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If rigid body displacements are properly separated from a finite-displacement small-strain
problem, the remaining deformation is within the scope of the small displacement theory. For this
purpose, the rigid body displacement of each sufficiently small subdomain of an elastic body must
be removed independently from other subdomains before the actual deformation occurs. This paper
presents a rigorous and straightforward theoretical formulation for a numerical solution procedure
based on this concept. The simplicity of the formulation is due to the fact that it is developed for a
general three-dimensional solid rather than structural elements as in the past works.
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1. INTRODUCTION

Many procedures based on the total and up-
dated Lagrangian descriptions have been pro-
posed to obtain numerical solutions of elastic
finite-displacement small-strain problems”®. It
is often .claimed that a proposed method gives
exact solutions of finite displacement problems
without any theoretically convincing explana-
tion. The fact that many procedures have been
presented to solve these problems indicates itself
that there is a need for a clearer understanding of
the treatment of such problems.

It is well-known that, in the geometrically
nonlinear small-strain problems, displacements
can be decomposed into large rigid body com-
ponents and relatively small deformation com-
ponents”®. This paper aims to show that even
the small displacement theory is sufficient in
each of the subdomains into which a body is di-
vided, if the rigid body displacement is sepa-
rated. The geometric nonlinearity can be fully
accounted for by the transformation matrix,
which is a function of the rigid body displace-
ment. Even the use of the geometric stiffness
matrix is not necessary, provided that strains are
small and the numerical solution procedure con-
verges. This fact has not been clearly reported in
the literature, but the geometric stiffness matrix
is generally included in the discretized analysis

of geometrically nonlinear problems as a neces-
sity. Another related objective of this paper is to
show that the solutions obtained by the proposed
approach are the exact solutions of the finite-
displacement small-strain problems. A theoreti-
cally rigorous and straightforward formulation
of the approach is provided for a linear elastic
solid body. It is additionally aimed to show that
numerous complex formulations developed in
the past.are in fact not necessary to solve the
finite-displacement small-strain problems.

The idea of removing the rigid body displace-
ment used in the proposed formulation is similar
to that of the co-rotational formulations”'". The
latter formulations, however, are based only on
engineering judgement and are lacking in theo-
retical background. Because of this, the possibil-
ity of solving the problem by neglecting the.
higher order terms in the governing equations is
not recognized. The co-rotational procedure has
also been confused with the updated Lagrangian
formulation in the past™ ',

The fact that finite rotations do not follow the
normal tensorial transformation rules causes dif-
ficulty in the normal discretized formulation of
governing equations of structures when finite
displacements have to be considered. An attempt
was made to treat them by introducing the con-
cept of a rotation vector'”. However, the appli-
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cability of this concept was limited to small rota-
tions only®. The concept of the rotation vector
was later extended rigorously to be able to deal
with finite rotations”. The basic discretized
equation was derived for structural elements un-
der a number of assumptions in Reference 8.
The resulting rotation vector, however, differed
from the separately developed rigorous rotation
vector. The former quantity was replaced with
the latter without providing any theoretical ex-
planation®.

Considering an elastic body consisting of suf-
ficiently small arbitrary subdomains, each sub-
domain is subjected to a rigid body displacement
independent of the other subdomains. Then,
body and surface loads as well as internal and
external boundary conditions are imposed bring-
ing the body to its final equilibrium position.
The concept of subdomains is inherent in the
finite element method and the scheme for the
removal of the rigid body displacements can be
easily incorporated in its framework.

“The material coordinates of all points are de-

fined in the global coordinate system in the
original state. However, a local coordinate sys-
tem can always be defined for each subdomain
in the configuration after the rigid body dis-
placement in such a way that the coordinates of
each point remain numerically identical to the
global material coordinates in the original con-
figuration. As such local coordinates are used to
identify the displacement of that point causing
deformation in the body, the approach discussed
in this paper for the study of the finite-
displacement small-strain problems is regarded
as a total Lagrangian approach.

2. SEPARATION OF RIGID BODY
DISPLACEMENTS

Consider a three-dimensional elastic body
undergoing finite displacements but with the
deformation remaining within the range of small
strains. To analyze the body, the Lagrangian
global Cartesian coordinates
x={x;} = {x,, x;, x3} of a material point are
defined in the initial loading-free state. The cor-
responding global orthogonal unit base vectors
are denoted by {i;}={i, i, i3} . Using the
summation convention, the displacement vector
of a point x can be expressed as
u(x) = 4,(x) i;. The position vector of the same

point after the displacement is

R(x) = {x; + % (x)}i; Q)]

where the range of the index i is 1to 3 ina
three-dimensional problem.

The base vectors {G;}={G,, G,, G;} at a
material point x in an equilibrium position,
using the total Lagrangian description, are then
obtained by differentiating the position vector
R(x) with respect to the Cartesian coordinates
x; defined in the initial loading-free state as

Gi(x)=R ;(x)={5; +u; ;(x)} i; @

where d;  =Kronecker's  delta  and

(), =8 )/ x;. The Green's strain tensor is
defined in terms of the base vectors i, and
G;, and, in view of Eq. (2), can be further ex-
pressed in terms of the displacement vector, as

1
¢ =5(G,.G; =ii.i))
, €

= 5(“;‘,1 YUyt U )

Since this study is limited to small strain prob-
lems only, the following relationship holds

le = eyl << 1 )

where e = small non-dimensional quantity rep-
resenting all the components of the strain tensor
after finite displacements.

