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A new method, Applied Element Method (AEM) for analysis of structures is introduced. The structure
is modeled as an assembly of distinct elements made by dividing the structural elements virtually. These
elements are connected by distributed springs in both normal and tangential directions. We introduce a
new method by which the total behavior of structures can be accurately simulated with reasonable CPU
time. This paper deals with the formulations used for linear elastic structures in small deformation range
and for consideration of the effects of Poisson's ratio. Comparing with theoretical results, it is proved that
the new method is an efficient tool to follow mechanical behavior of structures in elastic conditions.
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1. INTRODUCTION

During earthquakes, buildings suffer from the
different types of damage. Structure damage is
classified into seven groups, as shown in Table 1,
according to the AIJ". In the first five groups, partial
damage occurs to the structural and non-structural
elements without collapse of the structure. Partial
and complete collapse of structures is important
topic under research because it causes extensive
casualties inside and outside of the structures. In
addition, collapse of a structure may lead to failure
or collapse of near structures. Recent earthquakes,
like Hyogo-Ken Nanbu Earthquake, show that
structural failure was major cause of death toll®.
Although this topic is very important for safety of
people, current available methods for structural
analysis can not deal with this problem accurately.

Numerical methods for structural analysis can be
classified into two categories. In the first category,
model is based on continuum material equations.
The finite element method (FEM) is typical example
of this category. Smeared Crack approach® can not
be adopted in zones where separation occurs
between adjacent structural elements. While,
Discrete Crack Methods® assume that the location
and direction of crack propagation are predefined

before the analysis. With this group of the methods,
analysis of structures, especially concrete structures,
can be performed at most before collapse. The FEM
can answer only the following question which is
"Will the structure fail or not?" Unfortunately, it is
very difficult to use the FEM for the second
important question, which is "How does the
structure collapse?" Although displacement of
structural elements at failure may become tens of
meters, analysis using the FEM could be performed
till the start of failure, which means tens of
centimeters at most.

The second group of .methods uses the discrete
element techniques, like the Rigid Body and Spring
Model (RBSM)® and the Extended Distinct Element
Method (EDEM® ®). The main advantage of these
methods is that they can simulate the cracking
process with relatively simple technique compared
to the FEM, while the main disadvantage is that
crack propagation depends mainly on the element
shape, size and arrangement™ ¥. Analysis using the
RBSM could not be performed up to complete
collapse of the structure. On the other hand, the
EDEM can follow the structural behavior from zero
loading and up to complete collapse of the structure.
However, the accuracy of EDEM in small
deformation range is less than that of the FEM.
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Table 1 Damage level of structures as defined by the AIJ"

Damage level

Damage of members

1- No damage No damage is found.

2- Slight damage

Columns, shear walls or non-structural walls are slightly damaged.

3- Light damage

Columns or shear walls are slightly damaged. Some shear cracks in non-structural walls are found.

4-Moderate damage structural walls are found.

Typical shear and flexural cracks in columns, shear cracks in shear walls, or severe damage in non-

5- Heavy damage

Spalling of concrete, buckling of reinforcement, and crushing or shear failure in columns are found.
Lateral resistance of shear walls is reduced due to heavy shear cracks.

6- Partial collapse

The building is partially collapsed due to severely damaged columns and/or shear walls.

7- Total collapse

The building is totally collapsed due to severely damaged columns and/or shear walls.

Table 2 Organization of research results

Hence, the failure behavior obtained by repeated

many calculations is affected due to cumulative

errors and can not be predicted accurately using the

EDEM. This means that the EDEM can answer only

the second question, "How does the structure

collapse?"

From the fact discussed above, we can say that
there is no proper method among current available
techniques by which total behavior of structures
from zero loading to collapse can be followed with
reliable accuracy and reasonable CPU time.

The major advantages of the proposed method
are simple modeling and programming, and high
accuracy of the results with relatively short CPU
time. Using the method, highly nonlinear behavior,
i.e. crack initiation, crack propagation, separation of
structural elements, rigid body motion of failed
elements and totally collapse process of the
structure can be followed with high accuracy”.

To cover a wide range of applications, analyses
should be performed for different fields of
application. The main factors affecting structural
analysis can be categorized as:

1. Effects of inertia forces: The loading types are
divided into two categories, static and dynamic
loading conditions. In dynamic loading case, the
inertia and damping forces should be taken into
account and hence, loading is a function of time.

