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The physical understanding and the numerical simulation of the characteristics of R.C. columns have
been the focus of intensive efforts. Structural systems which are subjected to any kind of loads become
quite difficult to analyse rigorously in their original physical forms, especially. when the degree of
freedom becomes so large. So.in this work, the Modified Lattice Model, which was previously modified
by the authors in two dimensions, is extended to the three dimensions. The reinforced concrete column
under pure torsion is chosen as a material subject to check the suggested model in 3-D. The applicability
of the suggested model in 3-D is examined successfully in companson with many existing experimental

data.
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1. INTRODUCTION

To capture the shear resisting mechanism of
reinforced concrete columns, such as the initiation
of diagonal cracking, yielding of reinforcement and
crushing of web concrete, and also to establish a
particular torsion-resisting model, the Lattice model
in 2-D® ? has been developed to 3-D domain. The
calculation procedures using 3-D Lattice Model are
rather simple and worthwhile to be investigated if it
gives results in an allowable limit of accuracy”™ ®.
In the 3-D lattice Model, a concrete column is
modelled by the assembly of each orthogonal four
truss planes. Each truss plane has an arch element.
- The thickness of the arch element is decided
separately inside each truss by minimisation the
total potential energy for each truss plane. The
calculation of minimising the total potential energy
is carried out at all loading stages'®.

The solid concrete cross-section column 1is
simulated to a hollow cross-section with a wall
thickness “t,” which is suggested by Hsu'®. Since
the Lattice Model assumes the compatibility
condition and the equilibrium condition, it gives
one of the lower bound solutions within the limit
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of the constitutive model of materials. So, several
constitutive concrete curves are investigated to get
the suitable softening model for the suggested 3-D
lattice Model. _

Finally, several theories, like the skew bending
theory®, space truss theory'® and ACI method”, in
addition to the JSCE equation'® and many other
code regulations are selected to compare the
numerical results using the suggested 3-D Lattice
Model. Moreover the numerical results using the
suggested 3-D Lattice Model show a successful
comparison with the experiment results.

2. MODELLING CONFIGURATION FOR
THE 3-D LATTICE MODEL

To analize the reinforced concrete column under
pure torsion by the 3-D lattice Model, the most
appropriate configuration of Lattice members
should be decided. The conceptual idea of space
Lattice is explained as in the following. The outside
dimensions of the cross-section of the 3-D lattice
Model are considéred as “b,,” and “d.,”, which are
equivalent to the outside dlmensmns of the closed
stirrup inside the cross-section of the RC column,



neglecting the surface concrete covering outside the
hoop. In the ultimate state, covering concrete is
completely spilled off. So, it is only concrete inside
the closed stirrups to play dominant role. Since it is
putting much emphasis on the ultimate state, the
covering concrete outside the stirrups is neglected.
In Fig.1, within the area of “bd” the column is
represented by four simple truss planes, which are
orthogonal to each other. Each truss plane follows
all the assumptions of the Modified Lattice Model
in 2-D as it was suggested previously by the
authors'?. For the stability of this space trusses,
there are two cross diagonal members between each
of two opposite comer nodes, with a constant area.
These elements have not any effect on the output
results in case of the pure torsion. In case of
reinforced concrete column under pure torsion,
which is considered a focus of this study, all the
corners of the column is under tensile stresses. Area
of the vertical strut equals to the corner area, which
is bisected by the equivalent wall thickness, as will
be discussed later in section 3 as shown in Fig.2.
Longitudinal reinforcements are simulated into
vertical members, while transverse reinforcements
are simulated into horizontal truss members. In each
truss plane of the column, Lattice Model has
diagonal concrete tension and compression
members with the area as shown in Fig.2. During
the calculation, area of the sub-diagonal member
will be calculated after the value of the thickness of
the arch element “t” is determined, as it will be
explained later in the next section. Two pairs of the
diagonal members are considered, as it is suggested
before by the authors®™ '® For the trusses in the
wider face of the column, the inclination angle of
the diagonal members is fixed at 45 degrees. For the
other two sides in the short direction, the position of
the nodes are kept exactly as they are determjned
from the wider faces. So, in the short side of the
cross-section, the diagonal angles will usually
larger than 45 degrees. Fig.2 shows the cross-
section of the 3-D Lattice Model, considering the
tension zone area firstly suggested as a square
section at each corner zone, with an area equals to

tzw. This tension area at each corner zone will be
studied clearly in the next section.