When the displacements are finite, the base
vectors G, may be significantly different from

i;. However, in view of Eqgs. (3) and (4), the

metric tensor G,.G,=G; after finite dis-

placements remains close to the metric tensor
i,.i; =&, ofthe initial state with a difference of

the order of small strains, i.e.,

G,.G, =i,.i; +O(e) (5)

where O() =Landau's notation denoting a
quantity of the order of the term inside the
brackets. Equation (5) indicates that the base
vectors G, in the final equilibrium configura-
tion are no longer orthogonal unit vectors. How-
ever, the deviations from unit lengths and or-
thogonality conditions are of the order of small
strains.

Let us divide the whole domain of the body
into M arbitrary subdomains
Vim-m=1,2,...., M} . The base vectors at an

arbitrarily selected point O in each subdomain
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Vim in the final equilibrium state are denoted

by G/. The notation ()° indicates the value
of a quantity at the point O. Since the base vec-
tors G; are almost orthogonal unit vectors with
errors of the order of small strains, a set of or-
thogonal unit vectors i; satisfying

iy =3 (6)

=%
and

G!.ij =58, +0(e) O

is always present. One arbitrary set of such base
vectors i; satisfying the conditions given by

Eqs. (6) and (7) is selected for each subdomain
Vimy- An asterisk in the superscript denotes a

quantity defined in the local coordinate system
and also with components decomposed by the
base vectors i, , whereas the same symbol with-

out an asterisk stands for components decom-
posed by the base vectors i,. The rigid body

rotation of the subdomain ¥, is then repre-
sented by a matrix of direction cosines 7
given by

Tif = ii'i J (8)

This leads to the following relationships

i =T ©)
i; = 771 (10)

Taking the rigid body displacement into ac-
count, the final position vector R(x) of a point
x in each subdomain ¥, can be expressed as
the sum of the final position vector (x +u/) i
of the point O, the vector (x, —x°)i; from O
to this point after the rigid body rotation ex-
pressed by 77 , and the displacement
w’ =u (x)i; of the point from the position after
the rigid body displacement. Therefore,

R(0) = (xf +u?) d; + {0 = x0) + s, (T i, (1)

Let us define a local Cartesian coordinate sys-
tem for each subdomain after the rigid body

displacement with i; as the base vectors. To

stick to the total Lagrangian approach, the origin
of each local coordinate system is so chosen that

the local coordinates of a material point after the
rigid body displacement are equal to the global
Lagrangian coordinates x,, which are defined in

the initial state. With this definition, the deriva-
tives with respect to the material coordinates
defined before and after the rigid body dis-
placement are identical and the notation () ;

stands for either of them. In view of Egs. (1) and
(11), the displacement components and their de-
rivatives with respect to the coordinates x, are

obtained as
w(x)=-(x; = x7)+uf

+{(x —x0) + u ()} ¢

(12)

u, ;(X)= =8, + {8 +up ;T2

(13)

Because of the orthogonal nature of the coordi-
nate transformation matrix, we have

TyiTy =6 (14)
Using this fact, the inverses of Egs. (12) and

(13) can be expressed as

u; (x) = ~(x; - x7)

+[(x = x0) + {up () - g TG

(15)

1,/ (X) = =6 + {8y + (I (16)

Substituting Eqgs. (2) and (9) into Eq. (7) leads
to

(Ou +u;:,i)Tkj' =0, + O(e) 17
In view of this equation, Eq. (16) gives
ul’s = 0(e) (18)

which shows that the displacement gradient
ul; =u; (x°) at the point O is of the order of
small strains.
The quantities of the order of u,: 4 at the
point O isrepresented by &°,i.e.,
k® =0y ' (19)

Further, defining the order of the dimensions of
a subdomain by

/= max|x; — x| x; €V (20)

and noting the following relationship by the
Taylor expansion
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u,-"j(x) = u,"; +u,ff;-,,(xk -xp)+ O{(x, —x,‘,’)z} 2D

the magnitude of the displacement gradient, in
view of Eq. (18) and ignoring the terms of the

second and higher orders, can be put in the form
u; ;(x) = O(e) + k°! (22)

If the dimensions of each subdomain are small
enough so that the following condition is satis-
fied

k°l = O(e) (23)
Eq. (22) leads to
u; ;(x) = O(e)

Substituting Eqgs. (10) and (13) into Eq. (2),
the base vectors G; can also be expressed in

24)

terms of the base vectors i; of the local coor-
dinate system and the displacement components
u as

G,(x)={5; + u;’,i(x)}i_‘,‘
Substituting Eq. (25) into Eq. (3), the Green's
strain tensor defined for the global coordinate
system can be expressed in terms of the dis-

placement components u; decomposed by the

(25)

local base vectors i; as

1 Ld * * *
e,-j=5(u,-,j+uj,,+uk_,-uk_j) (26)
Equation (26) shows that the Green's strain ten-
sor e; in the global coordinate system is equal