2. Effects of the direction of loading: The analyses
are divided into two categories, monotonic and
cyclic loading conditions. In monotonic loading
condition, the load direction is constant while its
value increases, and in case of cyclic loading, the
load direction and values are changing.

Static Dynamic
Geometry Material Monotonic Cyclic Monotonic Cyclic
Small deformation Elastic I(This paper) m?
(linear) Nonlinear '
Large deformation Elastic v v v
(nonlinear) Nonlinear | .. .Covered in dynamics
Collapse process

3. Effects of geometrical changes: In some analyses,
the deformations are considered small with
respect to the structural dimensions. It can be
assumed that the structure geometry is constant
and effects of geometrical changes on the
stiffness matrix or internal forces are neglected.
In other cases, like buckling cases, deformations
are large and geometrical nonlinear behavior
should be discussed.

4. Effects of material properties: The material
behavior can be assumed as linear or nonlinear
behavior. In linear behavior, all stress-strain
relations are constant. In nonlinear case, cracking,
yield of the material and nonlinear stress-strain
relations should be considered.

The organization of the research is shown in
Table 2. This table shows all meaningful
application ranges which could be covered by the
proposed numerical model together with the
corresponding reference. The dark area indicates
that there is no meaning to perform simulation, like
simulation of collision effects in static loading
condition. In the lightly hatched area, application in
static loading conditions is not reasonable because
in case of nonlinear material, structural elements,
like concrete elements in large deformation range,
tend to separate. This indicates that the effects of
inertia forces and rigid body motions become
dominant. Therefore, this range is covered in
dynamics.

Main purposes of the paper are a) introduction of
background and outline of newly proposed model,
AEM, and b) formulation of fundamental parts of
the AEM. This is the first paper in a series of papers
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Fig.1  Modelling of structure to AEM

that cover all the application ranges shown in Table
2. Because of the limitation of the number of pages,
authors will publish whole research work through
several journal papers. In this paper, formulations
and verifications of the numerical technique in case
of elastic-static loading condition is introduced. In
additions, the effects of element size and number of
connecting springs is discussed. Moreover, the
numerical procedures to consider Poisson's ratio
effects are introduced.

2. ELEMENT FORMULATION

With the AEM, structure is modelled as an
assembly of small elements which are made by
dividing of the structure virtually, as shown in Fig.
1 (a). The two elements shown in Fig. 1 are
assumed to be connected by pairs of normal and
shear springs located at contact locations which are
distributed around the element edges. Each pair of
springs totally represent stresses and deformations
of a certain area (hatched area in Fig. 1 (b)) of the
studied elements. The spring stiffness is determined
as shown in Eq. (1):

_ExdxT _GxdxT

K, and K = (1)

a
where, d is the distance between springs, T is the
thickness of the element and "a" is the length of the
representative area, E and G are the Young’s and
shear modulus of the material, respectively. The
above equation indicates that each spring represents
the stiffness of an area (d x T) with length "a" of the
studied material. In case of reinforcement, this area
is replaced by that of the reinforcement bar. The
above equation indicates that the spring stiffness is
calculated as if the spring connects the element
centerlines.

Fig.2 Element shape, contact location and degrees of freedom

Three degrees of freedom are assumed for each
element. These degrees of freedom represent the
rigid body motion of the element. Although the
element motion is a rigid body motion, its internal
stress and deformations can be calculated by the
spring deformation around each element. This
means that although the element shape doesn't
change during analysis, the behavior of assembly of
elements is deformable. The Poisson's ratio effect,

" which is not considered in this formulation, is

illustrated in details in Section (6).

