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A method is introduced for extracting tensorial stress measures from rigid-body-spring networks
with random geometry. Stress analysis of a uniformly stretched material indicates that rigid-body-
spring networks can be made elastically homogeneous provided two basic conditions are met: 1)
network geometry is defined by a Voronoi diagram, and 2) the network degrees of freedom are

defined at the Voronoi cell nuclei.

For more general loadings, accuracy of the stress retrieval

algorithm is demonstrated through comparisons with finite element analysis results, where the
finite element mesh is based on the corresponding Delaunay triangulation of the domain.

Key Words: Rigid-Body-Spring Model, stress analysis, Voronoi diagram, structural analysis

1. INTRODUCTION

Lattice networks have been used to ana-
lyze fracture in various natural and engineered
materials?). Typically, these networks are formed
from simple mechanical elements, such as cen-
tral force springs or beam-springs, which are
interconnected at nodal sites. Material disor-
der is modeled by assigning different properties
to the lattice elements, either in direct rela-
tion to material structure or according to some
statistical description of the material. When
modeling cement-based composites, for example,
the lattice elements can be associated with
the mesoscopic components of the material (i.e.
mortar matrix, aggregate inclusions, and matrix-
inclusion interfacial zones)?.

Most modeling applications have involved
lattice networks with regular geometry. Regular
networks, however, strongly bias the directions
of potential crack propagation. Lattices con-
structed using randomly distributed nodal sites
can greatly reduce such mesh bias, although they
are not elastically homogeneous under uniform
straining®). That is, random geometry networks
may exhibit highly nonuniform local deforma-

- through spring sets,

tions during uniform straining of the macro-
continuum.

The rlgld-body-sprlng model (RBSM) ap-
proach, developed by Kawai?, is illustrated in
Fig. 1 for the two-dimensional case. The
domain is partitioned into a collection of rigid
convex polygons, or cells. In anticipation of
the work which follows, a Voronoi diagram® has
been used to define the cell geometries. The
cells are interconnected along their boundaries
each of which consists
of a normal, tangential, and rotational spring
oriented local to the boundary segment. Cell
degrees of freedom are defined at some point
within the cell, typically the area centroid.
Details concerning the formulation of the system
equilibrium equations are presented by Kawai®)
and are not repeated here.

Bolander and Saito note that the basic el-
emental unit of the RBSM (i.e.,, the two-cell
subassembly shown in Fig. 1) can be regarded
as a special type of beam-spring element®). The
Kawai RBSM is therefore closely related to the
aforementioned lattice models, especially when
regular or random mesh designs are used to finely
discretize the material domain. Categorizing
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Fig. 1 Rigid-Body-Spring Model: a) partitioning of
domain using a Voronoi diagram; b) elemental unit

the RBSM as a lattice model serves to unify
research performed in such diverse fields as civil
engineering?®) and theoretical physics?).

This article presents a novel technique for
computing tensorial stress measures within rigid-
body-spring networks with random geometry.
Accurate stress measures are important for:

e studying the properties of the network for
various load and displacement boundary
conditions;

e developing fracture criteria which are invari-
ant with respect to mesh geometry; and

e supporting various activities within struc-
tural analysis and design, such as load path
visualization.

The stress retrieval algorithm is used to show
that, for certain parameter settings and with
proper network design, the RBSM is elastically
homogeneous under uniform straining. To study
model performance under more general load-
ings, stress analyses are performed local to a
beam prestressing anchorage. Stress contours
produced by the model are nearly identical to

those obtained from corresponding finite element
models composed of constant strain triangle
(CST) elements.

2. NETWORK DESIGN

As mentioned above, one main concern with
random geometry lattices has been their inability
to model a uniform strain field. Schlangen and
Garboczi® studied the performance of random
geometry beam lattices and developed an it-
erative procedure that modifies beam element
cross-sectional properties to achieve elastic ho-
mogeneity for uniform stretching of the lattice
network. More recently, elastic homogeneity
during isotropic stretching has been achieved
using the RBSM, provided: 1) a Voronoi diagram
is used to partition the domain and assign spring
stiffnesses, and 2) the network degrees of freedom
are defined at the Voronoi cell nuclei®. As will
be shown in Section 4(1), these two aspects of
the network design strongly affect the accuracy of
stress measures retrieved from the network. Since
network design is central to obtaining accurate
results, we refer to this approach as a rigid-body-
spring (RBS) network.