§

to the Green's strain tensor e i defined in the

local coordinate system. While u;; is gener-

ally not a small quantity, Eq. (24) shows that,
with a proper selection of i; so as to satisfy
Egs. (6) and (7), the orders of magnitude of the
terms u,-'_j and u,:,,» u,:,j are e and &*, re-
spectively. Hence, Eq. (26) can be written as

ey = e,; ={l+ O(e)}e,-;» 27

where

1 . *
& =3(u,-_j +u; ;)

(28)

It is noted here that &; is the small strain ten-

sor defined in the local coordinate system with
the base vectors i; . Thus, the Green's strain ten-

L]
sor e; =¢;

j =¢; is equal to the small strain tensor

&y
within the error of the order of small strains.
Such a relationship, however, does not hold be-
tween the Green's strain tensor and the small
strain tensor ¢; =(u; ; +u; ;)/2 defined in the

defined in the local coordinate system

global coordinate system.

3. GOVERNING EQUATIONS

Let ¥ and S£ be the volume and the exter-
nal surface of an elastic body in the initial load-
ing-free state. The governing differential equa-

tions in each of the subdomains
Vims» m=1,2,.., M} of an elastic body
are!D 19
1
e =5(ui,j Fup uk,j) 29
o'” = Ei]-]dek[ (30)
{(Sy +u Joyt e +X; =0 (1)

where o; =second Piola-Kirchhoff stress ten-
sor; X, =body force .per unit original volume
decomposed by the global base vectors i;; and
E,y =tensor of elastic moduli. The boundary
condition on the part of the external surface
bounding the m -th subdomain, denoted by

SE,» is given as either

[y, =(@]g) (32)

or
(8 +u, ;)oy Vk]V(m) =[fi]s(f;;) (33)
where u; =prescribed displacement;

F, = prescribed external force per unit area; and
v, = direction cosines between the unit outward
normal vector and the base vectors ;.

Internal surfaces between the subdomains are
expressed by {S(,, n=1,2,., N}, where N is
the total number of the internal surfaces. The
boundary conditions on each internal surface
S(’,,) between adjacent subdomains V,, and

Vimy are expressed as

(34)

[ ]Vm) =[y ]V<.,.-) =y ]S{,,)
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and
(& +u ) )oyvi ]Vw)

+ 16y +u Noynly, =l O
where the right hand side of Eq. (35) is the sur-
face force per unit area acting on the n-th in-

- ternal surface.

Considering homogeneous and isotropic elas-
tic materials, the elastic moduli are invariable
with respect to a coordinate transformation.

Hence, the stress tensor r,j'- of the small dis-

placement theory in the local coordinate system
is defined by utilizing the following constitutive
relationship .

(36)

» L]
Ty = Eyén

Substitution of Eqs. (27) and (36) into Eq. (30)
yields

o, = {1+ 0(e)};; (37

Equation (37) implies that, within the range of
small strains, the second Piola-Kirchhoff stress
tensor can be approximated by the stress tensor
r,-;. defined for the small displacement theory in

the local coordinates, provided that a proper se-
lection of i; is made so as to satisfy Eqs. (6)
and (7). Thus, Eq. (30) can be replaced by Eq.
(36) in each subdomain because o; and e
,.J‘,
rors of the order of small strains.

By the use of Egs. (13), (26) and (30), Eq. (31)
can be rewritten as

are equal to r; and e,; respectively with er-

* * -
i {(Bh + 1Y E i (4 + 4y

N | =

(3%)

. *
+u,,’1un,m)},k +X; =0

Carrying out the differentiation with respect to
x; , the first term of Eq. (38) becomes

1 . . .
5 T {(8 + % ) E i (g + 1
. . 1 . .
*Uy Uy )}k =7 Qqug'/m {Cuy o+ st 1) 1
* . . .
+(un_lun,mk +un,mun,lk)} (39)
1 . * .
+3 T;ZEkjlmuh,j {Cu o+t 1) 1
* . * *
+ (un, Iun, mk. + un, mun, Ik)}

1.0 » . . . .
+5 T Eimtp jc (W1, + Y, 1+ U, Yn, m)

In view of Eq. (24) and neglecting the terms of
the order of the square of small strains, Eq. (39)
leads to

He” +u )0} &
1 .. (40)
= EZJPEijm(uI, mt i 1), {1+ O(e)}
Further, using Eqgs. (14), (28), (36) and (40) in
Eq. (31), the equilibrium equation in the direc-
tion of i; in a subdomain can be put in the
form '

(41)

where X, = T2 X, = i-th component of the body

Ty {1+ 0@} + X[ =0

force per unit original volume in the direction of
i; . Equation (41) implies that the equilibrium
equation of the finite displacement theory can be
approximated within the error of the order of
small strains by that of the small displacement
theory when the rigid body displacement is
properly separated in each subdomain. Under the
same condition, it has been already shown that
the strain-displacement relationship and the con-
stitutive equation of the finite displacement the-
ory can be approximated by Eqs. (27) and (36)
respectively.