The two elements shown in Fig. 2 are assumed to
be connected by only one pair of normal (stiffness:
Kn) and shear (stiffness: Ks) springs. The values of

"(dx and dy) correspond to the relative coordinate of

the contact point with respect to the centroid. To
have a general stiffness matrix, the location of
element and contact springs are assumed in a
general position. The stiffness matrix components
corresponding to each degree of freedom are
determined by assuming a unit displacement in the
studied direction and by determining forces at the
centroid of each element. The element stiffness
matrix size is only (6 x 6). Equation (2) shows the
components of the upper left quarter of the stiffness
matrix. All ‘used notations in this equation are
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shown in Fig. 2. It is clear that the stiffness matrix
depends on the contact spring stiffness and the
spring location. '

Sin2(0+a)K, -K,Sin(8+a)Cos(@+a) | Cos(B+a)K,LSin(a)
+Cost(0+ a)Kq +KSin(8+a)Cos(+a) | -Sin{d +a)K,LCos(x)
-KgSin(@+a)Cos(®+a) | SinZ(0+ alK, Cos{8 + @)K ,LCos(a)
+KSin(0+a)00s(8+0) | 4 Cos?(8+a)K +Sin8+o)K,Lsinfa) | (2)

Cos(8 + a)K,LSin(a) Cos(6 + a)K ,LCos(a) L*Cos?(a)K,
-Sin(@+a)K,LCos(a) | +Sin(8+a)K,LSin{a) +13in2(a)K,

The stiffness matrix in Eq. (2) is for only one
pair of contact springs. However, the global
stiffness matrix is determined by summing up the
stiffness matrices of individual pair of springs
around each element. Consequently, the developed
stiffness matrix is an average stiffness matrix for the
element according to the stress situation around the
element. This technique can be used both in load
and displacement control cases. The governing
equation is

[KoJa]=[F] €)
where, [Kg] is the global stiffness matrix; [A] the
displacement vector and [F] the applied load vector.
In load control case, the vector, [F], is known before
the analysis. In displacement control case, the load
is applied by unit virtual displacement for one or
more degrees of freedom.

3. PROGRAM COMPOSITION

The flow chart of the method in elastic loading
condition is shown in Fig. 3. As the numbers of
elements and connecting springs are large, in the
program, the element location and spring data are
automatically generated based on the reinforcement
details of the structure before the analysis. In case of
reinforced concrete (RC) structures, the coordinates
of the springs representing the reinforcement bars
are defined by the nearest spring. For horizontal
reinforcement, "Y" coordinate is defined while for
vertical reinforcement, "X" coordinate is set. At the
location of reinforcement bar, two springs are set.
The first one is for steel bar while the other is for
concrete. It is assumed that both springs have the
same strain at each loading stage.

The idea of this technique is based on
transforming the global stiffness matrix, whose size
is (N x N), to another vector whose elements are the
non-zero elements of half of the original matrix, as
it is symmetrical. The solution of equations is
applied to the new vector. This technique has the
advantages that the memory capacity required for
storing the stiffness matrix data can be reduced and
that CPU time required for solving the equations is
drastically reduced because the calculations are
performed only to the non-zero elements. This

Read sinulation conditions:

1-Structural geometrical datn, material properties
and the number of connecting springs datn scts
2-Element property allocation data

3-Dats of locations and properties of each
reinforcement bar

4-Loading and boundary condition data

Generation of!
1-Element location data
2-Reinforcement bar springs location data
3-Spring connectivity data (spring number, type,
di ing el dtiffhess...etc.)
I

Calculate spring stiffness matrix J

|
Repeat for
all springs Assemble the calculated spring stiffness matrices
A in the global stiffness matrix
I
I
Bcpcal for all Solve the equations and get displacements I

I
Calculate strains and stresses J

[ Caleulate load vector |
|
|

I
Draw the deformed shape |

Fig. 3 Flow chart of the program

I—

advantage is very important in nonlinear analysis as
the stiffness matrix is reconstructed and solved
during each increment.

4. EFFECT OF NUMBER OF
CONNECTING SPRINGS BETWEEN
ELEMENTS

The number of connecting springs between
elements is one of the key factors that should be
taken into account. Obviously, in nonlinear analysis,
increasing the number of connecting springs
between elements leads to better results of crack
propagation. This section shows that the number of
connecting springs should be determined carefully
even in elastic analysis. Referring to Fig. 4, it is
assumed that "2n" springs are connecting two
elements together. Each spring represents the
stiffness of a distance of (b/2n). In translational
degrees of freedom case, the number of connecting
springs has no effect on the element stiffness as
decreasing the number of connecting springs leads
to increasing of area represented by each spring.
Finally, the total area becomes as the same as that
represented by one whole element. It means that one
spring can represent totally translational degrees of
freedom of an element but cannot do rotational
degree of freedom. Rotation of an element has effect
due to the number of springs and it is mainly
resisted by shear springs together with normal
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springs. Theoretical rotational stiffness, K,
calculated from normal springs is:
=b/2 :
d ETb?
K, = —xzxzxdz= 0 4)
" y=-b/2

where T is the element thickness and E is the
Young's modulus. The element rotational stiffness is
obtained by summing up all the rotational stiffness
calculated for each spring separately. It can be
proved easily that the total rotational stiffness is:

