民家再生の廃棄物削減効果と他の環境負荷・コストへの影響に関する2つのケーススタディー

橋本征二1・河野雄一郎2・宮松一朗3・寺島泰4

1学生会員 工修 京都大学大学院工学研究科大学院工学研究科環境工学専攻（〒606-8501）
2京都大学大学院工学研究科環境工学専攻（〒606-8501）
3工修 山陰合同銀行（〒690-0062 松江市魚町10）
4フェロー会員 工博 京都大学大学院教授 工学研究科環境工学専攻（〒606-8501）

実際に行われた2つの民家再生事例について、廃棄物の削減効果と他の環境負荷・コストへの影響について評価し、次の結論を得た。1）廃棄物において、現地再生では20％程度、移築再生では数％の削減効果が認められた。2）他の環境負荷においても、現地再生では数％〜30％、移築再生では数％〜20％の削減効果が認められた。民家再生は廃棄物だけでなく、他の環境負荷の削減策としても有効であると考えられる。3）コストは、現地再生では数％削減され、移築再生では数％増加した。再生は一般に高いと言われているが、安くなる可能性も充分あると考えられる。4）廃棄物の削減効果を向上させるためには、再利用可能な資材をストックし、適切な物件で利用できるようなシステムが必要である。

Key Words: construction waste, demolition waste, old house, old house renovation, life span

1. はじめに

高度成長期から今日まで、我々の生活は物質的に豊かになり、それに伴って国内には様々な財がストックされてきた。これらは、土木構造物や建築物、耐久消費財などとして我々の身のまわりにある。実際、日本のマテリアルバランスを見ると、1970年から90年にかけての投入資源は、年間15億トンから23億トンへと1.5倍に増加するとともに、そのうちの実に10億トン前後が、毎年確実に国内に蓄積されている。

今日の廃棄物問題において建設業の占める位置は大きい。投資資源の約5割は建設資材であり1）、産業廃棄物の約2割は建設業から発生2）、最終処分される産業廃棄物の約5割を建設廃棄物が占め3）、不法投棄の約9割は建設業から発生4）しているという状況である。さらに今後は、これまでに蓄積された土木構造物・建築物の解体・更新に伴い、解体廃棄物の増加が予想される5）、6）が、これにより建設廃棄物の問題は一層深刻なものとなる可能性がある。

これらに対処するには、まず、解体廃棄物の発生を土木構造物・建築物の長寿命化などにより抑制し、次に発生した廃棄物についてはできるだけリサイクルし、最後にどうしてもリサイクルできないものを適正に処理していくことが必要である。しかし、長寿命化やリサイクルについては、それによって廃棄物が抑制される反面、別の環境負荷が新たに生じると考えられる。よって、これらについては環境面からのLCA的な評価が必要であろう。

本稿は、建築物長寿命化策の一つとして民家再生を取り上げ、これを評価したものである。民家の保存や再生は今日の建築業においても注目を浴びているが、これは、古いものと新しいものを融合するという、言わば文化的な側面から捉えられることが多い。その中には、我々の住宅文化が戦前戦後で全く断絶してしまったことへの反省がある。しかし、住宅としての機能を終えつつある、あるいは既に終えた民家に対して大規模に手を加え再び住宅として生活に戻せる技術は、今日の廃棄物問題に対して一つの解答を示しているといえよう。民家再生により廃棄物はどのくらい削減されるのか、廃棄物は削減されるが他の環境負荷はどうなるのか、また、民家再生は
一般的な解体・新築と比較して高いと言われるが、現実にそうなのか。本稿は、実際に行われた2つの民家再生事例について、その建物の削減効果とその環境負荷・コストへの影響について評価したケーススタディーである。

2. 対象事例の概要

民家再生には様々なケースがあるが、大まかに分類すると、現地再生と移築再生とに分けられよう**i**。

今まで家屋が数多く存在し、既存の家屋利用しながら新しい家屋を作ることが新たな現地再生である。全面的に解体して構造を組み直すケース、解体しないまま構造を調整するケース、部分的に再生するケースなどがある。一方、家屋を全面的に解体して、資材を別の場所へ輸送し、そこで新しい家屋を作れるのが移築再生である。

本稿では、現地再生と移築再生のそれぞれ1件を対象事例として取り上げた。なお、再生が適用可能な家屋は、一般に、戦前に建てられた家屋（木造住宅の約1割**ii**）であるが、戦後に建てられた比較的大規模な家屋であることが多く、木構造が頑強であるなければならない。