The link between RBS network performance
and Voronoi diagrams can be partially explained
as follows. For a Voronoi partitioning of a mate-
rial domain under uniform straining, Jagota and
Bennison” have derived two discrete expressions
for the elastic energy stored in the continuum:
one based on the continuum governing equations
and the other based on a corresponding beam
spring network. The beam springs are assumed
to have negligible rotational stiffness. A compar-
ison of the two expressions shows that, to model
a homogeneous continuum, the beam spring
constants should scale according to {/h, where
[ is the length of the boundary segment between
contiguous Voronoi cells and h is the distance
between the corresponding cell nuclei (Fig. 1).
This same scaling is used for the normal and
tangential springs in the RBS network, according
to the RBSM approach:%

kn = E'tl/h
ke = E"tl/h (1)
ky = knl®/12

where for plane stress B/ = E/(1 — v?) and
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E" = E/(1+v); E and v are the elastic modulus
and Poisson ratio of the continuum material, re-
spectively; t is the specimen thickness. Note that,
in general, such explicit relationships between
the network spring constants and the continuum
properties are approximate.

(1) Voronoi diagram partitioning of domain

The Kawai RBSM is general in that any set
of convex polytopes can be used to partition
the material domain. This enables Voronoi
diagram partitioning of the domain to explicitly
model quasi-random aspects of the material
structure (i.e., to associate the Voronoi cells
with material features, such as crystal or grain
boundaries)®?). Some applications have used
the Voronoi diagram in connection with modeling
homogeneous continua, where the main goal is to
reduce the subjective influence of mesh design on
the fracture process®19). To better understand
the elastic properties of the RBS network, and
the significance of network design, this article
considers the modeling of homogeneous materi-
als.

The Voronoi diagrams used here are produced
from a set of randomly distributed points, or
nuclei. Typically, the network nodes defining the
system degrees of freedom are positioned at the
area centroids of the Voronoi cells. As previously
mentioned, however, there are definite advan-
tages to positioning the network nodes at the cell
nuclei. For example, elastic homogeneity of the
network has been demonstrated by comparing
elemental strains caused by hydrostatic straining
of the macro-continuum®. Under hydrostatic
straining, only the normal (n-axis in Fig. 1)
components of displacement are mobilized. The
stress retrieval algorithm presented here is a
means for testing network performance under
more general loading conditions, including those
which activate the tangential (t-axis) compo-
nents of displacement.

(2) Saturated nuclei distributions

Although cell nuclei are located using a pseudo-
random number generator, local regularity of
the mesh design can be partially controlled by:
1) maintaining a minimum allowable distance
between nuclei, dp,; and 2) saturating the domain
with nuclei. Saturated domains provide more
regularity (i.e., less statistical variance in the
angles formed at the Voronoi diagram triple

Fig. 2 Average cell size gradation

junctions), which provides greater isotropy with
reéspect to potential cracking directions®.

Making d,, a function of position in the
domain, while maintaining local saturation, is
an effective means for controlling average cell
density. For example, the following relation was
used to produce the cell size gradation shown in
Fig. 2.

dm(z,y) =B

where 8 controls the rate of change in d,, with
respect to distance from the origin.

z? +y? @)

3. STRESS RETRIEVAL ALGORITHM

Schlangen'?) computes stress measures at the
nodal sites of a beam lattice, rather than in the
beams themselves. This article follows a similar,
yet different, approach for computing stresses in a
RBS network. Consider a Voronoi cell subjected
to intercell spring forces, Fy; and Fy, on each
boundary segment ¢ (Fig. 3). These are the
forces in the normal and tangential springs shown
in Fig. 1, according to the RBSM approach.
Stress is computed by sectioning the Voronoi
cell through its nodal point and then invoking
force equilibrium on either portion of the cell.
Although moments may also act on the cell
boundary segments, moment equilibrium is not
considered here. With reference to Fig. 3, the
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Fig. 3 Force resultants acting on a section through
the cell nodal point

normal and tangential forces acting on a cut
plane through the cell nodal point are!?

N
Fpo = Z Ri[Fpicos(m— oy +6) + Fyisin(ca; — 6)]  (3)

N
Fyp = Z R;[Fpisin(m — a; — 0) + Fy; cos(o; +6)]  (4)

where N is the number of cell boundary seg-
ments. R; = a;/b; when boundary segment ¢
intersects the cut plane; otherwise, R; equals 1
or 0 depending on whether boundary segment ¢
is entirely above or entirely below the cut plane,
respectively. The normal and tangential stresses
acting over the cut plane are

o9 = Fng/Ag (5)

79 = Fyg/Ag (6)

where Ay is the area of cross-sectional cut. As
shown in section 4(1), the (g, 79) pairs produced
by varying 6 from 0 to 7 form a Mohr’s circle
representation of the stress state at the cell nodal
point.