2 n ' -
K,:ETb D (i-0.5y (5)
i=1

4n?
where "i" is the spring number. Referring to the Eq.
(5), the calculated rotational stiffness is a function
of the number of connecting springs. Table 3 shows
the relation between the number of connecting
springs and the percentage of error between the
theoretical and calculated results. From Table 3, in
case of two connecting springs, the numerically
obtained rotational stiffness is smaller than the
_theoretical value by 25% which is quite large.
However, this error reduces to less than 1% if the
number of connecting springs is 10 or more. This
effect is dominant if the element size is relatively
large compared to the structure size. The error
vanishes when the element size is small because the
relative rotation between adjacent elements becomes
small.

5. EFFECT OF ELEMENT SIZE

Adjustment of element size in the analysis is
very important. Simulation of structures using
clements of large size leads to increasing the
structure stiffness and failure load of structure. This
means that the calculated displacements become
smaller and the failure load gets to be larger than the
actual one. To make this effect clear, we carried out
a series of simulations using the laterally loaded
cantilever models as shown in Fig. 5. The
-dimensions of the models are also shown in the
figure. The Young's modulus is assumed as 2.1x10°
KN/m? and elastic analysis was performed using the
proposed method. The lateral load value is taken as
10kN and column thickness is 0.25m. The results
were compared with the theoretical results of elastic
structure. The percentage of error in maximum
displacement and the CPU time (CPU: DEC
ALPHA 300 MHz) are shown in Fig. 6.

To discuss the effect of the number of connecting
springs, the analyses were performed using two
models with 20 and 10 springs connecting each pair

A
////////////////%’g/////////////////%- d=bi2n

Fig.4  Effect of the number of connecting springs on

rotational stiffness

Table 3 Relation between the number of connecting springs
and the calculated error in rotational stiffness
(2n) 2 4 6 8 10| 20

Error ratio (%)
[((K?/K:)—l)*loo] 25163281 16| 1003

of adjacent element faces for each case of different
element size. From the figure, it is evident that
increasing the number of base eléments leads to
decreasing the error but increasing the CPU time.
Use of only one element at the base leads to about
30% error of theoretically calculated displacement.
This error reduces to less than 1% when the number
of elements at the base increases to 5 or more.
However, the CPU time increases rapidly. When we
compare the results using 20 and 10 springs,
although the CPU time in case of 10 springs is
almost half of that in case of 20 springs, the
accuracy of the results of 10 springs model is same
as that in case of 20 springs. From this figure, it can
be concluded that usage of large number of elements
together with relatively few number of connecting
springs leads to high accuracy in reasonable CPU
time. To improve the accuracy in case of elastic
analysis, it is advisable to increase the number of
elements rather than increasing the number of
connecting springs.

Figures 7 and 8 show the normal and shear
stresses distribution at the base of the studied
columns for different number of base elements.
From these figures, the followings should be
noticed:

e Calculated normal stresses are very close to the

“theoretical values even in case of the smaller

number of elements at the base.

o Shear stress values are constant for the same
element.

o Shear stress values are far from the theoretical
values in case of the smaller number of elements
at the base and become close to the theoretical
results as the number of elements increases.

This means that behavior in which the effect of

shear stresses is minor, like the case of slender

frames, can be simulated by elements of relatively
large size. To improve the accuracy of analysis’
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using elements of large size, attention should be
paid for- the unsupported length, which is total
length without the length of elements at the base. On
the other hand, in case of walls and deep beams,
elements of small size should be used to follow the
fracture behavior in the shear dominant zones.