(1) 現地再生事例（京都市K邸）

K邸は旧K邸の一部を解体、一部を再生して1998年に新築された。旧K邸（延床面積235m²）は、1917年に建築され、1965年に1階部分を増築、1988年にはさらにその2階部分が増築されることで完成し、木造ながらも、新築の家屋が現実の家屋であることを示して欲しい。旧K邸に使われている部材のうち可能なものは取り入れて新しいものを作りたいと考え、新しい部材が提供された場合に新築されるべきである。したがって、新築においても必要とする解体がなされた。新築（同197m²）は大きく改築および新築部に分けられ、改築部（同47m²）は、現地再生における解体の一部を解体し、部分的に再生する部分である。先述の分類に従えば、解体しないまま構造を調整するケースと部分的に再生するケースの中間に位置する現地再生である。

(2) 移築再生事例（和歌山市W邸）

W邸は、八尾市の旧Y邸を解体して得られた構造材を用いて1999年に新築された。旧Y邸（同175m²）は、大戸戸板に安政2年の里火があったことから、築約150年と推定される比較的大規模の大和桝家（農家）であった。数年前から建て替え検討が始められたが、新築にかかる再生にかけるか既存に迷ったという。最終的には新築することとなったが、愛着のある家屋でもあり再利用してもらえるならば、ということで、建築家さんと紹介のあった「古材バンク会」を通じて古材を利用することとなった。一方、W邸（同154m²）は、子供の成長に伴って現在の家が手狭になっていることから、戸建てを新築することになったものである。大規模な解体が活発で、そこの解体に伴って古材の選別がなされた。W邸の構造材のうち一部の部材は虫食いなどによっているが、再生が不可能な状態であったが、その部分には別の部材を転用するなどできるだけ多くの古材が使われるようになった配慮がなされた。

3. 評価の方法

(1) 評価の枠組

上記の現地再生工事が行われなければ、旧K邸は全面解体され、更地に新しく新築する工事（以下「建て替え工事」と表記）が行われたと考えられる。また、移築再生工事が行われなければ、Y邸の旧家も解体され、W邸では新材を用いた新築工事（以下「解体新築工事」と表記）が行われたと考えられる（以下、現地再生工事と移築再生工事を合わせて指す場合には「再生工事」と、建て替え工事と解体新築工事を合わせて指す場合には「通常工事」と表記）。

そこで、図-1のように、再生工事に対して上記のような通常工事を想定し、これを比較対象として評価を行った。なお、通常新築においては、機械解体を行って廃棄物を不燃及び不燃分類（現場での実際の分類）し、可焼廃棄物については焼却して不燃焼棄物とともに埋立するものとした。また、再生工事が行われた場合と同じ家屋が、新材を用いて建てられるものとした。

(2) 評価の項目

a）廃棄物

発生廃棄物とともに、環境負荷という観点から埋立廃棄物を取り上げた。直接的には、解体現場から発生する解体廃棄物と、新築現場から発生する新築
廃棄物がある。また、間接的には、現場に投入される資材の製造に伴い発生する間接廃棄物がある。

b）他の環境負荷

投入される資源
エネルギーの使用等に関連する資材として、原料、燃料、一般廃棄物、NG、天然ガスを、建築活動に関連する資源として、鉄鉱石、石灰石、骨材、木材、さらにエネルギー（化石燃料等起源、バイオマス起源）を取り上げた。直接的には、現場で使用される燃料及び電力、木材や廃棄物の輸送及び使用される燃料の消費（エネルギーのみ）がある。また、間接的には、現場に投入される資材、燃料及び電力の製造に伴う消費がある。

排出される廃物
エネルギーの使用及び木材の焼却等に関連する廃物としてCO₂（化石燃料等起源、バイオマス起源）、SOx、NOx排出量を取り上げた。直接的には、現場で使用される燃料の燃焼、木材や廃棄物の輸送及び使用される燃料の燃焼、及び発生した廃棄物の焼却に関伴う排出がある。また、間接的には、現場に投入される資材、燃料及び電力の製造段階における燃料の燃焼、工業プロセス及び廃棄物の焼却に伴う排出がある。

c）コスト

解体コスト及び新築コストを取り上げた。

（3）廃棄物及び他の環境負荷の計算方法

a）直接負荷と間接負荷

ある製品や活動の環境負荷を把握する手法としては、積み上げ法と産業連関法がある①、②。積み上げ法は、個々のプロセスにおける環境負荷を調査し、積み上げることから、詳細なプロセス分析が可能な反面、建築物のように多様な資材を用いる製品では、データ収集が実現的に困難である。一方、産業連関法は、産業連関表を基礎データとして使用することから、分析の精度あるいは確度は落ちるものであるが、方法的な分析が可能であり、これまで土木構造物・建材の分析で汎用されてきた。

