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There is already presented a quantitative method to estimate the stablitity states of frame members
in a global buckling. In that analysis applied to a rectangular rigid frame for the individual members,
however, the resulting effective lengths of columns are different from those required in the design
scheme. In this study, a rectangular frame is decomposed into those structural units which represent
the axial strengths of columns stiffened with their adjacent beams. The effective column lengths are
estimated upon the critical axial forces in those respective units. At the same time, to observe their
interactions in a global buckling, the preceding analysis for members is generalized to deal with the

stability of structural units.

Key Words : rectangular frame, buckling, effective length, column unit

1. INTRODUCTION

In the design of framed structures, the axial
strengths of members are dealt with by the con-
cept of effective length. At the same time,
there has been a controversy on how those
lengths be determined accurately in an actual
structure. 38):10) In this study, the attention is
focussed on rectangular frames with rigid nodes.
In the existing design codes, ©8-1):2) the effects of
elastic restraint by the neighboring beams are cer-
tainly reflected onto the buckling strengths of col-
umn members. But, since the treatments are not

based on an exact analysis, their effective lengths

could be much conservative.
In a global buckling, recently in Ref.10), the
stability states of frame members are quantita-

* A main part of this paper has been presented at the
JSCE Annual Conference,'” 12) held in Kobe, 1998-
10.

tively estimated by the use of their displacement
modes and axial forces. The expansions them-
selves are correct as a stability analysis of dis-
cretized structures, and the effective lengths are
defined - for the individual members. However, in
case of a rectangular frame analyzed for the sep-
arated column and beam members, the numeri-
cal results are much trivial: in a global buckling
with vertical loading, the columns are compressed
enough into their instable ranges to balance with
the stable deformations of beams. On the other
hand, what is required in our design procedure is
the eventual axial strength of each column mem-
ber after stiffened with its adjacent beam mem-
bers.

In this study, instead of the columns and
beams, .another segmentation is presented in
a rectangular frame to estimate the stiffened
strengths of columns. First, the column mem-
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bers are classified by their locations and joinings
to beam members. Then, it is shown that, of
each class, the equal columns and their adjoining
beams can be reassembled into another rectangu-
lar frame. Since they are joined to each other in
the same manner, the resulting frame is uniform
in structure. Thus, its buckling under uniform
compression in columns is such that one buckling
pattern is repeated over all its panels. The criti-
cal axial force can be found upon the unit struc-
ture cut out from the repeated buckling mode.
Different reassemblages stand for the respective
kinds of columns. The critical forces in their
structural units can be regarded as the columns’
own stiffened strengths. On the other hand, a
usual rectangular frame is made of the different
units. Their coupling states in a global buckling
are also observed in this study, by a generaliza-
tion of the preceding stability analysis of frame
members to the structural units.
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Fig. 1 A simple rectangular rigid frame

2. COLUMN UNITS

Our analysis is developed upon a simple rect-
angular frame shown in Fig.1. As the first case,
let the frame be unbraced. Then, first of all,
our attention is concentrated upon the interior
columns and beams in the intermediate stories.
We now want to see their own behaviors in a uni-
form vertical loading. For that purpose, it is ra-
tional to consider such a structure as made of
those columns and beams only. As the result of

reassembling, we have the infinite frame shown in
Fig.2. In its sidesway buckling, inflections form
at the mid points of members. The subassem-
lages bounded by those inflection points have the
same buckling mode. Further, by the symmetry
of the mode with respect to the center node, the
buckling of the infinite frame is finally reduced
to that of the one-column-and-one-beam struc-
ture shown in the figure. Let this substructure
be called unit of interior column. By the use of
the slope-deflection relations in both the simple
bending and the beam-column theory, the buck-
ling equation for axial force P is eventually ob-
tained as

Btanf =3k
_hEI'

b=y=3
“VEI 2" 77 aEI

where a and h are width and height of a panel;
and EI and EI’ are bending rigidities of column
and beam, respectively.
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Fig. 2 Unit of interior column