6. POISSON'S RATIO EFFECT

(1) Introduction

Although there are many phenomena in which
the effects of Poisson's ratio are minor, in some
cases, Poisson's ratio plays an essential role
governing the phenomena. For example, the effect
of lateral confinement for columns subjected to
axial forces is a typical case. This effect can be
taken into account using FEM, however, failure
behavior can not be properly followed using the
FEM after separation of structural members.
Recently, many other methods were developed to
deal with fracture behavior problems, like the
RBSM*® ™ ® and the EDEM> ©. However, the
effects from Poisson's ratio were not taken into
account in these methods. This section introduces a
new technique to deal with the effects due to
Poisson's ratio.
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Fig. 8 Shear stress distribution at section A-A

Referring to Fig. 1(b), vertical deformations
obtained on vertical edges do not affect the
horizontal deformations. This indicates that
elements are rigid and no lateral deformations are
transformed through element edges. This is
equivalent to having zero Poisson's ratio value. The
main objective of this section is to introduce how to
transform element behavior from rigid body state to
a flexible state. To consider the effects due to
Poisson’s ratio, two main approaches can be
adopted. The first approach is by adding two
degrees of freedom to the elements in 2-D as shown
in Fig. 9. The total number of degrees of freedom
increases from 3 to 5 for each element. Three
degrees of freedom (u, v and r) are for rigid body
motion of the element and additional two
components (uu and vv) are the relative
deformations between the vertical and horizontal
edges. The uu and vv correlate the deformations of
clement edges based on Poisson's ratio. Adding
these effects to the stiffness matrix proposed in Eq.
(2), the effects of Poisson's ratio can be considered.
Although this approach is applicable, it has two
main disadvantages:

o A coupling effect occurs among the degrees of
freedom representing the rigid motion of
elements and those representing the relative
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deformations between element edges. This effect
makes the calculation of strains and stresses very
difficult in comparison with the case where the
Poisson's ratio effect is not considered.

e The number of degrees of freedom increases
from 3 to 5. This means that the time for
assembling the stiffness matrix ‘and for solving
the equations gets to be longer than double
[~(5/3)*]. Moreover, the computer memory
capacity required also drastically increases.

The second approach, which is adopted here, is
simple and does not have the disadvantages of the
first approach. By the second approach, the
Poisson's ratio effect can be taken into account even
when three degrees of freedom are used. Although
the element moves as a rigid body, assembly of
elements is deformable. The idea is simply adopted
by correlating the stiffness matrix of each element
by those of adjacent elements. The idea is illustrated
in the next sections.

(2) Geometrical definitions

Assume the elements arrangement shown in Fig.
10 (a). As a general case, the element (0) is
surrounded by eight elements. Each element has
three degrees of freedom and four edges numbered
from 1 to 4, refer to Fig. 10 (b). The factors "f"
shown in Fig. 10 (a) and Eq. (6) represent the
element continuity which will be illustrated in the
following sections:

fijk=fij x fik (6)

where, "i" is the element number, j and k represent
edge numbers. The factor "fij" is equal to one if
connecting springs of element "i" at the edge "}"
exist, like "f52" and "f53". If there is no element
connected with the element “i”, at the edge "j" or the
springs are failed because of cracks, "fij" is set to
zero, like "f51" and "f54". This means that "fijk" is
equal to one when the connection of the element "i"
at the edges "j" and "k" is valid, like "f523".
Otherwise, "fijk" is equal to zero, like "f512",
"f534" and "f541". These factors are used to develop
the stiffness matrix which enables us to take into
account the effects of Poisson's ratio in general for
any element configuration.

(3) Numerical analysis procedure

The original stiffness matrix, which does not take
into account the effects of Poisson's ratio, is
developed by summing the stiffness matrices of
springs around each element. Additional terms are
adopted to consider the Poisson's ratio. For each
degree of freedom, the additional stiffness matrix
terms are developed by assuming a corresponding

i)

Fig. 9 Suggested degrees of freedom to consider Poisson's ratio

effect
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(b)l Definition of continuity factor

Fig. 10 Element configuration and the definition

of continuity factors

displacement in the direction of the studied degree
of freedom and calculating the reactions at the
centroid of each surrounding element. Figure 11
shows the additional terms corresponding to
horizontal displacement of element (0). While, Fig.
12 deals with vertical displacement. Figures 13 (a)
and 13 (b) deal with rotational degree of freedom.
These terms are added directly to the global stiffness
matrix.