3. DETERMINATION OF DIMENSIONS
OF TRUSS MEMBERS

(1) Thickness for the wall side

For a reinforced concrete column with a solid
cross-section under pure torsion, many researches
mentioned that the core of the cross-section does
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Fig.2 Cross-section of 3-D Modified
Lattice Model

not resist any torsion', Thus the shear flow runs
only in a definite thickness at each side of the cross-
section. Hsu suggested an equation to calculate this
thickness using Eq.(1)'”. Fig.3 shows a solid cross-
section column and the equivalent hollow cross-
section with the effective wall thickness ¢, .

t,=12%A /P, 1)
Where ¢, is the wall thickness of the hollow
section, A, 1s the area of the solid section and equals
tob*dand P, is the outer perimeter of the cross-
section and equal to 2(b+d). The appropriateness of
this assumption will be explained in the combined
discussion of diagonal member effect, arch element
and tension zone effects.
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Fig.3 The equivalent solid cross-section
with a hollow section

(2) Thickness of the arch element

Fig.4 shows the truss plane in addition to a
lateral cross-section for each side of the column.
The thick solid line in Fig.4 represents the arch
element, which is connected to the nodes at both
ends of the beam with an area as shown in .the
cross-section in Fig.4. In the analysis, the arch
element and the diagonal elements are separated
and each one of them has its stress and strain
distribution®®. The reason of this element separation
is that the structural action is normally a
combination of series and parallel couplings of the
cracking zones and the uncracked (elastic) zones. In
the modified Lattice Model, these zones are
simulated with continuous pairs of tension and

* compression members. The arch member is a key
element in this study. It resists the compressive
stresses, which is created in each side during torsion
especially in the wider face of the column.
Normally, the values of the strains or the stresses of
the column are not constant along the width of each
side in the same cross-section'”. It means that the
stress or the strain is not uniformly distributed in
the direction of the width or the depth of each side
of the column '”. So, in the suggested model, the
arch element and the diagonal element are
separated, and each one of them has its stress and
strain distribution. The arch element has the ability
to resist a large portion of the applied load. So, it is
necessary to simulate it exactly during all the
different loading stages.

It is found that the calculation of the total
potential energy of the structure has a significant
shifting during the calculation'?. The width of the
arch element varies with the change of the load and
material deterioration of concrete. It is decided in
such a way that the total potential energy becomes
minimum value, at which the stiffest case of the
structure occuring '?. So in this study, the total
potential energy is calculated for each element of
each truss plane, and for different values of factor
“o”, where the final value of the width of the arch
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element “t” equals at,. a in the calculation starts
from 0.1 up to 0.9 with a very small increment. The
total potential energy for each truss plane is
calculated using Eq.(2).

n
TPE=Y [5-PA
i=]

In this equation, T"P.E,, is the total potential energy

@)

for each of plane truss, f;is the internal force inside

each element of the truss side, 3 is the displacement
of each individual member, # is the number of the
truss members, P is the value of the external load
applied at the top column or the top of the truss
planes as shown in Fig.4 and A is the displacement
at the loaded point. By minimising these values of

the total potential energy, we can get the
corresponding “a” value at each step of the
calculation.

The thickness of the plane, which include truss
and arch, is kept constant as t,, which is given by
Eq.(1). The dimension of the square tensile zone
effects the dimension of the arch depth. By
changing the side length of the square tensile zone,
the effect of those dimensioning is investigated. The
area of the tension zone is firstly suggested being

equal to %, as a small square at each comer. Then
the square area of 0.5, 1.0 and 1.5 times of the value
t?,, are analysed as a separate cases for. the tension
zone area. In each case, the wall thickness 7, is

kept constant, but the area of the tension zone is
changed by decrease or increasing the depth of the
arch element at each side.
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Fig.S Tensile stress-strain
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4. CONSTITUTIVE EQUATIONS

In the Modified Lattice Model the diagonal
tension member of concrete resists the principal
tensile stress resulting from shear force. The stress-
strain relation of tension member of concrete has
been taken as expressed in Eq.(3) and Eq.(4)'® and
as shown in Fig.5.