In view of Egs. (12), (13), (14) and (37), the
boundary conditions. on the external surface

S(’fn) as given by Egs. (32) and (33) become

(=G, = x)) + ) +(xg = x5 + ) TRy,

= (42)
= [ui ]S(‘;r")

or’

[jiv; {1+ OBy, =[F 1g “43)

where F' =TJF;.

Likewise, the continuity conditions on the in-
ternal surface S(,), given by Eqgs. (34) and (35),
can be expressed as

*
(= = %)+ + G =g +w )Ty

=[-(x = x7)+u) +(x -0 +ud Tl (44)
=[ui]3(’n)
and
(77 73vi {1+ 0()}]y
v - (45)

+HT v {1+ 0@y, =[F g
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Fina! deformed
shape

(b) Displaced configuration

Fig. 1 Positions of a node

Summarizing the results, the governing differ-
ential equations of an elastic finite displacement
problem can be replaced by those of the small
displacement problem in each sufficiently small
subdomain with errors of the order of small
strains by separating the rigid body displacement
so as to satisfy Egs. (6), (7) and (23). The only
differences compared with an elastic small dis-
placement problem are the boundary conditions
between subdomains. This is due to the fact that

7) and u of adjacent subdomains are not
identical because of the difference of their rigid

body displacements. These differences were not
stated in the past works.

4. SOLUTION PROCEDURE

(1) Basic solution technique by iteration
Since the rigid body rotation about an arbitrar-
ily selected point O of each subdomain is gen-

erally not known, the direction cosines 7; have

to be guessed for each iterative step by an ap-
propriate rule so as to satisfy Eqs. (6) and (7) as
closely as possible. The rigid body displace-
ments of the subdomains are not identical, and
hence, a node shared by neighboring subdo-
mains in the original state may be separated after
the rigid body displacements. This is illustrated
by a two-dimensional diagram in Fig. 1, where
the positions of the same node N common to
elements a, b and ¢ are shown as N,,, N,yand N,
after the rigid body displacements.

The equilibrium position of the node N is
shown as Ny in Fig. 1b. Since the position N, is
unknown, it has to be guessed by an appropriate
rule for each iterative step. The guessed position
is shown as N, which is in general different
from Ny

The small generalized displacement vector in-
cluding rotational components of the node N in
the subdomain a from the position N,, to the ar-
bitrarily guessed position N, is represented by
dY for a general subdomain, and by d& for
the subdomain a. Similarly, the small general-
ized displacement vector from this guessed but
known position N, of the node N to the unknown
exact position Ny is denoted by df . The small
generalized vector from N,, to Ny is equal to the
sum of d¥ and dY and is denoted by d”

for a general subdomain, and by d™ for the
subdomain a. While d¥ of a node N is differ-

ent for each subdomain, d} is common to all
subdomains sharing the same node N. Hence,
d} can be used to superimpose the element
stiffness equations to obtain the global stiffness
equation.

The objective of the solution scheme is to im-
prove the guessed nodal position N, by iteration
till it coincides with the true position N, within a
specified tolerance. Together with this process,
the estimate of the rigid body displacement of
each subdomain has also to be improved. On
convergence, di becomes zero and dV is
equalto dZ.

The final position R(x") and directions of a
node, which are known after the iteration has

converged to the correct solution, can be written
as

16(2308)



R(x")=(xf +uf) i;

. (46
+{0p —x)+u (xV)) TR )
9,jN =cos™! @G;. I;V) =cos™! T;-jN 47
with
T =RyTY (48)
and
1 3N‘ - '
[R)1=]-g2" 1 4" (49)
e N
2 - ¢l 1

where ()" =value of a quantity at node N;

0,.}" = angles between the global base vectors i,

and the nodal base vectors i”

i at equilibrium

state; and #"* and ¢"° =translational and

rotational components of d" decomposed by
the local base vectors i, .

(2) Stiffness equation

Let Dz, D§ and D be the displacement
vectors comprising the displacement vectors
dy, df and d" of all the nodes of an ele-
ment. The displacement D° of the element
from the position and directions after the rigid
body displacement is equal to D§ +D{ . Using
the governing Eqgs. (28), (36) and (41), the stiff-
ness equation can be obtained in the local coor-
dinate system by the finite element integration
technique. The element stiffness equation so

obtained can be expressed by transforming into
global coordinate system as

T'K“T(DE +D&) - £ =1£° (50)

where T=[7;]", which is a function of the un-

known rigid body rotation, K* = element stiff-
ness matrix; f° =nodal force vector of the ele-
ment corresponding to D°; and £ = resultant
nodal force vector due to the body forces. In the
above equation, D§, Di, f° and f* are
vectors in the global coordinate system, while

K¢ is written in the local coordinate system.
When the small errors of the order of strains are
completely neglected in the governing equations
after the separation of the rigid body displace-
ments, K* becomes equal to the elastic stiff-

ness matrix K% of the familiar linear structural
analyses. If the next higher order terms are re-
tained, it becomes equal to the sum of the elastic
and geometric  stiffness matrices, i.e.,
K% +K§5'9.