Referring to Fig. 11, horizontal displacement is
applied to the element (0). All other degrees of
freedom are restrained. Springs between the
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Fig. 12 Secondary stresses due to vertical
of the element (0)
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Fig. 13 Secondary stresses due to rotational displacement of the element (0)

elements (0 and 2) are subjected to compression.
The area represented by the compressed springs,
group "A", is the right half of the element (0) and
the left half of the element (2). Compression forces
(horizontal) between the elements (0 and 2) leads to
lateral (vertical) displacement for the area
represented, group "A".

This lateral displacement is a function of
Poisson's ratio. As this lateral displacement is
prevented, because all degrees of freedom of other
elements are assumed to be restrained, additional
stresses are produced in zone "A". These additional
stresses are assumed to be uniform over the element

edges. The additional stresses are transformed to the
center of elements as force and moment, and added
to the global stiffness matrix. When one of
surrounding elements does not exist, the calculated
secondary stresses change. For example, stress
components between the elements (2 and 6) exist if
the connection between the elements (0 and 2) and
(2 and 6) are valid. This means that elements exist
and springs are not cracked. For instance, if the
element (6) does not exist, no additional stress
component on the element (2) is used. This means
that "f21" (edge 1 of the element 2) is equal to zero.
The stiffness matrix components corresponding to
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Table 4 Added stiffness matrix values due to unit displacement of each degree of freedom of element (0)

0) (1)) 2)
uf v0 RO ul vl R1 u2 v2 R2
p0x m0 x
0 x m0 x p2x m2 X
0 (-f012+f023 | (-f012+£023 0 p 0
o3aeal) | 8034 ATy (+012-f041) |(+f012+f041) (-241+£234) | (+£241-2234)
pox m0 x plx ml x pOx m0 x
(-f012+1023 0 (-012-1023 ) : 0 0
-f034+1041) +£034+f041) (-f123+£134) (+f123-f134) | (+f012-f023) (+f012+1023)
2% a/4 x a/4 x
m0 x mo x m0 x a/4 ml x m0 x (+m0 x 012 mo x m2 x (+m2 x £241
(-f012+£023 | (-f012-f023 +m0 x f041 +m2 x 234
+034-041) | +034+1041) fg;ﬁgﬁ) (-1123-f134) | (HOI12-0041) | 1y g3 | (R012-R023) | (-R41-2234) ) 1oy 012
+m]l x f134) +m0 x f023)
3) [C)] (5)
u3 v3 R3 ud v4 R4 us v5 RS
pOx m0 x p4x m4 x . .
0 |(-f023+f034) | (-f023-f034) 0 umizpon|emiayy] O pdx 412 | -md x f412
o p3x m3 x p0x m0 x }
(“5312-841) 0 |epiz-pan|coai+ozay,  © (-f0a1-f34) | PLX 134 0 ml x fI34
a/4x a4 x
+m0 x f023 (+md x f412 a/4 x
m3 x mox ¢ ! mo x ma x méx-f12 |
+m0 x f034 j +m4 x f423 | ml x f134 (-m4 x 412
(+1312+£341)| (+£023-f034) +m3 x 5312 (+1041-1034) [(+f412+423) +m0 x f041 -ml x f134)
+m3x f341) | +m0 x 034)
(6) a 8)
u6 v v6 R6 u7 v7 R7 u$ v8 RS
0 +p2x f241 | -m2 x f241 0 -p2 x 234 | +m2 x 234 0 +p4 x 423 | +m4 x f423
+pl x f123 0 -ml x f123 -p3f312 0 -m3 x f312 +p3f341 0 +m3 x 341
ald x a/4 x a/4 x
+ml x f123 | +m2 x 241 | (.m2 x 241 | -m3 x 312 | +m2 x 234 | (-m2 x 234 | -m3 x 341 | -m4 x f423 | (-m4 x 423
-ml! x f123) -m3 x f312) -m3 x f341)

the applied unit displacements are determined by
transmitting the calculated secondary stresses to the
centroids of the corresponding elements.