For ascending branch (&, <&,,)
3)

G’ = ECEI'

For descending branch (¢, > ¢,, )

2
_J ey @

Where &,and o, are the strain and the stress of the

Er

o =(1-¢)f,€X —m2

ECT

tension element respectively. &, is the strain at the
cracking of concrete and E,is the modulus of
elasticity of concrete. The stress-strain behavior of
concrete in tension is elastic before cracking and
exhibits softening after cracking. The softening
slope should take care of fracture energy for plain
concrete and tension-stiffening effect for reinforced
concrete'®. Eq.(3) shows the elastic behavior before
cracking. In Eq.(4) m can be varied to simulate
appropriate fracture energy for plain concrete.
Appropriate ¢ can be chosen to simulate the
residual stress in the final stage of damage for
simulating tension-stiffening effect in reinforced
concrete'?. In this research m=0.5 and ¢ =zero are
adopted. The fracture energy of concrete is assumed
to be equals 100N/m. For the reinforcing bars, the
stress-strain relationship is assumed to be elasto-
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Fig.6 Stress-strain curves for softened concrete

plastic for the case of tension and compression
members.

The stress-strain curve of softened and non-
softened concrete is studied, to get the suitable
softening model for the 3-D lattice Model. For non-
softened concrete, the stress-strain curve is based on
the standard cylinder tests. For simplicity the
parabola-rectangle curve in Fig.6 (a), specified by
the CEB-FIPY model code is used. The equation for



the parabolic portion of the curve is shown in
Eq.(5).
‘ 2
6‘0 6'0

o, is the stress in the diagonal concrete strut.

F =fc' 2(

Where,

&, is the strain in the diagonal concrete strut.
f. is the maximum compression stress for the

standard concrete cylinder.
&, is the strain at the maximum compressive stress

O, =

()

Robinson-Demorieux stress-strain curve for
softened concrete is also studied®”, which can be
idealised as shown in Fig.6 (b). This stress-strain
curve is obtained by dividing the concrete cylinder
strength by a coefficient A, which is greater than
‘unity. For the ascending portion of the curve the
equation is as Eq.(6).
2

)9

A1 \sg, &,
The portion of this curve after reaching the
maximum stress remains horizontal. As compared
to the CEB-FIP Stress-Strain curve for non-softened
concrete, the stress in this stress-strain curve has
been proportionally scaled down by A, but the
strain has not been modified. The Coefficient A in
Eq.(6) was not determined by Robinson. So, that 4
which is suggested later by Vecchio and Collins, as
it will be shown below is used in this case.

Vecchio and Collins stress-strain curve for
softened concrete shown in Fig.6(c) is also studied
). For the ascending portion of the curve the
equation is as shown in Eq.(7).

2
| ol Ed &
o, =1, 2(80) /1( 30) (7
Eq.(7) is identical to Eq.(6) - except that a
coefficient 4 has been inserted in the second term.
This Coefficient A, which incorporated the
softening effect, was found from tests to be as in
Eq (8) 15)_

®

Where

g, 1s the strain 1n the longitudinal bars, and ¢, is the
strain in the transverse hoop bars. The softening
effect is related to the longitudinal and transverse
strains in the reinforcement. Beyond the peak

)

strength and in the descending portion of the stress-
strain curve (i.€.s;>¢,), the expression of the

curve follows Eq.(9).
2
fc’ &g ~ 8p ,
===1-|— 9
Ga A 2¢, - &) ©

5. APPROPRIATE. DISCRETIZATION
METHOD FOR THE 3-D LATTCIE
MODEL

(1) Effect of the arch element

Arch element has an important effect on the
results in the 3-D lattice Model. To prove this
effect, column C, in Table 1 is analyized two times,
one with the effect of arch element and the other
without arch element. Fig.7 shows ‘the relation
between the torsion moment and the angle of twist
for the two cases comparing with the: experimental
data. From this figure, the attendance of the arch
element has not a significant effect on the cracking
torque, since the value of the cracking torque is
almost same for the two cases. But the main effect
happens after the cracking. Even the ultimate torque
decreases too much in the second case without arch
element. As the value of the compression force of
the arch element is considered a little pit small at
the cracking load. So, the arch element as a
compression member has not any segneficant effect
before the cracking of the column. From the outpot
results, the effect of the arch element starts from the
initiation of cracking up to the final torque.