本稿では基本的に、解体現場及び新築現場で発生する負荷を「直接負荷」として積み上げ法で計算し、現場に投入される資材やサービスの製造プロセスで発生する負荷を「間接負荷」として産業連関表で計算したが、廃棄物処理サービスについては、図-2のよう扱いとした。すなわち、可燃廃棄物の焼却に伴って発生するCO₂、SOx、NOxを埋立廃棄物（焼却残渣を含む）については積み上げ、これを処理・処分するために投入される資材や排出される廃棄物については産業連関表を用いた。

また、プラントの建設・各種機器の製造など、資本財生産に関わる負荷についても、本稿では考慮していない。

b）積み上げ法で計算する負荷の調査と計算の方法

調査は実際に行われた再生工事で行い、比較対象となる通常工事は、これに見積書、設計図、業者へのヒアリング等を加え計算した。

再利用資材
再生工事の再利用資材（構造材、建具、基礎、壁等）は、実測調査及び設計図から資材を拾い出し計算した。通常工事は、これに見積書、設計図、業者へのヒアリング等を加え計算した。

廃棄物
再生工事の解体廃棄物量は、現場でトラックに荷札されて搬出される廃棄物の体積を
調査し、これを廃棄物の養成割合7)を用いて重量に換算した。通常工事の解体廃棄物量は、調査した再生工事の廃棄物量に再利用資材量を加えることで計算した。

再生工事の新築廃棄物量は、工務店工場で組み手、仕口を剥き際に発生する木くず量を調査した。通常工事の新築廃棄物量は、調査した再生工事の廃棄物量と再生工事に必要な木材量から単位木材あたりの廃棄物原単位を求める。通常工事に必要な木材量に乗ずることで計算した。また、現場で発生する建築系混合廃棄物については、既存の発生原単位8)を用いた。

埋立廃棄物量は、可燃廃棄物については焼却による溶出率を90%とし、不燃廃棄物はそのまま最終処分するものとして計算した。

他の環境負荷（投入される資源） 再生工事のエネルギー消費量は、工務店工場で使用された電力、現場で用いられた小型のバックホー及び工具に使用された燃料と電力を調査し、木材や廃棄物が実際に送られた距離から必要燃料を計算し、係数9)を用いてエネルギー量に換算した。通常工事のエネルギー消費量、再生工事において工務店工場で使用された電力と再生工事に必要な木材量から単位木材あたりの電力原単位を求める、通常工事に必要な木材量に乗ずることで必要電力を計算し、また、解体業者へのヒアリングから大型のバックホーを用いて機械解体することを想定して必要燃料を計算し、係数9)を用いてエネルギー量に換算した。

・他の環境負荷（排出される廃棄物） 再生工事のCO₂、SOₓ、NOₓ排出量は、現場で用いられた小型のバックホー及び工具に使用された燃料を調査し、木材や廃棄物が実際に送られた距離から必要燃料を計算し、排出係数10)を用いて排出量に換算した。通常工事の排出量は、解体業者へのヒアリングから大型のバックホーを用いて機械解体することを想定して必要燃料を計算し、排出係数10)を用いて排出量に換算した。

可燃廃棄物の焼却に伴う排出量は、廃木材の要素組成11)から、C、S分についてはすべてCO₂、SOₓになるとして計算し、NOₓについては火災廃棄物焼却炉の排出係数（脱硝なし）12)を用いて計算した。

4）コストの計算方法

a）解体コスト

建替え工事については、解体業者から床面積あたりの解体費、廃棄物処理費、ガラス及び基礎撤去処理費などを含めたヒアリングで見積った。また、解体新築工事については、移築再生工事の解体コストとは別に全面機械解体の見積もりがなされたため、これをそのまま用いた。

b）新築コスト

・基礎工事 建替え工事について、工務店から再利用される基礎の工事費をヒアリングで見積もった。

・木工事 木材費について、木材の建築部位別の平均的な単価を見積もりから計算し、これに残存している建築部位別の木材量を乗じて見積もった。また、大工施行手間について、現状再生工事における新築部分と改修部分の床面積あたりの大工施行手間を計算し、これに新築の床面積を乗じて見積もった。