We proceed to the side edge columns in the
intermediate stories. By reassembling those side
columns and the adjoining beams, we have the
vertically infinite ladder-frame shown in Fig.3.
On the other hand, as for the mid columns in
the uppermost story, we have the one-story infi-
nite frame. By the similar treatments in their
repeated buckling patterns, we have the units
of side column and top column. Their buckling
equations are written as

Btanf = gm for side column (2-a)

2(102s)



T e

Fig. 3 Units of side column and top column

(2-b)

Btanp = 6« for top column

As for the side edge columns in the upper-

most story, we have the one-panel frame shown °

in Fig.2. This frame has the same buckling with
the unit of interior column.

In the bottom story, the columns are supported
at their lower ends, with the other ends attached
to beams. To extract their essential behaviors in
each support condition, again, those columns and
beams are reassembled. The two-story frames
shown in (a) and (b) of Fig.4 stand for the mid
columns with clamped and hinged supports, re-
spectively. They have the sidesway modes. As for
the roller support, the mode shown in (c) has the
lowest buckling load. The units of bottom column
with fized, hinged and roller supports are found
in the repeated buckling modes. Their buckling
equations are obtained as follows :

B'cot B’ = —6k for fixed support  (3-a)
B'tanB’' =6k  for hinged support (3-b)
B'tanB’' =2k  for roller support  (3-c)
where
| P
!
N IS )
B =\5 (3d)

For the side edge columns in the bottom story,
the numbers of attached beams are halved from
the corresponding units of mid bottom column.
In case of a clamped side column, the reassem-
bling is shown in Fig.5. The buckling equations
for those units of side bottom column are written

as
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B'tanB’' =3k
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Fig. 5 Unit of side bottom column
with a fixed support

B'cotB’' = -3k for fixed support
for hinged support

B'tan B =& for roller support

s}

(42)
(b)
()
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Fig. 6 Effective length factor of column units

- The above buckling equations, (1) to (4), are
solved numerically for the critical axial forces, say
Per.. And, associated with the column in a sim-
ple support, the effective lengths are given by

ErI
leff, = 7 \/ Por (5)

For range 1072 < 1/k(= aEI/hEI') < 102, the
effective length factors (K = l.g /h) are numer-
ically obtained as shown in Fig.6.

In case the frame is braced, there are obtained
also nine column units of the same members with
the above unbraced ones, but different supports

are placed at the member edges. The actual
treatments are given in APPENDIX-A.

3. STABILITY OF COLUMN UNITS
IN A GLOBAL BUCKLING

A usual rectangular frame is made of the
different column units. We next consider the sta-
bility states of those units in a global buckling.
For simplicity, the expansions are developed upon
the linearlized stability theory. Let the frame be
subjected to a linear loading :

{Pw}=p (PN} (6

where {P,}} and p are a prescribed mode of load-
ing and the load factor. The magnitude of buck-
ling load, p¥, and the buckling mode, { X3}, are
determined by the eigenvalue problem :

([Kon 1+, [ Kéw 1) {X%}={0} @

where [Kop] is the initial stiffness matrix; and
[K ¢y is the geometrical stiffness matrix per unit
of loading factor p. In other words, at this load
p%, tangent stiffness [Kn (p)|(= (Kon|+pKdy])
turns from properly positive definite into semi-
positive definite: its quadratic form has positive
values for any other modes, but, for the buckling
mode ‘

r= {3} (k)] {xf} =0 ®

The followings are a summary of the stabil-
ity analysis of frame members in Ref.10): Since
global stiffness [ K] is a result of superposition
of member stiffness matrices [k ](m), the above I”
can be rewritten into the sum of the quadratic
forms of members :

M
r= m; Im)
Tmy = {XS}Zn) [k(ps)](m) {XS}(m) (9-5)

(9-a)
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where {X S}(m) are the displacement modes of
members, collected from { X5 }. The global buck-
ling state (I" = o) usually consists of positive and
negative I(,, of members. The sign of I(n, in-
dicates the stability of each member in its mode
{x$ }(m) With the exerted axial force, say N(;fl).
Besides the actual N(Tf;) in the global buckling,
there can be considered a critical axial force,
N(T(;;), for each member to make the quadratic
work into zero :

s\T CIE s\ =

{X }(m) ([ko] +N [kG])(m) {X }(m) =0

(10)
where [ko](m) is the member initial stiffness ma-
trix; and [kg](m) is the geometrical stiffness per
unit axial compression.

