @
T = t(Ycr'en & ,Tl2n+|...) (3)

where ¢ and 1 represent the constitutive laws for
computing normal and shear stresses, respectively.
N represents the set of path-dependent parameters
for memorizing the loading path. The férmulation of
the above constitutive laws and the Path-dependent
parameters are already reported ™', In the
following, only the formula for envelope will be
given.

The above constitutive laws correspond to three
degree of freedom of a cracked element, namiely,
tension stiffening/softening model normal to the
crack, compression model paralle! to the crack and
shear transfer model along the crack interface. The
coupling between shear and normal action is not
explicitly considered in the formulation of stiffness
matrix. The shear dilatancy is implicitly considered
by adding the induced compressive normal stress
due to shear to the computed normal stress
orthogonal to the crack axis.

a) Coupled compression-tension model for
normal stresses parallel and perpendicular to
crack

The constitutive law for computing normal
stresses (denoted as ¢ in Eq.l and Eq.2) is the
coupled compression-tension model as shown in
Fig.9. For concrete in tension, the model covers
both the softening due to aggregate bridging at the
crack plane as well as the tension stiffening effect
due to bond stress transfer between concrete and
steel bar. For envelope in tension, the model can be
expressed as,
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where © is the tensile stress transfer normal to
crack, €, is the cracking strain, c s
softening/stiffening parameter'®'",
For compression parallel to the crack direction, the
normal stress is computed from the continuum

deformation. For envelope, the elasto-plastic
fracture model® is used,
=0, = KoEo (€, —¢p) _ 3.

where Ky is the fracture parameter, Ey is the

initial stiffness and €, is the compressive plastic

strain. The model combines the non-linearity of
plasticity and fracturing damages to account for the
permanent deformation and loss of elastic strain
energy capacity, respectively. The reduced
compressive stress transfer ability due to transverse
tensile strain” is considered as additional damage'?
by factorizing the normal coupled stresses by ® as,

O, = O'(Et »€0Mpet,..20 )= (O(En ) o(st 'nn+l..‘.2n) (6)

b) Shear transfer model

For computing shear stress transfer along the
crack interface and the shear stiffness of the crack,
the contact density model' is used for the envelope.
Thus, Eq. 3 can be expressed as,

2
t=f, -1-;% %
G, =1® @®)

cr

where f, is shear strength transfer along the crack.
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B is the normalized shear strain defined as follows,

p=l= ©)

€y

For the cracked RC element, The imposed total
shear strain (y) compatible with the assumed nodal

. displacement can be separated into the shear strain

due to un-cracked concrete part () and shear strain
due to cracks (Y., as,
Y=Yo +Yor =Ver (10)

‘Generally, shear strain due to un-cracked
concrete part is relatively small compared with
crack shear strain, thus it can be ignored. For the
active co-ordinate, which contains two-way cracks,
the crack shear strain must be decomposed into the
shear strain along each crack as,

Yer =Yert +Yer2 (11)

Yert @nd Y. denote the local shear strain along
each crack which will be input to the shear
constitutive law to compute shear stress transfer
along each crack, respectively.

Since each crack can be independently subjected
to loading, unloading or reloading conditions. The
component of shear strain along each crack direction
must be determined such that the equilibrium of
shear stress is satisfied as (Fig.10),

Gen (Yert» €01 M) Yon =Gy (Yer2:€n2:M2) " Yera (12)

The overall shear modulus of the element (G)
considering two-cracks can be expressed as;

! (13)
1 i ]

—+ +
Gc 'Gcrl(YcrlvenI'nl) GWZ(Ych’snan)

G=
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where G, is the secant shear modulus of un-cracked
concrete and G, is the secant shear modulus of the
i-th crack.

(2) Modeling of reinforcing bar

Local strain vector of reinforcing bar is defined
along the bar axis. Reinforcing bar is modeled in the
smeared concept, that is, it is assumed uniformly
distributed over the whole element. This
representation is more advantageous than discrete
one since no additional nodes and elements are
required.