(2) Effect of the area of the tension zone
To study the effect of the area of the tension
zone at each comer, three different values for this

area are studied as 0.5t2W, t2w and 1.512w. Fig.8
shows the torsion moment and the corresponding
angle of twist for the column C, group B in Table
1, considering all the three different suggested
values for the tension zone area. In this figure a

" comparison between the numerical results and the

experimental results are shown. The relation
between the torsion moment and the corresponding

* angle of twist becomes higher than the experimental
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results in case of the tension zone equal to 1.5 12‘;.
However, it becomes lower the experimental results

in case of area equals half of 12w .-Further more, the
cracking load decreased lower than that of the
experimental value in this case. That is for the
decrease of the elastic energy with the decrease of
the stiffniess of the structure. Before the cracking
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occurs, there is no significant difference between
the numerical results and the experimental results
using the three different values, because in this
stage the structure considered like a plain concrete
section. However, the cracking torque is changed
sharply. After yielding, there is a significant effect
for changing the tension zone area, but there is no
significant difference on the ultimate torque. The
angle of twist at the ultimate torque is changed too
much in between the three different area values.
From Fig.8, it is found that the numerical results
have a good agreement when the area of the tension

zone equals to 7%, So, it will be kept constant as
1%, for all the next calculations in this study.

(3) Analysis of the different softening equations
Using the different softened and non-softened

stress-strain curves, which are suggested, in section

4, column C; in Table 1 is analysed and compared
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Fig.10 Strain-twist curves for column Cq

with the experimental results. Fig.9 shows a
comparison between the three cases of non-softened
and softened concrete. The comparison is carried
out to show the relation between the torque and the
angle of twist for the column C,. The steel-strain
versus concrete-strain curve for column C; 1s also
shown in Fig.10 using the previous three cases of
the softened behaviour. From Fig.9, Robinson and
Demorieux’s stress-strain curve could neither
produce accurate predictions of angle of twist at
maximum torque nor the shape of the torque-twist
curve. By comparing the numerical results with the
experimental results as it is shown in the last two
figures, it 1s clear that the Vecchio and Collins
softened fits the behaviour of the numerical results
using the 3-D Lattice Model with a good agreement:
comparing with the experimental data.



Table 1 Outline of the experimental results

Group Number cross-section Fc Concrete Fly for Fsy for Long Bars Stirrups
m MPa Reinf MPa Stirrups MPa # Bar s, m.
A C 0.255/0.383 31.0 490.0 530.0 4#4 #3at 0.153
1 ; :
A o 0.255/0.383 31.0 490.0 530.0 445 #4 at 0.182
: 2
A C 0.255/0.383 31.0 490.0 530.0 4#6 #4at 0.128
3
A C 0.255/0.383 31.0 490.0 530.0 a#7 #4at 0.092
4
A C 0.255/0.383 31.0 490.0 530.0 4#8 #4at 0.070
5
A C 0.255/0.383 31.0 490.0 530.0 4#9 #4 at0.057
6
B C 0.255/0.383 280 480 505 444 #4a10.128
- )
C. C 0.5/0.60 385 510.0 510.0 1048 #4 at0.050
8
D C 0.222/0.222 39.6 380.0 285.0 4#3 #2a10.080
9
D C 0.146/0.324 363 380.0 285.0 4#3 #2 a1 0.083
10
E C 0.441/0.441 275 414 414 845 #3 a10.08
11 '
E C 0.312/0.625 275 414 414 84S #3 at0.08
12
E C 0.255/0.765 275 414 414 8E5 #3.at10.08
13
6. BEHAVIOURE OF THE RC CULUMNS & | 3 D ]I;aniée Model
............ Xp. Asu -
UNDER PURE TORSION . T e
g
After establishing the appropriate choice of 5
concrete constitutive equation and dimensioning of 2
each lattice member, different RC columns are E
analysed and compared with the experimental data. 3
Table 1 shows the experimental data for several g
kinds of the compared cross-section columns. =
Columns in-group A tested by Hsu'® are identical

except that the amount of reinforcement increases
from C,-Cs. Column C, group B tested by Hsu'® is
similar to the group A but with a different ratio of
longitudinal reinforcement to stirrups area. Column
C; represents a group C tested by Hsu'”, is an
example for the large hollow cross-section column
with a wall thickness equals 0.11m. Columns C,; and
C,o in-group D tested by Arthur®, are an example
for small size cross-section columns. C, and C,, are
identical except the change in the cross-section
area. Finally, columns in-group E tested by Arthur®
represents the columns C,,-Ci; have the same cross-
section area of concrete and reinforcements, but
with different aspect ratios.