・左官工事 建替え工事について、再利用される壁の面積と壁面積あたりの工事費から見積もりもった。

・木製建築工事 建替え工事について木製建築の種類別の平均的な単価を見積もりから算出し、これに再利用される木製建築を乗じて見積もりもった。

4. 結果と考察

廃棄物及び他の環境負荷に関する計算結果が表1、表2である。なお、再生前の家屋と再生後の家屋でその延床面積が異なることから、結果は床面積
表 - 1 現地再生の計算結果

<table>
<thead>
<tr>
<th>原料炭</th>
<th>一般炭</th>
<th>原種</th>
<th>LNG</th>
<th>天然ガス</th>
<th>鉄鉱石</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 - 2 移植再生の計算結果

<table>
<thead>
<tr>
<th>原料炭</th>
<th>一般炭</th>
<th>原種</th>
<th>LNG</th>
<th>天然ガス</th>
<th>鉄鉱石</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
図 - 3 発生廃棄物の削減効果

図 - 4 木材の削減効果

表 - 3 解体廃棄物の削減効果

<table>
<thead>
<tr>
<th></th>
<th>現地再生</th>
<th>建て替え</th>
<th>移築再生</th>
<th>解体新築</th>
</tr>
</thead>
<tbody>
<tr>
<td>可燃廃棄物 (kg)</td>
<td>12,180</td>
<td>18,695</td>
<td>58,167</td>
<td>60,631</td>
</tr>
<tr>
<td>不燃廃棄物 (kg)</td>
<td>45,869</td>
<td>57,083</td>
<td>78,163</td>
<td>78,163</td>
</tr>
<tr>
<td>基面積あたり廃棄物 (kg/m²)</td>
<td>-385</td>
<td>793</td>
<td></td>
<td></td>
</tr>
<tr>
<td>削減率 (%)</td>
<td>-23</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 - 4 木材（構造材）の再利用率

<table>
<thead>
<tr>
<th></th>
<th>現地再生</th>
<th>移築再生</th>
</tr>
</thead>
<tbody>
<tr>
<td>再利用材 (m³)</td>
<td>15.7</td>
<td>6.0</td>
</tr>
<tr>
<td>新材 (m³)</td>
<td>31.5</td>
<td>38.5</td>
</tr>
<tr>
<td>基面積あたり廃棄物 (m²/m²)</td>
<td>0.24</td>
<td>0.29</td>
</tr>
<tr>
<td>削減率 (%)</td>
<td>33</td>
<td>13</td>
</tr>
</tbody>
</table>

あたりの数値はなっていない。また、仮設工事、土工・コンクリート工事などを「基礎工事」、木工事を「解体工事」、左官工事、屋根工事、板金工事、建具工事を「仕上工事」、給排水衛生設備工事、電気工事を「設備工事」として計上している。

（1）廃棄物の削減効果

発生廃棄物量は、現地再生では建て替えに比べ19%、移築再生では解体新築に比べ2%削減された（表 - 1、表 - 2、図 - 3）。解体工事からの排出が大きな比率を占めるが、特筆すべきは、総発生廃棄物量が現地再生では100〜120t、移築再生では約170tにも上ることである。解体廃棄物以外の廃棄物が全体に占める割合も、現地再生では約40%、移築再生では約20%と無視できない量である。また、埋立廃棄物量は、移築再生ではほとんど効果が見られなかった（表 - 2）。

解体廃棄物だけをみると、発生廃棄物量は現地再生では23%、移築再生では2%削減された（表 - 3）。移築再生における削減率が小さいのは、旧Y邸が大規模な茅葺民家であったため解体時に茅や廃木材が大量に排出された（表 - 3の基面積あたり廃棄物を参照）一方で、再利用された構造材の比率が少なかったためである。また、現地再生における削減率が高かったのは、構造材に加え、建具、基礎及び壁が補修、補強あるいは改装され再利用されたためであ
る（表 - 3）。