For reinforcing steel bar, compressive strains are
usually smaller than tensile strains, thus preventing
reinforcement  from  excessive yielding in
compression before spalling of concrete cover has
occurred. At the tension side, however, the highly
localized plasticity at the vicinity of cracks has to be
taken into account. It is known that bond transfer
between concrete and steel has to be considered in
the average stress-average strain relations of both
concrete and reinforcement. For concrete, this is
known as tension stiffening effect”. For reinforcing
bar, it is shown that, due to bond effect, average
yield stress is reduced compared with bare bar”

Thus the modeling of reinforcing bar in
compression and tension can be different. For
compression, the bilinear bare bar model is assumed
in the analysis. For tension, the average stress-strain
relationship considering the effect of localized
plasticity as originally proposed by Okamura and
Maekawa”, and further refined by Salem and
Maekawa'¥ in consideration of very high plastic
strain, is adopted. Fig. 11 shows modeling of
reinforcing bars for both envelope and internal loops
representing path-dependency treatment' ™'

Since cracks in reinforced concrete element need
not be orthogonal. with the reinforcement direction,
the bond effect cannot be expected fully functional
in such case. Reinforcing bar orthogonal to crack is
supposed to have full bond effect. On the contrary,
reinforcing bar parallel to crack is supposed to
follow bare bar behavior. Therefore, the
computation of mean yield strength has to take into
account the angular deviation of normal to crack
from reinforcing bar direction'®'" (Fig.11).

7. NUMERICAL VERIFICATION

In this section, the experiment conducted by the
authors" will be simulated. Three beams will be
analyzed. Beam 1 is the reference beam without pre-
cracks. Beam 2 and 3 represent pre-cracked beams.
The level of reversed flexural loading assigned to
these beams is different in order to introduce pre-
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Fig.12 Specimen dimension, material properties and finite
element mesh

cracks with different width into them. The width of
pre-crack in beam 2 is given much larger than in
beam 3. In the experiment, crack pattern and failure
behavior were different between beam 2 and beam 3.
The capability of four-way fixed crack approach in
capturing the effect of crack width will be checked.
Specimen dimension, cross section, reinforcement
arrangement and material properties are shown in
Fig.12a. The reinforcement ratio of main bar is
1.14 %. Tested concrete compressive strength is
26.5 Mpa. Tested yield strength of main bar is 338.4
Mpa. The same finite element mesh used for these
three beams is shown in Fig.12b. Due to symmetry,
the analysis of half-beam is sufficient for saving
computational time. Elastic elements are provided at
the loading point and support to gradually distribute
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the applied load over a sufficient area into the main
body of the beam. Without them, the localized stress
concentration due to direct point contact between
load and RC elements can lead to premature failure.
In the experiment, steel bearing plates were actually
provided for this purpose. The numerical load
application is implemented through the step
increment of forced displacement at the specified
node.

(1) Analysis of beam 1: reference case

Beam 1 is the non pre-cracked beam. Since, the
behavior is governed by diagonal crack only, the
analysis does not check the capability of multi-
direction crack scheme. However, the capability of
WCOMD in capturing the localization can be
directly scrutinized. In this case, the multi-

directional crack scheme must capture the dominant
role of diagonal crack as one extreme of the crack
scheme.

WCOMD currently incorporates the treatment of
fracture mechanics through a zoning concept
proposed by An and Maekawa'®. In this approach,
response of concrete fracture depends on its location
relative to steel bars. Tension softening stress
release model is assigned to concrete in the web
zone, which is far from reinforcement, i.e., plain
concrete zone (PL zone). On the other hand, tension
stiffening model rooted in the interface bond
between concrete and steel bar is assigned to RC
elements near reinforcing bars, i.e., reinforced
concrete zone (RC zone).

Numerical and experimental load-displacement
relationships are compared in Fig.13. Fair
agreement can be noticed. Analysis slightly
overestimates loading capacity and stiffness.
Prediction of post-peak softening is currently
possible but not accurate. It is noted that the
softening behavior depends on the coupled
deformation of cracks in mode I and mode IL
Currently, the correct shear softening model is not
available. More research in this area is needed.