Fig.11 shows the relation of the torsion moment
and the angle of twist for the columns C,-C4 group
A in Table 1. Also, several kinds of cross-sections
like a hollow cross-section as well as small size
cross-sections are analysed, as it will be mentioned
later in the next section. The behaviour of the
reinforced concrete columns subjected to pure

Twist © (deg./m)

Fig.11 Torque-Twist Curves for columns
group A in Table 1

torsion can be divided into two distinct stages,
before and after cracking of the concrete. Before
cracking, a column behaves essentially as a plain
concrete column without reinforcement. The stress
in the reinforcement 1s small, and the torque-twist
curve is almost identical to that of a plain concrete
column. When the cracking of concrete occurs, the
stresses in the reinforcement increase suddenly and
the column twisted under constant torque until it
reaches a new state of equilibrium. Thereafter, the
applied torque can be further increased, but the
stiffness of the column is only a fraction of that
before cracking. :

343



(1) Behaviour before cracking

It is found that the cracking torque, T,

cro
reinforced concrete column is 1.0 to 1.25 times the
failure torque of its corresponding plain concrete
column. This strengthening is apparently due to the
reinforcement, and it should increase with the
increasing amount of reinforcement. In this stage,
the torsional stiffness and the concrete strains were
also very close to those of the corresponding plain

of a

concrete columns. Also it is found that, at the -

cracking torque, the stresses in the reinforcement
increased suddenly.

(2) Behavior after cracking

As described above, a reinforced concrete
column behaves before cracking like a column
without reinforcement, it follows approximately
Saint-Venant’s elastic torsional theory. However
Saint-Venant’s theory was often not accurately
applied by many investigators to predict the
behaviour of reinforced concrete columns after
cracking. For example, according to such
application of saint- Venant's theory, the stresses in
the longitudinal bars located at the four comers of a
rectangular cross-section should be zero, while
stresses in bars located at the wider face should be a
maximum. The analysis results using the 3-D
Lattice Model shows that, these stresses are
essentially equal regardless of the location of the
longitudinal bars. Similarly, the theory predicts that
stresses in a closed stirrup should vary from zero at
the shorter leg to the maximum at the centre of the
longer leg. Here using the 3-D Lattice Model it is
found that, the stresses are almost similar for both
of the two steel stirrup elements along the depth of
the column. Here, it must be concluded, therefore,
that Saint-Vaenant's theory cannot applied to a
reinforced concrete column after cracking, because
cracking  terminates  Saint-Vaenant's  basic
assumption that the material is continuous.
a) General behaviour

Columns in-group A are identical except that
the amount of reinforcement increases from the first
column up to the last one, as shown in Table 1.
Fig.11 shows that, upon cracking, the angle of twist
increased significantly under a constant torque. As a
common behaviour in all cases, the stresses in the
reinforcement increased suddenly after the cracking
occurs. In case of beam C,, which has a very small
amount of reinforcement, the angle of twist under
constant torque after cracking was very large, and
the stresses in the reinforcement increased almost to
the yield point. However, as the curves for other
columns show that, the angle of twist and steel

stresses immediately after cracking decrease with
increasing amount of reinforcement. The torque-
twist curves in Fig.11 show that, when a column
stabilised after cracking, the curve begins to rise
again. It was first essentially as a straight line, then
curved towards the horizontal when the ultimate
torsion was approaches. The slope of the slope
portion, which is the torsional stiffness after
cracking, is only a fraction of that before cracking.
It increased with increasing amount of
reinforcement from column C, up to C,. At the same
time the stresses in the steel is changed
approximately and increased regularly from C, up
to Cs.

* b) Ultimate torque
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Ultimate torque is defined as the maximum
torque, which can be resisted by the member. This
value depends on a large extent on the amount of
reinforcement, as shown in Fig.11. At the ultimate
torque, the stresses in the longitudinal bars and in
the longer legs of the stirrups can both reach the
yield point when small percentages of
reinforcement are used, such as columns from C, to
C,. However, they cannot reach yielding with a
large percentage of reinforcement, such as column
Cs in Fig.11. This means that columns C,-C; are
under-reinforced and column C; is over-reinforced.
For columns C, and C; the longitudinal bars
yielded, but the stirrups did not. This indicates that
these columns are over-reinforced in stirrups only.
In case of over-reinforced section, failure occurs
by initial crushing of the concrete. At the
initiation of failure, the steel strain will be
lower than the yield strain. Such condition is
accomplished by using more reinforcement at
the tension side than that required for balanced
condition. But in case of under-reinforced
section, steel continues to.stretch as steel strain
increases beyond the yielding strain. This
condition is accomplished when the area of the
tension reinforcement used in the beam is less
than that required for balanced strain section