In case that springs between the elements (0 and
4) are subjected to tension, group "B", the area
represented by the springs subjected to tension is the
left half of the element (0) and the right half of the
element (4). Tension forces (horizontal) between the
elements (0 and 4) leads to lateral (vertical)
displacement for the area represented, group "B,
Additional stresses exist in zone "B

The calculated additional stresses are based only
on assumption that the element (0) is surrounded by
elements from all directions. For example, if the
element (8) does not exist, no stress component
exists between the elements (4 and 8). This means
that lateral displacement is permitted in the upper
edge of the element (4). To make the technique
general, the calculated reaction component is
multiplied by a continuity factor representing the
continuity condition of ea¢h element edge.

Referring to Fig, 12, the same technique can be
applied to the vertical displacement component of
the element (0). Figure 13 (a) shows the effect of
rotation of horizontal edges of the element (0) while
Fig. 13 (b) shows the effect of rotation of vertical
edges. In all the cases, secondary stresses, calculated

in case of element rotation, are assumed to be
uniformly distributed over the element edges as only
one degree of freedom is assumed for each direction
in an element. : :

Global stiffness matrix should be modified to
add the consideration of the effects of the Poisson's
ratio as shown in Table 4. The effects of Poisson's
ratio due to unit displacement of each degree of
freedom of the element (0) on the other surrounding
elements are shown in the table. The transmitted

" force and moments "pi" and "mi" are defined as:

. vxEjxt;

_VyxEixt; a
P TRy

-y & D
where, “v” is Poisson's ratio; “E” the Young's
modulus; “t” the element thickness; “a” the element
size. The subscript "i" is the element number.

It can be noticed from Table 4 that the stiffness
matrix is general for any element configuration due
to the use of element continuity factors. If one of
neighboring elements does not exist, its effect on the
stiffness matrix is automatically removed.

Calculation algorithm of stresses is different
from that in case of perfectly rigid elements. In case
of perfectly rigid elements, stresses are proportional
to the relative displacement between the two ends of
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each spring. When the effects of Poisson's ratio are
considered, the following technique is adopted after
assembling the global stiffness matrix and solution
of equations:

1. For each spring, calculate the strain from the

displacements of spring ends, €, and g, by:

d d
ex=7"and ey=Ty ®

where d, and d, are relative displacements of
spring ends in x and y directions, respectively.

For each spring, either ¢, or €, can be calculated.
The same formula is used for calculation of

strain in case of perfectly rigid elements.

2. Calculate the average strains (&,, or £,,) for each
element in x and y directions, and
3. Calculate the concrete stresses for each spring in

x and y directions, €, and €y , from Eq.(9), where
E. is Young's Modulus for concrete.

oy =E, x(ex +ueya)/(1—02)
oy =E, x(sy +uexa)/(l —02)

4. Calculate the reinforcement stresses for each
spring in x and y directions from Eq.(10), where

Eis Young's Modulus for steel.
ox =Egxeyand oy =Esxe,

It should be mentioned that 'if Poisson’s ratio is
set equal to zero, the stress-strain relation becomes
simpler and no coupling between stresses in both
direction occurs.

(4) Verification of the proposed technique

The numerical technique proposed is verified by
analyzing elastic prism specimen subjected to
uniform compression. Simulations are carried out
using two models with and without friction between
loading plates and specimen. The size of the
specimens is (20x36) cm with unit thickness. The
loading plate thickness is assumed 2.0 cm and its
stiffness is much higher than that of the prism so
that effects of deformations of these plates
compared with that of the specimens are neglected.
Analysis is performed under assumption of plane
stress condition for only one quarter of the model.
The applied stresses in all cases are the same. The
Poisson's ratio is varied from 0 to 0.5 with 0.1
increment. The friction between the loading plates
and the specimens are assumed zero in the first
cases, while in the second cases, shear springs with
the stiffness of 40% of the normal springs are used

®

(10)

in the interface between the loading plates and the
prisms.

Figure 14 shows the deformed shape in cases
where no friction exists between the loading plates
and the specimen. Displacements are generally
uniform in the specimen. Increasing the Poisson's
ratio leads to increasing the horizontal
displacements. Although the lateral displacement of
the specimens increases with increasing the
Poisson's ratio, the vertical displacements are the
same. This agrees well with the theory, as there is
no lateral stresses applied to the specimens. From
the simulated vertical and horizontal displacements,
Poisson's ratios are calculated and compared with
the theoretical ones in Fig. 15. The results show
good agreement with theoretical results and the
maximum difference between the theoretical and
calculated values is less than 1%. This gives
evidence that the numerical technique proposed is
accurate enough and can be applied to structural
phenomena governed by the Poisson's ratio.