Using the common nodal displacement vector
D5 of all elements, the element stiffness equa-

tions can be superimposed, resulting in the fol-
lowing global equilibrium equation

{Z(T'KT)}Dy

51
=f+Zf - S{TTK*T)DE} G

where D =global displacement vector, of

which D§ is a subvector; f = global external
load vector corresponding to Dy; and the sum-

mation sign symbolically represents the usual
assembling procedure of the stiffness method.

(3) Iteration scheme

The estimates of the common nodal positions,
Ny's, as well as the rigid body displacements of
the elements for the first iterative step at a given
load level can be obtained by appropriate ex-
trapolations from the solutions for the preceding
load levels. For the first load level, at which no
preceding solution exists, the initial configura-
tion could be used as the guess solution to begin
the iterative procedure.

In the v-th iterative step at a load level, D"

can be calculated from the guessed nodal posi-
tions and the guessed rigid body displacements.

Substituting D¢ into Eq. (51) and solving the
linear system of equations, DY is obtained. If

Dg is not close to zero within a specified toler-

ance, the iterative procedure has to be continued
to the (v+1)-th step. The nodal positions de-
termined by adding DZ” +aDg"” to the con-
figuration after the rigid body displacement in
the v-th step can be conveniently used as the
new guessed common nodal points, N,'s, in the
(v+1)-th step. Here, a is a positive factor
normally taken as 1.0, but other values may be
selected to improve the convergence of the itera-
tive solution procedure. The rigid body dis-
placement of each subdomain for the (v+1)-th
iterative step can be decided by an appropriate
prescribed rule, for example, by making the

e, v+l

norm of D¢ a minimum.
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Fig.2 Two-bar elastic truss

5. NUMERICAL EXAMPLES

Four simple numerical examples are presented
to illustrate the theoretical concepts and to dem-
onstrate the effectiveness of the solution proce-

dure proposed in this paper. Although the theo-

retical development has been made for a three-
dimensional solid, the governing equations of
the structural elements used in the numerical
examples can be easily obtained by imposing
kinematic constraints on strain fields as ex-
plained in References 17 and 18.

(1) Two-bar truss

Consider an elastic two-bar truss under the ac-
tion of a vertical load F at the top node, re-
ferred to as node 2, as shown in Fig. 2. The main
objectives of this example are, firstly, to demon-
strate numerically as well as theoretically that
the inclusion or omission of the geometric stiff-
ness matrix does not affect the final solution
and, secondly, to explain the solution procedure
for a simple case which does not require the use
of a computer.

A global coordinate system (x, z) is defined
with the origin at the initial unloaded position of
node 2. The constitutive relation for a truss
member in the displaced position is given by

_ EA(L, - L)
B L

N (52)

where N =internal axial force; EA = axial
rigidity; L, =length in the equilibrium state;

and L =initial length. Using Eq. (52) for both
members, the elastic analytical relationship for
the main equilibrium path, plotted in Fig. 3 be-
tween the load F and the vertical displacement
w, of node 2, is obtained as

. W2
F=2E4 sina, ==~} %

-05
[{1-2w2sina,,/L+(w2/L)2} -1]

where a, = angle between each truss member

and the horizontal axis in the initial unloaded
configuration.

The two elements are named a and b, and their
rigid body displacements are referred to arbi-
trary points O, and O,, respectively, selected at
the supports. Because of this, the rigid body
translations of the elements always remain zero,
and the rigid body displacements are completely
specified by the angles «,, and a,, between
the horizontal line and the axes of elements a
and b, respectively.

Consider an iterative solution of this two-bar
truss problem. For the main equilibrium path,
the final position N; of node 2 must be at
(0, z4) by symmetry. Taking advantage of this

(33)

symmetry, the guessed common point N, is
taken at (0, z,,), and the same rigid body rota-
tions are chosen for both elements a and b so
that a,, =a,, =a,. To make the norm of D¢ a

minimum, each element should pass through the
guessed common point, so that
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Fig.3 Load-displacement curves (two-bar truss)

(54)

234 = Lsingy — Leosa, tana,

The displacement vector dY of node 2 of ele-
ment @ is given by

gl o Uy, _ Lcosa, — Lecosa, 55)
C T we, Lsina, — Lcosay tana,

Designating the components of d at node 2

by <u,s wys>" and imposing the kinematic
boundary conditions at the support, the stiffness
equation for element a corresponding to Eq. (50)

using only the elastic stiffness matrix can be
written as
sina, |'[EA/L 0
X
cosa, 0 0

cosa,
~sina,
cosa, sina, | {uyg N uj, - b2y
—-sing, cosa, |\ {Wys wi, I
Writing the element stiffness equation for
element b and superimposing with Eq. (56), two
simultaneous equations are obtained for two un-
knowns u,; and w,g . Since no horizontal
force acts at node 2, f5 +ff =0. For this
condition, it can be shown that u,g =0. Using
this result leads to the following equilibrium
equation in the vertical direction:

(56)

F=f *fzbz

=2EA(sina, - cosay tana, 57)

+W2s Sin2 a, / L)

The criterion of convergence of the solution of
the nonlinear equation (57) is w,g =0. Then,
tana, =tana, —w,seca, /L , and hence, Eq.
(57) agrees exactly with the analytically ob-
tained Eq. (53). This shows that the geometric
stiffness matrix is not necessary to solve the fi-
nite displacement problem of this truss example
when an iterative procedure converges.