Beyond the ultimate torque, Fig.11 shows that
the torque-twist curves exhibited a definite
descending branch for columns C,-C;. In general,
the descending branches of the torque-twist curves
for under-reinforced columns were longer than
those for curves of over-reinforced columns, which
terminated shortly beyond the maximum torque.
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7. APPLICATION FOR SPECIAL CASES
OF CROSS-SECTIONS

Hollow cross-section column Cg group C in
<Table 1 is analysed by the suggested 3-D Lattice
Model. The numerical and the experimental results
are shown in Fig.12. In this figure, the ascending
portion of the analysed torque-twist curve lies
considerably upper the test results as shown in
Fig.12. The reason for this discrepancy is obvious.
Although the 3-D Lattice Model is based on the
truss theory-which is assumed to be fully cracked
from the beginning-it has the arch element, which
has the ability to carry a high-level of loading. After
cracking, arch element will continue to stiffen the
specimen to reach the fully cracking at the
maximum torque. This behaviour is quite similar to
the solid section.

Moreover, small size cross-section columns are
also analysed by the 3-D Lattice Model. Cross-
section columns C, and C;, group D in Table 1, are
chosen as an example for this case, to be analysed.
The numerical and the experimental results are
shown in Fig.13. In this kind of cross-section

" column, cracks appeared firstly in the large faces of
the columns, and soon thereafter spiralled around
all faces of the columns. The cracking torque is
defined as the torque at which the first crack occurs.
At the cracking torque in Fig.13, the torque —twist
curves show an increase in twist at a virtually
constant torque. This horizontal part of the curve
indicates a change in the load carrying mechanism
of the columns at cracking.
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8. COMPARISON WITH THE
PREVIOUS THEORIES

As a comparison  with - different
approximation theories, we pick up the space
truss theory'®, skew bending theory” and ACI
method®, and try to analyze the column with a
quite large aspect ratio. The effect of the aspect
ratio is considered a very important factor during
the design of column under the pure torsion. Both
the skew bending theory and the space truss theory
predicted that the ultimate torque would decrease .
with an increase in the aspect ratio, whereas the
ACI method predicts an increase initially and then a
decrease. To show this effect using the 3-D Lattice
Model, three columns C,;, C,, and C,; group E in
Table 1 are considered with different aspect ratios.
1.0, 2.0 and 3.0 only of the aspect ratio for the
columns C,,, C,, and C,; respectively as in Table 1,
are analysed. The trends, which predict the ultimate
torque of the three different methods, are shown in
Fig.14. The ACI method predicts that the square



section is the weakest among the other columns,
whereas the other two methods predict it to be the
strongest section. Fig.14 shows the ultimate torque
computed by the skew bending theory, space truss
theory, and ACI 318-71 comparing with the 3-D
lattice Model, for the three different columns.
Although all the three theories underestimate the
strength of all the beams, that trend, which
predicted by ACI 318-71 is contradictory to the
numerical, results from the suggested Model. So,
the torsional stress of a column decreases with an
increase in aspect ratio, other parameters being held
constant.

9. COMPARISON WITH THE CURRENT
CODE REGULATIONS

To check the applicability of the various code
regulations, the numerical results are compared with
some of the existing codes. According to the

German'” and Australian” codes, the equation for
ultimate torque is shown in Eq.(10).
A Sy
T, =T, +Qxy — (10)

Where

T, = ultimate torque _

To=In the Australian Code is the failure torque of
the beam without reinforcement according to
Saint-Venants theory.

T,= zero in the German code

Q= a constant, 2 and 1.6 for the German and
Australian codes, respectively

x,= smaller centre-to centre dimension of a closed
rectangular stirrup

yr= larger centre to centre dimension of a closed
rectangular stirrup

A, = cross-section area of one stirrup leg

f,, = yield strength of stirrups

S = spacing of stirrups
Using the 3-D lattice Model, the ultimates

torque for columns C,-C4 are plotted against the

parameter X,y,(A,f,,/S) as shown in Fig.15. It can be
seen that the relationship is a strait line through
points C, up to C,, then turns gradually toward the
horizontal. The whole curve can be approximately
divided into three strait segments as shown by the
dotted lines. The first straight line through points C,
to C; corresponds to under-reinforced columns,
where both the longitudinal bars and the longer legs
of the stirrups yielded before the ultimate torque
was reached. This condition is accomplished when
the area of the tension reinforcement used in the
beam is less than that required for balanced strain
section. The second straight portion through points
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Fig.15 Comparing the ultimate
torque with other codes