We now generalize the above expansions to a
subassemblage of several members, in a frame
structure. Let subassemblages be denoted by
[i] = [1], [2]..., and the consisting members
of each [i], by {(m)};). It is straightforward
from expression (9) .that the sum of the consist-
ing members’ quadratic works

T

— S S s

Ay = Z{X }(m) [k(p )](m) {X }(m) (11,)
characterizes the stability of [¢], in the global
buckling: if A;;) >0 (< 0), the subassemblage
is stable (instable), acting to restrain (accelerate)
the global buckling.

To define the critical state of [¢] in the dis-
placement modes {X S}(m) , let a main member,
say (m°), be selected among {(m)}(;}. The re-
mainings are denoted by {(m’)}. Then, it is here
assumed that the axial forces in {(m)} are in-
duced by their relative ratio at the global buck-
ling: with the use of the axial force of (m°) as
unknown N°
Now)
NS

(me)

N(ml) = a(m:) No, a(m/) = (12)
By introducing this expression into the quadratic
work, we have the following buckling equation :
T -
S oC N
% {X }(m) ([kO] +N"a [kG])(m) {X }(m)
=0 (13)

Since modes {X 5} (m) and ratios o) have been
known, the critical axial force is given by

N°C =

> {Xs}jm) [ko)m) {XS}(m)

) 2 am) {XS}Zn) [I_CG](m) {XS}(m)

(14)

In the global buckling, the members are regu-
lated to move into {X 5 }my- N°C s a critical
force of each subassembly in that displacement
modes. With regard to the cross section of main
member (m°), this axial force is now converted
into the effective length :

EI
¢ _
l(:ff.[-i] =r (Nc>
(m°)

When the actual N["z‘]g are plotted on those lgfﬁi],
correspondingly to the former sayings for Ap; >
o or < 0, their states subjected to N["z‘]9 are sep-
arated by the Euler curve into stable or instable.
Through the above procedure, the former ‘column
units can be examined for their stability states in

a global buckling.

(15)

4. NUMERICAL EXAMPLES

In Sec.3., for simplicity, the stability rela-
tions are described upon the linearlized stiff-
ness matrices after subjected to the axial
forces. In this section, for accuracy, the nu-

_merical analyses are carried out similarly to

Ref.10): in the method of separation-into-rigid-
displacement-and-deformation, 9) where the non-
linear terms of deformation parameters are taken
up to their third order. ‘

(1) In case of unbraced

The rectangular frame shown in Fig.1 is nu-
merically analyzed for a = h = 500.cm, E =
2100.tonf/cm?, I = I' = 3650.cm*, cross-section
area A = A’ = 101.5cm? and yield stress
oy = 2.4tonf/cm?®. The lowermost side-edge
beams (indicated by dotted line) are, to be noted,
taken twice into the column units, and so their
quadratic works are each halved into the relevant
two units. In vertical P applied equally at the
uppermost nodes, the global buckling is deter-
mined at P = 158.76 tonf. The quadratic works
of the column units are distributed as shown in
Fig.7, in which the solid-lined and broken-lined
widths indicate magnitudes of the negative and
positive works (instable and stable), respectively.
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At the same time, their effective lengths are de-
rived by the use of Eqs.(14) and (15). Their sta-
bility states are shown with circle points in Fig.8,
in which the bullet points on the Euler curve in-
dicate the units’ own critical states determined
by the buckling equations in Sec.2.

(2) In case of braced

Next, the former rectangular frame is braced.
After the cross sections are changed to I = I' =
508.cm? and A = A’ = 46.78 cm?, vertical P are
applied to the two top nodes shown in Fig.9. In
this loading, the global buckling is determined at
P = 89.18tonf. The quadratic works of units
are shown in the figure. And, their axial force—
effective length states are plotted in Fig.10.