The stiffness equation including the geometric
stiffness matrix can be written in the same form
as Eq. (56) except for the stiffness matrix, which
is expressed as

ot [EA/L°0] [o 0 ]
K® = +
0 0| |0 N/L
where N = Ed(cosa,/cosa, —1). Again, it can
be easily shown that on convergence, the solu-
tion of the global stiffness equation agrees with
the exact governing equation (53). This shows
that the finite displacement solution for this truss
example can also be obtained by including the
geometric stiffness matrix.

For truss type structures, it is sufficient to treat
each truss member as a subdomain. When the
solution converges, the direction of the axis of a
member after the rigid body displacement is the

(58)
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Table 1 Number of iterations by various methods
(two-bar truss)

Stiffness | Iteration AtA AtB
Matrix scheme | F/EA=0.50 | F/EA=0.67
wy/[=0.328 | w,/[=0.547
K% Direct 13 98
N-R 6 9
K%’ + Kec‘ Direct 9 54

same as that in the equilibrium state. Because of
this, the two normal components of the dis-

placement vector D& =<uf" w{ uf wi >,
namely wi and w{ , are equal to zero. Keep-

ing in view that the geometric stiffness matrix
for a truss member in the local coordinates is

0 0 0 0
0 1 -1
0 0

0 -1

1] N
KS =—
ST

(59)

[== T N )

it is easily seen that KSDE approaches zero
on convergence. Hence, the omission of K§

makes no difference on the final solution, pro-
vided that the procedure converges. In the pre-
sent investigation, it is found that the solution
does converge without K& for the entire range

of the main equilibrium path. By an appropriate
selection of Ny's and the rigid body displace-
ments, the same is true for the entire range of the
bifurcation paths obtained by Nishino and Har-
tono'” up to the terminating points. However,
the geometric stiffness matrix is needed to iden-
tify the bifurcation points and the initial guess
solutions on the bifurcation paths. Both the main
and bifurcation paths are shown in Fig. 3.

The stiffness equation,'with or without K&,
is nonlinear due to the dependence of the
transformation matrix on the unknown rigid
body rotation. Hence, the solution can be
obtained by either a direct iteration method
using Eq. (51) or the Newton-Raphson (N-R)
procedure, although convergence is not
guaranteed for the former. The Newton-Raphson
procedure was applied by solving Eq. (57) for
a, with w,s =0. A comparison of the number
of iterations required to obtain the solution by
various methods with @y =tan™ 25 is given in
Table 1 at a general point A, and at a point B
close to a stationary point in the load-
displacement curve as indicated in Fig. 3. The

in Pig. 3. The converged solutions obtained by
all the methods agree with the analytical result
of Eq. (53) within the specified tolerance of

|wys / Li<107'?. The load was applied in one

step and the initial shape was used as the starting
guess solution in all cases listed in Table 1. It is
seen that, the Newton-Raphson method has the
fastest convergence rate even though only the
elastic stiffness matrix is used. However, the N-
R procedure, as used in this simple example,
cannot be applied so easily in a general case.

For the purpose of tracing the equilibrium path
completely, as shown in Fig. 3, the load was
applied in steps and the arc length control
method?”?? was utilized.

(2) Cantilever beam under axial load

An in-plane cantilever beam subjected to an
axial end loading is considered as the second
example. The objective of this example is to
show that the accuracy of the result for a given
element size when the geometric stiffness matrix
is included may be better or worse than when it
is omitted, depending on the location on the
equilibrium path. Further, it is aimed to show
both numerically and analytically that the effect
of the geometric stiffness matrix diminishes with
decreasing element size.

The non-dimensionalized vertical displace-
ment w/ L atthe tip is plotted in Fig. 4 against
the normalized load F/F,, where F, is the
Euler buckling load. A small transverse load
F, =0.0005F, was applied at the free end to
disturb the beam from the possible straight un-
stable equilibrium configuration. The finite dis-
placement behavior could be traced using either
K% or K +K§ for the entire range shown
in Fig. 4. The results using one, two and sixteen
two-dimensional beam elements are shown. The
classical elastica solution based on the assump-
tion of zero axial strain is also given for com-
parison. Figure 5 shows errors in the calculated
loads with and without K§ at w/L =0.4 and
0.8.

In a single element model, a sharp increase of
the lateral displacement, which corresponds to
the buckling behavior, is obtained at a load
about 20% higher than the Euler load when only
K¢ is used. With a decreasing element length,
this load tends to approach the theoretically cor-
rect value and the equilibrium path also ap-
proaches the elastica solution curve. When K&
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Fig. 5 Errors in calculated loads (cantilever beam)

is added, the buckling behavior starts at a value
closer to the theoretical value. The accuracy of
the solution in the post-buckling range, however,
is not always better with K% +K& than with

¢ alone, as can be seen in Figs. 4 and 5.