Numerical and experimental failure crack
patterns are also shown in Fig.14. Analysis can
predict the localization around the web zone of
shear span similar to the experiment. This verifies
that the FEM can successfully predict behavior of
beam in which diagonal crack totally dominates,
which represents one extreme where no pre-crack
exists.

(2) Analysis of beam 2: beam containing large
pre-crack

Next, the authors discuss the analysis of beam 2".
Similar to the experiment, the analysis is composed
of two steps. The first step applies reversed flexural
loading for inducing pre-cracks. The second step
applies shear loading to the beam. Numerical and
experimental results representing the first step
loading are shown in Fig.15. Close agreement can
be obtained in terms of capacity, stiffness, residual
deformation for both loading and unloading paths.

Initial pre-crack pattern resulted from this
reversed flexure is illustrated in Fig.16. It is noted
that localization of vertical pre-cracks (discrete
cracks) can be captured despite the fact that only
smeared elements are employed and constant
bending moment is applied in the flexural span. In
the figure, smaller width of pre-cracks is computed
at the top fiber since it is subjected to compression
in the reversed flexural loading. However the
discrete localization captured in the analysis is not
so perfect as in the experimental observation.
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Fig.16 Numerical crack pattern after reversed flexure :
beam 2: larger pre-crack case

The artificial discrete zones simulated by smeared
element appear distributed in a larger band within
the element size compared with real discrete cracks
in the experiment. Furthermore, it is noted that
cracks in RC elements in the tensile zone are more
uniformly distributed over the element and over the
flexure span. This implies that the localization
prediction in the web zone (PL zone) is, to some
degree, due to the mode I softening stress release
implemented in the FEM for handling fracture
mechanics. Nevertheless, such softening treatment
does not ensure smeared scheme to perfectly
reproduce discrete cracks.

In the second loading step, shear force is applied
to the beam by means of three-point loading. In the
experiment, bearing supports were moved towards
mid-span such that the shear span to effective depth
ratio was 2.41. In the analysis, this is implemented
by changing the boundary condition of the problem.
The fixed crack approach allows the transfer of pre-
crack state and other state variables from reversed
flexural loading to be the initial condition of the
second stage shear loading. In the second analysis,
shear is applied to the beam containing vertical pre-
cracks. Initial loading stage successfully predicts Z-
crack formation around each pre-crack similar to the
experiment as shown in Fig.17.
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Fig.18 Comparison of load-displacement relations in beam 2:
Experiment vs. analysis

Comparison between numerical and experimental
results is shown in Fig.18. The ultimate capacity can
be captured in the analysis. As can be observed from
the figure, numerical load-displacement curve does
not smoothly progress but shows the serrated pattern
instead. In fact, experimental observation also
demonstrated this behavior which is due to the crack
arrest and diversion phenomenon. Once a diagonal
crack is formed, load drops. However, since
diagonal crack cannot propagate continuously at the
pre-crack plane, further load can be resisted. This
explains periodic cycles of temporary drop and
increase in load-displacement curve, which are
captured in both analysis and experiment. However
the analysis seems to predict higher irregularity than
the experiment. This is possibly due to the
deficiency of smeared-element in simulating discrete
crack. Since the softening path is not recorded in the
experiment, the analysis is conducted until the
experimental failure point.
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Fig.19 Failure crack pattern: smeared elements only

Final failure crack pattern is illustrated in Fig.19.
In order to aid the visualization, two crack patterns
corresponding to secondary and main failure cracks
are separately drawn. Secondary cracks refer to
those cracks that are located far from the web
portion. Owing to their geometrical and positional
attributes, the path of secondary cracks does not
directly connect the loading point to support and
hence hardly causes the ultimate failure. On the
other hand, main failure cracks traverse the web
region and directly link the loading point to support,
enabling the successful formation of failure path.
FEM can capture both crack paths consistently.

As shown in the failure crack pattern, the
disconnected format of the main failure crack
implies the successful reproduction of the
independent formation of several discontinuous
diagonal cracks. This also further means than the
sequence in failure process can be correctly
computed. In the pre-cracked beam, the ultimate
failure is caused by the combination of several
independent discontinuous diagonal cracks rather
than the propagation of a single crack as in the non
pre-cracked beam".