Fig. 9 Quadratic work of units in Example ( 2 )
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Fig. 10 Stability state of units in Example ( 2 )

5. CONCLUDING REMARKS

The global buckling is a result of interac-
tion between the stable and instable members.
The present study is preceded by an estimation
method of those member stability states. 10) An
expected contribution of those analyses is to give
a rational proposal on the design strengths of
members. The preceding method can deal with a
rectangular frame also for the separated columns
and beams. But, the treatments of member axial
strengths are different from those in the design
procedure. In this study, the column units are
employed as an alternative decomposition to es-
timate the axial strengths of the column members
stiffened with their adjacent beams. For the fol-
lowing two, the column units can be called “unit”:
a usual rectangular frame can be assembled by
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the use of those different units; and, for each class,
there exists a uniform rectangular frame consist-
ing of the same units only. The column units
have each their own critical axial strengths. The
global buckling of an actual rectangular frame is a
result of interaction between those different units
in various stability states.

In Fig.8, the units’ own critical states are plot-
ted on the Euler curve. Their strengths are or-
dered: side column — interior/top-side columns
— bottom-side column — top column — bottom
column. Under the uniform loading, the global-
buckling load is placed at an averaged value of
those units’ strengths, or might be between the
units of side column and interior column. On
that level of axial force, to be noted, the effective
lengths of the 39 units estimated in the global
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Fig. 13 Units of bottom column / braced

buckling are lying in the same order to their own
strengths. On the other hand, Fig.9 and 10 are a
result in a partial loading. The distribution of the
quadratic works seems natural for that loading,
but their scattered plots in Fig.10 are dlﬂ'icult to
be understood for their interactions.

APPENDIX-A.
COLUMN UNITS IN A BRACED
RECTANGULAR FRAME

Suppose the frame shown in Fig'.l is braced.
The interior columns and beams are reassembled
into the infinite structure shown in Fig.11. By
the symmetries of its buckling mode with respect
to both the vertical and horizontal lines passing
through mid points of members, we have the unit
of interior column shown in the figure. The buck-

7(1075s)



1 T

- ' i ""I ' ' i vv”I ’ -{
I SIDE ]
091 INTERIOR 7
- ! TOP ]
g i ]
O B -
£ 98"SBT Hing. ]
': -4
a I -
5 07 L S.BT. Cimp.
- . ;
0 : BOT. Hing. BOT. Cimp. |
05 ||||nl i A Illllll 1 L Illllll n 1111 -2
107 107" 10° 10’ 10

Stiffness Ratio 1/

Fig. 14 Effective length factor of column units / braced

ling equation is eventually obtained as

Beotf = —k (16)

Also for the remaining columns and beams
differently placed in the frame, eventually, we
have those structural units consisting of the
same members with the unbraced units in Sec.2.
But, since their sidesways are constrained, the
member-edge conditions are changed to represent
the axially symmetric modes. Those units are
shown in Fig.12 and Fig.13. In the below, their
buckling equations are written.

Side column : Beotf = —g (17-a)
Top column : BeotB=-2k (17-b)

Bottom column :
(8'sinB’ — B'%cosB’') + 2k (2~ 2cos B’
—B’'sin’) = 0 for fixed support (18-a)
B'*sinB' + 2k(sin B’ — B'cos ') = 0
for hinged support (18:b)
B'tan B’ = 2k for roller support (18-c)

Side bottom column :

(B3'sin B’ - B'%cosfB’) + k(2—2cosf’

—B'sinf’) = 0 for fixed support (19-a)
B'%sin B’ + k(sinB’' — B'cos ') = 0

for hinged support (19-b)

B'tanp’ = & for roller support (19-c)

The effective length factors for the above col-
umn units are numrically obtained as shown in
Fig.14. The curves for the bottom columns with
roller support are given in Fig.6: Eqs.(18-c) and
(19.c) are the same to the unbraced (3-c) and
(4-c).
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