C, and C; corresponds to partially over reinforced
columns in which the stirmups did not yield. The last
horizontal line through point Cg corresponds to
completely over reinforced columns, where neither
longitudinal bars nor stirrups yielded, so that failed
by primary crushing of the concrete.  In this case
the steel stress will be lower than its yield strength.
Such condition is accomplished by using more
reinforcement at the tension side than that required
for balanced condition. Eq. (11) shows the balanced
reinforcement ratio for a RC section.

0851/
p=p Je 87000 (in psi) (11a)
f, 87000+,
(= 085 for,0 < f. < 4000psi
=085- o.os(w)
where fF=< 1000 (11b)

Jord000psi < f; <8000 psi
(= 0.65 forf/ > 80000psi

and f/is the compressive stress for the concrete

section.

For under reinforced columns, the parameter
Af,/S appears to be acceptable. The slope, Q, of
the first straight portion is 1.35, and the ultimate
torque can be expressed by Eq.(10). The prediction
of the German and Australian codes are also plotted
in Fig.15. It can be seen that the observed “T,” be
smaller than that predicted by the Australian codes,
but larger than that of the German codes. T, be
commonly thought to be the torsional resistance of
the concrete section.

The apphicability of the suggested 3-D Lattice
Model is examined also by the JSCE codes'®. The
ultimate torque for the studied columns group A in
Table 1, is calculated by the 3-D Lattice Model and
also compared using JSCE Eq.(12).




M, =2Am\'qwq1 vy (12)
qszrwfwd/S (123)
=D Aafialu (12b)

u= 2(b+d) (12¢)

Where, M, is the ultimate torque, A,,= bd of the
cross-section, A,, and A4, are the areas of the lateral
and longitudinal steel respectively, f,, and f,, are
also the yield stresses for the lateral and
‘longitudinal | steel respectively and y, =13in
general. The comparison is shown also in Fig.15.
The tendency of the prediction by the suggested 3-
D Lattice Model is not necessary similar to Eq.(12).

The ratio is varied around =*5%, which is

considered an adequate ratio.

10. CONCLUSION

The Modified Lattice Model, which is
suggested before by the authors, is extended to the
three dimensions. 3-D Lattice Model consists of
four simple trusses; each one has its arch element.
Thickness of the arch element is calculated inside
each truss by minimising the total potential energy
for all the members of the truss. Its value is updated
inside each step of the calculation during all the
different loading stages. The solid cross-section of
the RC column is chosen as a subject material to
check the applicability of the 3-D lattice Model.

The equivalent thickness value ¢ . for the walls,
which 1s suggested by Hsu, is implemented in this
model. Area of the tension zone at each comer of

the cross-section equals to #%,,, at which the results
become closer to the experiment results, comparing
with several other values. Using the suggested
model, the effect of several softened and non-
softened concrete curves are studied to get the most
suitable curve for the 3-D Lattice Model. Vecchio
and Collins stress-strain is the most suitable
softening concrete curve, at which the numerical
results becomes more closer and has a good
agreement with the experimental data. Several RC
columns are analysed under the pure torsion using
the suggested 3-D Lattice model. The numerical
results are compared with the experimental results;
there is a good agreement with an adequate ratio.
The behaviour of the RC columns under pure
torsion is studied. RC column before cracking,
behaves essentially like the plain concrete section
without effect of the reinforcement, since the
stresses in the reinforcement is very small
However, after cracking it does not follow Saint-
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Venant's theory because the material at this stage is
not continuous.

The effect of the aspect ratio is studied
comparing with the skew bending theory, the space
truss theory and the ACI method. The 3-D lattice
Model predicts a decrease of the ultimate torque
with the increase of the aspect ratio. This behaviour
is kept common for all the skew bending theory,
apace .truss theory and the 3-D Lattice Model, in

contrast with the ACI method.

Finally, The applicability of the 3-D lattice
Model is compared by the Australian and German
codes, in addition to the JSCE equation. The
behaviour is always lower than these codes, which
gives the results more safety. The predicted ratio
using the JSCE equation is varied with *5%, which
is considered an acceptable ratio.
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