Moreover, as clearly seen in Fig.20, no initiation
of a new diagonal crack in a pre-cracked element is
computationally predicted, which verifies the
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Fig.20 Initiation of diagonal crack in a pre-cracked element

significance of shear transfer. As stated, low shear
transfer along pre-crack plane does not permit the
rebuild of enough stresses for further cracking. This
results in the crack arrest and diversion phenomenon
and the discontinuity of diagonal cracks. The
analysis verifies that shear anisotropy and crack
interaction can be numerically predicted.

From the analysis results, it is seen that all
essential characteristics of pre-crack elements and
its effect on the structural member level can be
captured well qualitatively and quantitatively.
However, it is also judged that the smeared crack
approach may not be perfect in simulating discrete
cracks.

Therefore, it is instructive to undertake a
comparative analysis in which pre-cracks are
simulated by discrete joint elements'®. The
propagation of diagonal crack, on the other hand,
must be simulated by smeared elements in line with
the fixed crack approach. Through the use of
discrete joint elements, the authors suppose that the
pre-cracks may be more properly represented. The
generation and propagation of diagonal cracks
should be the duty of FEM in selecting the most
suitable failure path requiring minimum energy
consumption. '

Finite element mesh is shown in Fig.21. The
loading step applied to the beam is the same as in
the previous case in which only smeared elements
are used. In the first step reversed flexural loading,
the analysis agrees well with the experiment as
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Fig.23 Initial crack pattern: capture of Z-crack formation

shown in Fig.22. Initial stage of shear loading
exhibits Z-crack pattern similar to the experiment as
shown in Fig.23. Both secondary and main failure

crack patterns can be reproduced as shown in Fig.24.

From the shape and position of numerical crack
pattern, it is seen that the combined usage of both
discrete joint and smeared elements gives better
prediction to the experimental results than the use of
smeared elements only. When only smeared
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Fig.25 Comparison of load-displacement relations in beam 2
(smeared + discrete joints) : experiment vs. analysis

elements are used, main failure cracks are seen
disjointed by the width of one element as shown in
Fig.19. However, when discrete joint elements are
used, the width of discontinuity band is significantly
reduced (Fig.24). Load-displacement relationship is
also well simulated with less irregularity as shown
in Fig.25.

(3) Analysis of beam 3: Beam containing small
pre-crack

In contrast to beam 2 in the previous analysis,
beam 3" contains smaller pre-cracks due to lower
level of reversed flexural loading. Due to smaller
pre-crack width, the Z-crack in the experiment has
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Fig.26 Load-displacement relationship of beam 3 (smeared
only) under reversed flexural loading

Numerical failure crack pattern

Fig.27 Crack pattern of beam 3(smeared only) :
experiment vs. analysis

different shape from beam 2. The capability of FEM
to reproduce the beam behavior when initial pre-
crack is smaller will be investigated herein.

Similar to the foregoing analysis, two cases will
be considered for beam 3". The first case uses only
smeared elements while the second case uses both
smeared and discrete joint elements. Unlike beam 2,
the experimental initial crack pattern resulted from
reversed flexural loading of beam 3 showed only
one or two larger cracks in each side of the beam.
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(smeared only) : experiment vs. analysis

The cracking extent is not uniform throughout the
shear span. Therefore, in order to closely reproduce
this initial pre-crack condition, only smeared or
discrete joint elements, depending on the case, at the
center of shear span are assigned lower tensile
strength. The analysis in which only smeared
elements are used is performed first. The first step
reversed flexural loading shows good agreement
between numerical and experimental results as
shown in Fig.26. The transfer of path-dependency to
the second analysis is the same as in the previous
analysis. Initial stage of the second shear loading
exhibits Z-crack mainly developed around the center
portion of the shear span as shown in Fig.27. The
geometry of this Z-crack fairly resembles the
experimental result.