Since stresses are computed at the nodal
points of the RBS network, contour algorithms
which operate on a triangulation of the domain
can be used directly, without any need for
modifying the stress values. For the finite
element analyses presented later, stresses are
computed within the CST finite elements and an
averaging procedure is required for determining
the nodal stresses used for contour plotting.

Fig. 4 Membrane subjected to uniaxial tension (cell
nuclei indicated by e)

o centroid definition
e nucleus definition

/00 A
0.5+

e

-0.5+

Fig. 5 (o9, 7o) trace for a typical cell

4. STRESS ANALYSIS

(1) Membrane under uniaxial tension

Figure 4 shows a membrane structure, com-
prised of 1000 Voronoi cells, loaded in uniaxial
tension. We have set v =0, so that E' = E" = FE
in egs. (1); other values for v are considered later.
The tangential springs are removed from the
spring sets associated with the rectangular end
blocks, so as not to restrict Poisson contraction
of the membrane.

For a typical cell, Fig. 5 shows the trace of
(09, 79) provided by egs. (3) through (6) for 6
ranging from 0 to 7 in increments of 7/180. The
normalizing factor, o,, is the theoretical uniaxial
stress acting at any point in the membrane (i.e.,
0q = €E where ¢ is the uniaxial strain imposed on
the continuum). Location of the cell nodal point
affects the accuracy of the stress measures. If the
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Fig. 6 (o0p,7e) traces for network nodes defined at:
a) cell nucleus; and b) cell area centroid

Voronoi cell nuclei are used, the Mohr’s circle
representation of stress is recovered accurately.
In this case, the stress state can be determined
by evaluating egs. (3) through (6) for any two
angles 6 and 6+ w/2. When the nodal points are
positioned at the cell area centroids, however, the
trace of (o9, 7s) deviates significantly from Mohr
circle theory.

Figure 6 shows the trace of (og,7g) for all
1000 cells within the membrane structure shown

in Fig. 4. Again, the calculated stresses are -

accurate when the network nodes are positioned
at the cell nuclei. All 1000 results match to
within algorithmic precision and are indistin-
guishable on the plot (Fig 6a). In contrast,
there is significant scatter in the stress measures
when the network nodes are positioned at the
cell area centroids (Fig 6b). The statistics for
normal stress o, corresponding to 8 = 90°, are
summarized in Table 1. Note that almost no
restriction has'been placed on the minimum

" nucleus and area centroid locations.

Table 1 Effect of nodal point definition on
normalized stress 0, /0, for v =0

0z/04 centroid nucleus
definition  definition
. mean value 1.0009 1.00000002
standard deviation 0.0662 0.0000007
minimum value 0.792 0.999992
maximum value 1.259 1.000014

Table 2 Effect of v on normalized stress o/,

0z/0a v
0.1 0.2 0.3

mean value 0.9859 0.9889 1.0104
standard deviation 0.0082 0.0175 0.0289
minimum value 0.955 0.925 0.908

. maximum value 1.012 1.048 1.111

allowable distance between nuclei (i.e., dn(z,y) =~
0) to accentuate the differences between the
As the
domains become more saturated, the nuclei and
area centroids move closer together causing the
scatter associated with centroid use to diminish.

As mentioned above, use of a random geom-
etry spring network generally precludes explicit
control over the effective elastic properties of the
continuum. For the RBS network, setting v =01is
special in that both E and v are exactly realized
at the continuum level. Table 2 shows o./0,
statistics for several different v values. Although
the RBS network is not elastically horhogeneous
in the strict sense, the scatter in {cg, 7p) plots
for the nonzéro v values is much less than that
shown in Fig. 6b. The modeling of the general
case where v # 0 requires further attention, since
many practical problems are strongly influenced
by Poisson ratio effects.

(2) Beam prestressing anchorage

Stress analysis can be especially useful when
designs are complicated by the presence of stati-
cal or geometrical discontinuities. Stress analysis
local to a beam prestressing anchorage (Fig. 7)
is used to demonstrate accuracy of the stress .
retrieval algorithm for more general loadings.