(2) 他の環境負荷への影響

a）投入される資源への影響

資源消費量はいずれも、現地再生では建て替えに比べ数％～30％、移築再生では解体新築に比べ数％～20％削減された（表 - 1、表 - 2）。特に木材消費量は、現地再生では30％、移築再生では18％削減された（図 - 4）。これは、新築現場で使用される木材のうち、再利用材の占める割合が現地再生で33％、移築再生で13％あったことからも容易に想像がつく（表 - 4）。

b) 排出される廃棄物への影響

CO₂（化石燃料起源）排出量は、現地再生では11％、移築再生では1％。また、CO₂（バイオマス起源）排出量は、現地再生では35％、移築再生では4％削減された（表 - 1、表 - 2）。CO₂（バイオマス起源）のほとんどは解体廃棄物の焼却によるものだが、移築再生においてこの排出は、CO₂（化石燃料起源）排出量の約1.5倍に達した（図 - 5）。これは前述の通り、旧Ｙ邸が大規模な茅葺民家であったことに由来するが、現地再生、移築再生いずれにおいても、廃木材の削減が化石燃料起源とバイオマス起源を合わせたCO₂排出量の削減に寄与した（図 - 5）。ただし、CO₂（バイオマス起源）は森林が持続的に管理された状態においては吸収されることから、その場合の排出はゼロと考えられる。

SOx排出量、NOx排出量は、現地再生ではそれぞれ12％、13％、移築再生ではそれぞれ2％ずつ削減された（表 - 1、表 - 2）。

以上から、民家再生が廃棄物削減策としてだけでなく、他の環境負荷の削減策としても有効であることが分かる。ただし、本稿が対象とした移築再生事例においては、削減率が小さかった。これについては（4）で検討する。

(3) コストへの影響

コストは、現地再生では4％（5,451万円→5,250万円）削減され、移築再生では1％（4,415万円→4,467万円）増加した。コストの増減の内訳を見ると、再生工事によって解体工事及び大工施工手間のコストは増加するものの、木材費を中心とした資材にかかるコストは削減されることが分かる（図 - 6）。現地再生においては、こうした人件費の増加をもたらす工事項目におけるコストの増加を補うだけの資材コストの削減があったが、移築再生においては大規模な茅葺民家であったため特に解体コストの増加が大きく、これを補うだけでなく資材コストの削減が得られなかった。しかし、その増加分はわずかである。

一般に民家再生が高くつくと言う場合には比較している対象が明らかではないが、プレハブなどの安価な住宅を想定していることが多い。しかし、「再生で得られる住宅と同じ住宅」を建てるとすれば、再生の方が安くなる可能性は充分あると考えられる。特に、古材にはかなり上質の木材も多く、このよう
な場合には、同等の材を現在手に入れようとすると破格な値段となり、これがコスト削減に寄与することも考えられる。

（4）削減効果向上の可能性
本稿で対象とした2つの事例においては、现在再生が移築再生に比して、廃棄物及び他の環境負荷の削減効果が大きいという結果を得た。さらに、コストについても現在再生では削減され、移築再生では増加する結果となった。しかし、一般的に現在再生の削減効果が大きいとは断言できない。再生には前述の通り様々なケースがある。本稿が対象とした現在再生事例は、改修部、改修部、新築部から構成され、それらが一体となって一つの再生工事となっていた。また、この分類に従えば、対象とした移築再生事例は、改修部と新築部から構成される再生工事であると言える。一つの家屋の中で行われる工事であることから、これから工事部別の負荷を分離して計測することは困難であるが、今後はこれら工事の組み合わせを分析（再生手法を分析）し、これを効果と対応させる必要がある。

本稿は、廃棄物の削減効果をみることに主眼を置いているが、2つの事例を比較したときに、削減効果を向上させるにあたって次の2点が重要であると考えられる。

一方、再生の適応可能性が高い家屋は一部に限られることから、これが適用できない家屋については、解体後の廃棄物のリサイクルが必要となる。現在、建設省では解体・リサイクル制度研究会の報告を受け、解体・リサイクル法の準備中であり、今後木造建築物の解体廃棄物（主として廃木材）のリサイクルも急速に進んでいく可能性があると考えられる。この場合、可燃発生廃棄物の焼却を前提とした上記の結論は、異なったものとなるだろう。

しかしながら、民間再生が通常の廃木材リサイクル（燃料化、ボード用など）と異なるのはその時間スケールの長さである。長い年月利用されてきた木材が、再び新しい年月の利用に入る民家再生は、燃料としての利用とは決定的に異なる。今後は、こうした時間スケールを考えた検討も必要になると考えられる。

