1. はじめに

ジオンセシティックス補強土は、ジオンセシティックスと締め固めたふたつの要素からなっている。ジオンセシティックスを敷設することによってもたらされる補強効果は、土単体の剛性や強度を高めるよりも、ジオンセシティックスと締め固めた土が一体となって、新たな剛性と強度を発現するものと考えられる。しかも、その剛性と強度は、ジオンセシティックスと締め固めた土それぞれの剛性と強度を単に重ね合わせたようなものではなく、両方の材料の力学的相互作用が複雑に絡み合って発現するようである。Ohta et al. は、ジオンセシティックスと締め固めた土の力学的相互作用を把握する目的で、実大会場実験を行い、それの有限要素シミュレーションを実施している。ダイレイテンシーを考えしない双曲線モデルを用いて土を非線形弾性体、ジオンセシティックスを線形弾性体として計算を行っている。ジオンセシティックスで補強された土状構造物が持つ曲げ剛性の発現に注目し、構造物全体のたわみ変形が実測と比較されている。しかし、別途、実施された逆勾配を持つジオンセシティックス補強盛土実大会場実験と同じ手法で計算してみたところ、いくつかの問題点が明らかとなった。つまり、1. 両者の土構造物には、同じ砂質材料（大桑砂）が用いられているにも関わらず、それそれぞれ異なる材料パラメータを計算に用いなければならない、構造物の応力の違いによる初期応力状態の違いのみならず、土の締め度合いが異なっていたためと考えられる。局所位置の変形を不摂乱試料を、その都度、採取し室内試験を実施して、材料パラメータを決定しなければならないことになる。これは、個別的なパラメータフィッティング上に陥りかけ、解析手法の信頼性の向上に寄与しない。さらに、2. いずれの実大会場実験でも観察された、変形の進行に伴う補強材と土との一体化（土を十分に締め固める、補強材と土が1つの塊となって挙動する）の表現に問題を残した。ある位置での変形量を合わせることはできそうであるが、変形から破壊までの全体の挙動を予測するのは難しかった。以上より、少なくとも締め固めた応力・変形履歴の影響を考慮できる解析手法が求められることになる。ここでは、せん断に伴う締め固めた土の体積膨張（ダイレイテンシー）を考慮した土固有の弾性構成モデルを採用し、同じ土材料を用いた異なるふたつの実大会場実験の有限要素シミュレーションを試みている。

まず、ダイレイテンシーの発現を考慮した締め固めた土
のモデル化を行い、それを有限要素プログラムに組み込む。次いで、プログラムの検証を行った後、入力パラメータの決定方法を検討している。さらに、簡単なモデル解析を行い、ジオシシネティクスの補強効果（ダイレイターンシーの影響）を考察している。最後に、ふたつの実大補強土の現場実験を紹介し、有限要素シミュレーションを実施し、実測結果との比較を行っている。

2. ダイレイターンシーを考慮した解析モデル

締められた土の挙動を表現するために、ふたつの弾塑性構成モデルを提案している。1つは関口・太田による弾塑性構成モデル（関口・太田モデル）である。他の1つはDrucker and Pragerによる基準に基づいた弾塑性構成モデル（Drucker-Pragerモデル）である。

(1) 関口・太田モデル

関口・太田による弾塑性構成モデルは、自然堆積した飽和粘性土に対する提案されたモデルである。飽和の締め土のせん断特性と飽和過圧密粘土のそれとの類似性から、本論文では、不飽和締め土のせん断挙動を関口・太田モデルで記述することにした。関口・太田モデルを締め土に対して適用することの妥当性は、長い間確認されてこなかったが、ここ数年、吉越らによりダムの挙動解析に適用できることが示された。それにより、本論文では提案モデル化手法と同じ考え方でダムの挙動をシミュレートすることが実例をもって示されている。

(2) Drucker-Pragerモデル

このモデルは材料依存するが、関口・太田モデルの場合、強圧密土のダイレイターンシー発現が、ひずみ軟化現象を伴うことを、有効要素法によって境界値問題を解く場合には、ひずみ軟化領域における負荷と除荷の判定を行うことができなければならない。従来のDrucker7により計算される弾性体の負荷と除荷の判定方法、ひずみ軟化領域における負荷と除荷の区別ができないので、ここではCam-Clayモデルに対して、Asaoka et al.9が提案している判定を行っていることにした。その概要を関口・太田モデルに対して示すと次のようになる。

塑性ひずみ増分は、関連流動則より

\[\varepsilon_p^e = H - \frac{\partial f}{\partial \sigma_y^e} \]

と表される。ここで、\(\varepsilon_p^e \)は塑性ひずみ増分テンソル、\(H \)は絶対値条件から決まる塑性パラメータ、\(\sigma_y^e \)は有効応力テンソル、\(f \)は降伏関数である。ただし、関口・太田モデルの場合、降伏関数\(f \)は、

\[f = MD \ln \frac{P}{P_0^c} + D \eta^* - \varepsilon_p^e = 0 \]