Figure 16 shows the deformed shapes in cases of
the specimen having different Poisson's ratios where
friction exists. In case when the Poisson's ratio, v,
equals to zero, no horizontal displacement exists.
On the other hand, lateral displacement is maximum
when v is equal to 0.5. The effect of confinement
due to friction between the loading plates and the
specimen is also obvious.

Figure 17 shows the stress contours (g,, 6,, T,)
in case where v is equal to 0.5. For oy, it is obvious
that the effect of confining stresses leads to
increasing the vertical stress near the center of the
specimen and reducing the vertical stress near the
prism edges of the specimen. However, the effect of
Poisson's ratio on vertical stresses is not large. In
case of ox, it is obvious that the effect of confining
stress is maximum near the loading plates, because
of friction, and this effect vanishes in the middle of
the specimen. Shear stresses, 1,,, is maximum near
the loading plates, because of friction, and this
effect disappears at the center line of the beam and
away from the loading plates. However, the stress
values are slightly affected near the edges because
of edge effects. This effect does not appear in the
FEM as the Poisson’s ratio effect is included in the
stress-strain relation not by indirect way as in the
proposed method.

The last verification example is for a RC column
subjected to uniform compression loading. Analysis
is performed assuming elastic material properties.
The objective of this study is to show that the
confinement effects caused by existence of stirrups
are automatically taken into account. The column
dimensions, reinforcement properties and element
arrangement used in the analysis are shown in
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Fig. 17 Stress contour of specimen under uniform compression (Poisson's ratio, v
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Fig.18. Simulation is performed for only half of the
column because of symmetry and using 2,400
square shaped elements. The Poisson's ratio is
assumed 0.3. The analysis is performed under the
assumption of 2-dimensional behavior and plane
stress condition.

The simulation results are shown in Figs. 19 and
20. Figure 19 shows the variation of stresses due to
existence of reinforcement bar. It is obvious that the
concrete is subjected to compressive lateral stresses
due to the reinforcement bar. These stresses
increase in the vicinity of the bar and decrease away
from the bar location. As the lateral bar prevents
the lateral displacement of the column, compression
and shear stresses are maximum at the
reinforcement bar end. Figure 20 shows the
variation of reinforcement bar stress within the
column width. It is noticed that the bar stresses are
mainly tension. The tensile stresses decreases till
reaching the bar end. Reinforcement bar stresses
should be zero at the end of the bar from theoretical
point of view. As the stress gradient at the bar ends
is very steep, tensile stresses at the bar ends could
not be calculated accurately. To overcome this
problem, elements of smaller size should be used.

7. CONCLUSIONS

A simple and efficient technique termed Applied
Element Method, AEM, for structural analysis is
introduced and applied to several fundamental
structures made by linear material to verify accuracy
of the model. Background and outline of the AEM
are also explained. From the numerical results
obtained, it was proved that the AEM has the
following advantages, in elastic analysis:

1. Displacement can be calculated accurately if the
element size is small.

2. Internal stresses can also be obtained accurately.

3. Elements with small size should be used in shear
dominant cases to get accurate shear stresses.

4. In case of high stress gradients, like in case of
concentrated loads, elements of small size should
be used to follow the stress changes.

5. Elements of large size can. be used in case of
slender frames without significant changes in the
calculated normal stresses.

6. The number of connecting springs should be
large if the element size is relatively large.

7. The Poisson's ratio effect can be considered
accurately without significant increase in the
time of the analysis. Simulation results are
compared with the theoretical ones and the
results are of good accuracy.

8. The formulations introduced in the paper are for
rectangular elements with and  without
reinforcements set parallel to element edges, and
for Poisson’s ratio using square elements.
However, this is not the limitation of the method.
The AEM can utilize elements of general shape,
after modifications of the formulas used.

Having good results in elastic analysis
encourages us to extend the applicability of the
proposed model to the nonlinear case. Some of the
results are introduced in following publications
(Refs.10-14).
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