A relatively large number of iterations is nec-
essary to obtain the solution points in the
neighborhood of the Euler buckling load, espe-

cially when only K% is being used. On the
other hand, the solution for a specified load
anywhere in the post-buckling range can be ob-
tained by a one-load-step analysis using K%
alone. For instance, such an analysis with a six-

teen-element model converges in 34 iterations
for F/F, =15 with a lateral disturbing force
of F, =00005F, within a tolerance of 107"
for all displacements (u/L,w/L, ). When
K¢ is also included, however, the same analy-
sis converges to a wrong configuration of the
type noted by Cook®. Thus, it is always neces-
sary to use several load steps with a closer inter-
val in the region of the critical load to get the
correct result in the post-buckling range when

K¢ +K§ is used.
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The well-known stiffness matrix for a two-
dimensional beam element can be written in the
form®

K% +K& =K, +(NL* / EDK, (60)

where K, and K, are the non-dimensional

coefficients of the elastic and geometric stiffness
matrices, respectively, when non-dimensional
displacement and force vectors are used. Equa-
tion (60) shows that, as the element size L is
made shorter, the contribution of the geometric
stiffness to the total stiffness matrix tends to
zero. This observation is confirmed by the nu-
merical results shown in Fig. 4. It also agrees
with the former theoretical sections of this pa-
per, where it was shown that the effects of the
nonlinear terms can be reduced in the governing
equations by making the size of the subdomains
smaller.

(3) Twelve-member hexagonal frame

The behavior of a twelve-member hexagonal
space frame under a vertical load at the center,
as shown in Fig. 6, is studied by both taking into
account and neglecting the geometric stiffness
matrix. The objective of this example is to show
that the proposed procedure can handle a prob-
lem in which finite rotations occur in three-
dimensional space. This frame was studied ex-
perimentally by Griggs® using a plexiglas
model test and analyzed by Chu and Rampetsre-
iter’™ by the constant load method using the

Load-displacement curves (twelve-member hexagonal frame)

Table2 Load in N at the maximum stationary point
(twelve-member hexagonal frame)

Stiffness | No. of elements per member
Matrix 1 2 4 8

K¢ 288.0| 262.6] 257.6| 255.7

K% +K& | 274.7| 258.3| 255.8) 255.2

stiffness coefficients of Renton’®. All the mem-
bers have a solid square cross-section with each
side equal to 17.86 mm (0.703 in), and the
Young’s and shear moduli are equal to 3032
MPa (439.8 ksi) and 1096 MPa (159 ksi), re-
spectively. The vertical displacement at the cen-
ter calculated by the proposed method is plotted
against the load in Fig. 6. The results obtained
by using one, two and eight twelve-degree-of-
freedom three-dimensional beam elements per
member are shown. Table2 shows the com-
puted values of the load at the maximum station-
ary point for a variety of cases.

Once again, it is demonstrated that the results
with and without K& converge to the same
value with a decreasing element length. This
value is close to Griggs' experimental measure-
ment of 251.6 N (56.5 1b)*”. For comparison, it
is noted here that Chu and Rampetsreiter calcu-
lated this load as 270.3 N (60.7 1b)*®.

22(236s)



4x1 mesh used
by Nolte (1985)

F (kips)

o k& o KE'+KE

2x1 mesh

8x2 mesh
a kg

E = 10.5x10 Spsi

V=0.3125 L1, N7
24 h =

L =
14 R=
o L] L} T L) T T L} T L] L} L} ) T T L}

1] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
wy (in)

Fig. 7 Load-displacement curves of cylindrical shell (1in = 0.0254 m; 1 kip = 4.45 kN;

1 psi = 6.89 kPa)

(4) Cylindrical shell under two concentrated
loads

The proposed procedure can also be used to
solve shell problems involving large rotations.
As an example, a cylindrical shell free at both
ends and subjected to two concentrated loads
forming a self-equilibrium state as shown in
Fig. 7 was solved. Also shown in the same fig-
ure are the dimensions, the modulus of elasticity
and the Poisson's ratio. This shell was selected
since a number of methods were tried in the lit-
erature to solve this problem. The solutions were
significantly different depending on the treat-
ment of the finite rotations.

Figure 7 shows a number of solution curves
given by Nolte”” using several theories and the
" results obtained by the proposed method. MI
denotes the results based on the classical shell
theories by Donnell?® and Vlasov?, modified
by the decomposition of strains and rotations to
the extent that moderate rotations can be treated.
N2 and N7 were calculated using the modified
shell theories by Kratzig et al.>” and Harte®”,
respectively. These theories were derived with
the same decomposition but on a priori different
assumptions, so that large rotations could be
handled. L/ shows the results computed employ-
ing the theory by Nolte and Stumpf*? using the
Kirchhoff-Love constraints, expanded into series
with respect to the linearized parameters at the
deformed state and truncated within the desired

accuracy, combined with the polar decomposi-
tion. According to Nolte®”, L/ is based on the
simplified theory with the assumption that rota-
tions about the tangents to the middle surface
may be large while those about the normals re-
main small. He claims that this simplified theory
yields results which are in full agreement with
those computed by the more complicated version
N7. This theory, however, is still very compli-
cated compared to that used for the proposed
procedure in this paper.