~The prestressing tendon is rigidly anchored to

an external block and is unbonded elsewhere.
Details concerning the modeling of reinforcing
components within the RBS network are given

elsewhere®.
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Fig. 7 Eccentrically prestressed beam modeled by a spring network with: a) constant average cell size;
b) 0.4:1 average cell size ratio; and c) 0.2:1 average cell size ratio

F
<
Fig. 8 Beam under eccentric axial load modeled by CST finite elements
The first RBS network shown in Fig. 7hasan  on the beam cross-section and op = F/A is

average local cell density that is constant over the
entire beam span. This same density is used over
the central portions of the latter two networks,
although higher cell densities are used local to the
prestressing anchorage to obtain more accurate
stress measures in that region. The ratios of
average cell size near the anchorage to that used
over the central portion of the span are 1:1, 0.4:1,
and 0.2:1 for the three respective networks.
Beam-column theory and finite element anal-
yses are used to assess the accuraty of the
stresses extracted from these RBS networks. The
mesh of CST finite elements, shown in Fig. 8,
is based on the Delaunay triangulation of the
set of nuclei used to construct the Voronoi
diagram in Fig. 7a. The finite element and
RBS network geometries are therefore uniquely
associated. Note that prior to random filling of
the domain, nuclei have been randomly placed
very close to the domain boundaries so that
the Delaunay triangulation nearly covers the
rectangular domain. Finite element meshes
corresponding to the other two RBS networks
given in Fig. 7 are also constructed and used
in the comparisons that follow. The effective
prestressing force, F', is applied externally at the
same location, and with the same local pressure
distribution, as for the tendon anchorage blocks
used in the corresponding RBS network model.
Figure 9 compares trajectories of oz/oF
‘provided by the RBS network and finite element
models loaded only with effective prestressing
force, F. Here, o, is the normal stress acting

the average axial stress in the beam with cross-
sectional area A. The cell nuclei definition of
the nodal points has been used here and for the
analyses that follow.

Away from the anchorage zone, stress varies
almost linearly over the cross-section; the con-

‘tours are nearly in-line with calculations based on

ordinary (i.e. first-order) beam-column theory,
which are shown by the broken lines in each of the
lowermost contours in the figure. With greater
mesh refinement local to the anchorage, the stress
contours provided by the two methods become
nearly identical. This similarity is also apparent
in Fig. 10, which shows contours of normalized
transverse stress, oy/oF, over an enlarged view
of the anchorage zone. Only the results from
the fine mesh (i.e. 0.2:1 average cell size ratio)
are given here, since the coarser meshes provide
comparisons of similar quality to those given in
Fig. 9. Contours at exactly zero stress are
not plotted since they tend to emphasize small
variations in the solution over the portions of the
domain with near zero stress.

5. CONCLUSION

Random geometry lattices are advantageous
in that they reduce network bias on potential
cracking directions and offer an effective means
for grading network component density. The
ability to compute tensorial stress measures
within the RBS network is quite significant for:
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Fig. 9 Contours of 0;/0r provided by: a) RBS network; b) CST finite elements

Fig. 10 Contours of oy/oF provided by: a) RBS

network; b) CST finite elements

1) assessing the properties of the RBS network
itself, 2) developing more general and effective
fracture criteria, and 3) promoting the RBS
network methodology as a structural design tool.

This article presents a novel method for ex-
tracting tensorial stress measures from RBS net-
works with random geometry. Previous work®
has shown that the Kawai RBSM can be used
to construct an elastically homogeneous material
description with respect to hydrostatic straining,

provided: 1) the model geometry is defined
using a Voronoi diagram, and 2) the Voronoi cell
nuclei are used to define the model degrees of
freedom. Stress computations performed here
confirm that networks which satisfy these two
criteria can also be made elastically homogeneous
for uniaxial straining of the macro-continuum.
This is noteworthy because, unlike hydrostatic
straining, uniaxial straining activates both the
normal and tangential degrees of freedom defined
local to the cell boundary segments. In this
sense, uniaxial straining is a more rigoro'us test of
the network’s abilities to model a homogeneous
continuum.

The accuracy of stresses calculated for more
general loading conditions has been verified by
comparisons with results from finite element
analyses. Stress analyses near a beam prestress-
ing anchorage have been presented as an illustra-
tive example. By basing the finite element mesh
on the Delaunay triangulation of the network
nodal sites, a unique correspondence between
the two models is maintained for different mesh
densities and gradations. These comparisons
indicate the stress measures extracted from RBS
network models are comparable in accuracy to
those from CST finite elements. Additional work
is needed to determine the applicability of the
approach when Poisson ratio effects are large.
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