と表される。ここに、\(M \)は限界応力比、\(D \)は柴田のダイレイターンシー係数、\(\varepsilon_p^e \)は有効応力テンソル、\(\eta^* \)は塑性体積ひずみである。また、\(\eta^* \)は一般化された応力比で、

\[\eta^* = \frac{3}{2} \left(\frac{S_y}{P} - \frac{S_y}{P_0^c} \right) \left(\frac{S_y}{P_0^c} - \frac{S_y}{P} \right) \]

と定義される。

\(S_y \)は偏張応力テンソル、\(S_y = \sigma_y^e - P \delta_{ij} \)である。さらに、下添え字\(0 \)は基準状態（実際圧密終了時）における値であることを示している。ここで関口10による記号\(X \), \(L \)を用いると、塑性パラメータ\(H \)は、

\[H = \frac{L}{X} \]

と表される。関口・太田モデルの場合、

\[X = \frac{D}{P} \beta^* + \frac{D^2}{P^2} \left(\beta^{*2} K + 3G \right) \]

\[L = \frac{D}{P} \left(\frac{3G}{2} \eta^* \left(\eta_{ij} - \eta_{ij,0} \right) + \beta^{*2} K \delta_{ij} \right) \]

となる。なお、\(\beta^* = M - \frac{3}{2} \eta^* \left(\eta_{ij} - \eta_{ij,0} \right) \)，\(K \)は体積弾性定数、\(G \)はせん断弾性定数、

\[G = \frac{3(1-2\nu)}{2(1+\nu)} \]

\(\nu \)はポアソン比、\(\eta \)はせん断応力である。\(X \)の正負は材料に依存するが、関口・太田モデルの場合、\(X \)は実数値での値であり、\(X \)が正の値にある限りひずみ軟化領域における負荷と除荷は、\(L \)の正負によって判定できることがある。ここで\(X \)による判定法を有限要素解析プログラムDACSAR12に組み込んだ。

(2) Drucker-Pragerモデル

比較のため、土の締めめ度合いに関わらず、単純に体積膨張を示すモデルも取り上げることにした。Drucker and Pragerの降伏条件を用いた弾塑性構成モデルである。このモデルは、関連流動則を仮定することにより、過圧密比に関係なく弾塑性域で正のダイレイターンシー（体積膨張）を示す。締め度合いを過圧密比と関連づけることはできないが、内部摩擦力と粘着力をそのまま入力として用いることができる。簡便である。

Drucker-Pragerモデルの降伏関数\(f \)は、
\[f = -3\alpha p' + \frac{1}{\sqrt{3}} q - k = 0 \] (6)

と表される。\(p' \) は平均有効主応力、\(q \) は一般せん断応力であり、\(q = \frac{1}{2} S_y S_y \), \(\alpha \) と \(k \) は材料定数である。

材料定数 \(\alpha \), \(k \) と有効内部摩擦角 \(\varphi' \), 有効粘着力 \(c' \) の関係は、\(\pi \) 平面上で Drucker-Prager の基准と Mohr-Coulomb の基準とを一致させることによって得られる。

例えば三軸圧縮条件 \((\sigma_z = \sigma_y > \sigma_x = \sigma') \) では,

\[\alpha = \frac{2\sin \varphi'}{\sqrt{3(1-\sin \varphi')}} \quad k = \frac{6c' \cos \varphi'}{\sqrt{3(1+\sin \varphi')}} \] (7)

三軸引張条件 \((\sigma_y = \sigma_z > \sigma_x = \sigma') \) では,

\[\alpha = \frac{2\sin \varphi'}{\sqrt{3(1+\sin \varphi')}} \quad k = \frac{6c' \cos \varphi'}{\sqrt{3(1+\sin \varphi')}} \] (8)

さらに平面ひずみ条件では,

\[\alpha = \frac{\tan \varphi'}{\sqrt{9+12\tan^2 \varphi'}} \quad k = \frac{3c'}{\sqrt{9+12\tan^2 \varphi'}} \] (9)

と表される。計算では、有効内部摩擦角 \(\varphi' \), 有効粘着力 \(c' \) を入力定数に用いる。この構成モデルも有限要素解析プログラム DACSAR に組み込んだ。

(3) プログラムの検証

以上の弾塑性構成モデルが、正しくプログラムに組み込まれているかどうかの検証を行うと同時に、締め土を対象とした関口-大塚モデル、Drucker-Prager モデルを示す動揺を説明する。