It is noted that the initial Z-crack pattern of beam
3 is quite different from beam 2. This reflects the
difference in width of pre-crack and relative
deformational contribution between pre-crack and
diagonal crack”. In the case of beam 2, several
large pre-cracks are created owing to higher level of
reversed flexure. This therefore results in several Z-
cracks in which larger part is occupied by pre-crack
and the constituent diagonal cracks are more distant
apart. Finite element analysis conducted in the
previous section succeeded in predicting the
behavior of the beam containing large pre-cracks.

For the beam with smaller pre-cracks, FEM can
also simulate Z-crack pattern in which diagonal
crack is dominant. Therefore, the capability of FEM
in reproducing the influence of the width of pre-
crack is verified. Comparison of numerical and
experimental load-displacement relationships is
shown in Fig.28. Similar to beam 2, the softening
path is not recorded in the experiment, thus the
analysis is conducted until the experimental failure
point.
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Fig.31 Crack pattern of beam 3 (smeared + discrete joint
element): analysis vs. experiment
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Fig.32 Comparison of load-displacement relations in beam 3
(smeared + discrete joints) : experiment vs. analysis

FEM can capture capacity well but it seems to
predict higher stiffness. Typical erratic pattern
noticed in the load-displacement curve due to
discontinuity in the diagonal crack propagation can
also be numerically computed. However reliable
computation of displacement cannot be achieved in
this analysis. Analytical failure crack pattern shows
wider band of smeared cracks directly connecting
loading point to support.

The second case employs one row of discrete
joint elements at the center of shear span as shown
in Fig.29. Even if experimental crack pattern shows
several pre-cracks (Fig.27), but only pre-crack at the
center of shear span is much larger than other cracks.
Moreover, the experimental failure crack pattern
shows Z-crack forming around the central pre-crack
only (Fig.27). This verifies that the central pre-crack
with larger width mainly arrests the crack
propagation. Moreover, at the location where
discrete joint elements are not installed in the mesh,
the smeared element is shown to reproduce
localization of pre-crack (Fig. 16). Therefore, the
arrangement of discrete joint elements at the center
of shear span of the beam only would be sufficient.

The analytical prediction is fundamentally
similar to the case in which only smeared elements
are used. Reversed flexural load-displacement
relationship is shown in Fig.30. Initial and final
failure crack patterns are shown in Fig.31 for both
experimental and numerical results. Z-crack can be
captured. Numerical initial crack pattern in Fig.31
(top) also shows localization of vertical pre-cracks
captured by smeared element. Load-displacement
behavior under shear loading still exhibits higher
stiffness as shown in Fig.32. But the first drop in
load-displacement curve signifying the arrival of the
first diagonal crack seems closer to the experimental
result than the previous case. Failure crack pattern

306



as shown in Fig.31 is similar to the previous
prediction.

8. CONCLUSIONS

A numerical investigation of the pre-cracked
reinforced members is conducted in this paper.
Numerical requirements of the pre-cracked beam
problem are identified, which include (1) multi-step
loading path and path-dependency transfer, (2)
multi-directional cracks with crack interaction and
(3) highly shear anisotropy along pre-crack plane. It
is judged that the four-way fixed crack approach can
satisfy these numerical requirements and thus
selected as the numerical tool. ‘

In the fixed crack methodology, pre-crack
condition and other state variables representing the
environmental/loading history of RC members can
be recorded and transferred over loading stages.
Moreover, through the active crack concept, the
multi-directional cracking situation with mutual
interaction can be accounted for. Finally, the explicit
treatment of mode I softening bridging and mode II
aggregate interlock allows the independence of
principal stress and strain vectors. Hence, shear
anisotropy along the pre-crack plane is intrinsically
taken into account. It may be concluded that the
fixed crack approach models the crack behavior
closest to the reality.

The numerical analysis verifies the validity of
the four-way fixed crack approach in simulating the
pre-cracked beam problem. The rationale in
mechanics of pre-cracked element can be
numerically reproduced with reasonable accuracy.
Experimental behavior can be reliably predicted
qualitatively and quantitatively. The influence of the
width of pre-crack can be consistently analyzed,
which verifies the significance of shear slip and the
associated shear transfer along the crack interface.
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