謝辞：調査に際しては、大阪建築事務所・栄田雄一郎氏、藤岡建築研究室・藤岡隆介氏、施主夫婦、住み工務店・村田孔子氏、松原工務店・松原啓明氏及び現場の方々、古材バンクの会・伊東義昭氏にも多大なる協力を顶いた。この記して深謝する次第である。
注 1) なお、古民家再生工房の神家は、民家再生を次の 4つに分類している。第一に現在ある建築物を骨組みだけに解体して、傾きなどを直し、傷んでいる箇所は必要に応じて補修、取り替え、間取りから外観まで設備を含めて建築全体にわたり改良する大掛かりな「全面的再生」である。第二に建築全体を改造するのではなく最も傷んでいたり、不使用を感じている箇所で、例えば台所、食堂、浴室、便所等の水回りを中心にして、一棟の部屋や小屋裏を改造する場合、また、屋根は改造しないで納屋や収蔵庫、屋根裏などを改造して二世帯住宅やアトリエ等に改造する「部分的再生」。第三に建築が大きく全面的に再生をすることに限らず、もっと小さな再生計画を立案し、状況、予算に合わせて段階的に改修、再生を時間をかけて行う「段階的再生」。第四に現在使っている場所から、他の場所に建築を解体、運搬し、新しい骨組みを再活用して新しい住居を造る「移築・再生」がある。
注 2) これらは、ライフサイクルアセスメント（LCA）におけるイベントリー分析の手法であるが、本稿は厳密に家屋のライフサイクルを分析したものではなく、その一例を対象としているため、このような表現した。

参考文献
1) 日本開発銀行：調査第 175 号、建設廃棄物の発生量予測とその対策推進ストックから発生するスクラップへ、pp.12-13, 1993。
2) 厚生省：産業廃棄物排出・処理状況調査報告書、平成 6年度実績調査結果、p.21, 1997。
3) 建設省：建設リサイクル推進懇談会提言－建設リサイクル推進のあり方について、(財)先端建設技術センター、1996。
4) 橋本征二、寺島泰：建築物の解体により発生する廃棄物の将来予測、土木学会第34回環境工学研究フォーラム講演集、pp.109-111, 1997。
5) 総務庁統計局：平成 5年住宅統計調査、1996。
6) (社) 東京科学技術協会、エコマテリアル研究会編：LCAのすべて、工業調査会、pp.116-124, 1995。
7) 橋本征二、寺島泰：建築物解体廃棄物の原単位設定、廃棄物物学会論文誌、Vol.10、No.1、pp.35-44, 1999。
8) (社) 建築業協会環境委員会副会事会：建築業組合廃棄物の原単位調査報告書、1997。
9) 資源エネルギー庁：総合エネルギー統計、通商産業研究所。
10) (社) プラスチック処理促進協会：プラスチック製品の使用量増加が地球環境に及ぼす影響評価報告書、pp.31-38, 1993。
11) 榎間達夫、井川清光：高レベルプラスチックはエネルギー資源、プラスピア72号、(社) プラスチック処理促進協会、pp.1, 1990。
12) 環境庁：温室効果ガス固定発生源目録調査報告書、1998。
13) 橋本征二、小原卓巳、寺島泰：解体木くずリサイクルの環境面からの評価、土木学会論文集、No.643 / VII-14、pp.37-48, 2000。
14) 建築資料研究会：積算ポケット手帳。
15) 日本銀行：物価指数年報。
16) 総務庁：平成2年産業統計値、1994。
17) 解体・リサイクル制度研究会：解体・リサイクル制度研究会報告～自立と連携によるリサイクル社会の構築と環境産業の創造を目指して～、1998。
18) 古民家再生工房：古民家再生術、住まい学大系 072、住まいの図書館出版局、pp.155-158, 1996。

(1999.6.18 受付)

TWO CASE STUDIES ON EFFECTIVENESS OF WASTE REDUCTION AND INFLUENCE UPON OTHER ENVIRONMENTAL LOADS AND COSTS OF OLD HOUSE RENOVATIONS

Seiji HASHIMOTO, Yuichiro KONO, Ichiro MIYAMATSU and Yutaka TERASHIMA

Effectiveness of waste reduction and influence upon other environmental loads and costs were evaluated in two actual old house renovation cases. Conclusions are as follows: 1) waste reduction was observed by around 20% in the case of renovating at the same spot (case A), and a few % in the case of renovating at the different spots (case B); 2) not only waste but other environmental load reductions were observed by a few %~30% in the case A, and a few %~20% in the case B; 3) cost reduced in the case A and increased in the case B, and this implies the possibilities of cost reduction although it is said that old house renovation is expensive; and 4) the system that makes it possible to stock the recyclable materials and to reuse them at appropriate house renovations and constructions is necessary to rise the effectiveness of waste reduction.