The numerical results of both L/ and the pro-
posed procedure were computed with one eighth
of the cylinder taking advantage of symmetry.
L1 was obtained with eight condensed high-
precision triangular finite elements as shown in
Fig. 7. The triangular element used quintic
polynomial shape functions for all displacement
components and an exact geometrical descrip-
tion in 21 Gauss integration points, resulting in
54 degrees of freedom for an element®”.

The simplest available elastic and geometric
stiffness matrices for a triangular plate element
were used for solving this problem by the pro-
posed procedure. For the derivation of the elastic
stiffness matrix, a linear interpolation function
was used for the in-plane displacements, and a
complete cubic polynomial and three sub-
elements were used for bending to obtain com-
patible displacement fields between the ele-
ments®”. The geometric stiffness matrix for
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bending was derived using an incomplete cubic
polynomial interpolation function without any
sub-element for simplicity, resulting in incom-
patible displacement fields between elements®®,
There are five degrees of freedom per node in
the local coordinate system of this triangular
plate element giving a 15x15 stiffness matrix.
The stiffness matrix has to be expanded to
18x18 by inserting an appropriate number of
zeros before transforming to the global coordi-
nates to account for the sixth degree of freedom
consisting of the rotation about the axis normal
to the plane of the element®. The use of different
interpolation functions does not create any prob-
lem since the use of the geometric stiffness ma-
trix changes only the rate of convergence in the
proposed procedure, but its use is not essential
as long as the iterative procedure converges.

The problem was solved with 2x]1 and 8x2
meshes with 4 and 32 -elements respectively as
shown in Fig. 7. The computation was done with
the elastic stiffness matrix only, and also the
sum of the elastic and geometric stiffness matri-
ces. For this particular example, the results with
only the elastic stiffness matrix are more accu-
rate than those with both the elastic and geomet-
ric stiffness matrices for the same mesh. To
avoid the congestion of points, the results with
32 elements are shown in Fig.7 only for the
case with the elastic stiffness matrix alone. The
solution by the proposed procedure approaches
the solution curves N7 and LI as the element
size is reduced. Figure 7 shows that the results
with 32 elements agree well with N7 and L1.

This example shows .that the solution of this
problem by the proposed procedure agrees with
what are believed to be the most accurate solu-
tions obtained using the complicated shell for-
mulations in the literature. The fact that accurate
solutions are obtained with the elastic stiffness
matrix alone clearly indicates the inherent sim-
plicity of the proposed procedure. This corre-
sponds to the use of only the classical small-
displacement plate theory, which is far less
complicated than even the simplest nonlinear
shell theories, such as those given by Donnel!*®
and Vlasov?. Figure 7 shows that the solution
curve MI obtained by using the latter theories is
obviously erroneous.

6. SUMMARY AND CONCLUSIONS

1t has been shown that the governing nonlinear
differential equations of a finite-displacement
problem of a solid can be reduced to pseudo-
linear equations with errors of the order of
strains. This can be achieved by separating the
rigid body components from the displacement
fields of small enough subdomains. The nonlin-
earity is hidden in the transformation matrix of
the pseudo-linear equations. As the rigid body
displacements of adjacent subdomains are dif-
ferent, additional internal boundary conditions
must be imposed between adjacent subdomains.

Based on the theoretical development, it is in-
ferred that correct solutions of finite-
displacement small-strain problems can be ob-
tained with the help of the small displacement
theory alone when the rigid body displacements
are properly separated. In other words, a finite-
displacement problem can be solved using only
the linear elastic stiffness matrix of the small
displacement theory. The errors due to the omis-
sion of the higher order terms, such as the geo-
metric stiffness matrix, can be made negligible
by reducing the element size. Unlike the geomet-
ric stiffness matrix, the elastic stiffness matrix is
independent of the stress state and needs to be
evaluated only once during an analysis.

A rigorous and straightforward theoretical
formulation has been presented to support the
proposed solution technique based on the con-
cept of removal of finite rigid body displace-
ments. The simplicity of the formulation is due
to the fact that it has been developed for a gen-
eral three-dimensional solid unlike other similar
works, in which rigid body displacements were
separated from the governing equations of struc-
tural elements. The theoretical development of
this paper, however, is equally applicable to
structural members like beams, plates, etc. be-
cause the governing equations of the structural
members can always be reduced from those of a
solid by introducing additional kinematic con-
straints on strain fields'™ ',

Several numerical examples are presented to
demonstrate the effectiveness of the proposed
solution procedure.

The authors believe that the theoretical expla-
nation given in this paper is clearer and simpler
than that of any other finite displacement formu-
lation in the literature. Moreover, the present
formulation is based on the total Lagrangian
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governing equations and should be distinguished
from the updated Lagrangian formulation.
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