関口-大塚モデルに対しては、軸対称三軸圧縮せん断における応力-ひずみ理論式を導き（森川 10 を再整理）,

有限要素プログラムを用いて計算された解析値を比較する。

まず初期応力状態が等方的であるとし、\(\sigma_z', \ p', \ \sigma_z' \) がそれぞれ一定の下で排水せん断する場合を考える。導いた理論式を表-1 に示す。ここでは、過圧密比 \(OCR \) は先行時の平均有効主応力 \(p_0' \) に対する現在の平均有効主応力 \(p_0' \) の比として定義されている (\(OCR = p_0' / p_0' \)). \(\lambda \) と \(\kappa \) はそれぞれ圧縮指数と減衰指数であり、\(\varepsilon \) は先行時の間隙比である。

図-1 に理論値と解析値との比較を示す。過圧密比 \(OCR \) は 10 とした。図-1(a)に有効応力経路、図-1(b)に体積ひずみとせん断応力の関係、図-1(c)に体積ひずみと平均有効主応力との関係が示されている。応力経路では、いったん限界状態線（C.S.L.）を越え初期降伏曲線
表2 非排水条件における理論式

<table>
<thead>
<tr>
<th>項目</th>
<th>式</th>
</tr>
</thead>
<tbody>
<tr>
<td>降伏前</td>
<td>$\sigma' = \sigma'_{\text{cr}}$</td>
</tr>
<tr>
<td>降伏後</td>
<td>$q = \frac{\sigma_{\text{cr}} - \lambda}{D + \varepsilon_0} \ln \left(\frac{\sigma'}{\sigma_{\text{cr}}^{\text{OCR}}} \right)$</td>
</tr>
<tr>
<td>破壊時</td>
<td>$\sigma'{\text{f}} = \sigma'{\text{cr}} \cdot \text{OCR}^\lambda \cdot \exp \left(\frac{D \varepsilon_0 (1 + \varepsilon_0)}{\lambda} - \Lambda \right)$</td>
</tr>
</tbody>
</table>

次いで非排水せん断における有効応力経路の理論式を導いた。表2にその結果を示す。ここで、σ'_f は破壊時における有効応力、Λ は不可逆比 ($\Lambda = 1 - \kappa / \lambda$) である。図2が理論値（プロット）と解析値（実線）との比較である。過圧密比 OCR を10と20の2通り選んだ。同一の初期応力状態であれば、過圧密比が大きいほど初期降伏曲面は拡大しており、降伏曲面到達後の塑性変形も顕著となる。また、有限要素プログラムによる解析結果を表2に示した理論値と完全に一致していることも確認される。

Drucker-Pragerモデルについても、軸対称条件で三軸圧縮せん断の比較を行った。

図3に排水せん断による有限要素プログラムの解析結果を、せん断応力とひずみの関係で示しており、軸対称解析をしている様子を表現できている。

次いで非排水せん断では、有効内部摩擦角 ϕ' の値を一定に保ち、有効粘着力 ε' の値を変えて計算を行った。図4が非排水せん断における有効応力経路を示したものである。粘着力の値が大きいほど初期降伏曲面は上方に平行移動する。応力経路は降伏曲面に達した後、この降伏曲面に沿って移動していく。有限要素プログラムによる解析結果が、理論通りに降伏曲面を移動していることから、正しくモデルが組み込まれていると判断される。

図5不排水試料による単体方向せん断試験結果

図6等体積方向せん断試験の解析結果
3. 縮め土とジオシニックセティックスの相互作用

ジオシニックセティックスで補強された土構造物の設計・施工時には、どれだけ土を縮めればよいのか、そしてどれだけの強度を持つジオシニックセティックスを敷設しなければならないのかが問題となる。前節で、解析に用いる構成モデルを紹介したが、この構成モデルを組み込んだ解析が上記問題に対しても解答を与えるものでなければ実務的には意味を持たない。本節では、まずここで取り上げた構成モデルが、縮め土の力学特性をどの程度表現できるものなのかを検討し、次いで、土の縮め度合に対して、必要とされるジオシニックセティックスの破壊強度を調べる。

後述する 1994 年実大実験の現場から縮め土の不摂乱試料を採取し、等体積一面せん断試験を実施した。図 5 にその結果の一例を示す。圧密圧力は 39.2, 78.4, 157, 314 kPa の 4 通りに選んだ。圧密圧力 314 kPa の場合に対して有限要素シミュレーションを行った。その結果を図 6 に示す。関口・太田モデル、Drucker-Prager モデルの他に、比較のため弾性体（双曲线モデルなど）を仮定した場合も示している。実験結果が示している右上がりの傾向（せん断に伴って体積が膨張しようとする傾向）を、関口・太田モデルと、Drucker-Prager モデルが説明できている。弾性体と仮定した場合には、そのような縮め土の挙動を説明できない。なお、計算に用いたパラメータの決定については後述する。

縮め土のせん断挙動を関口・太田モデル、Drucker-Prager モデルは表現できるものとして、次いで、どの程度縮めれば、せん断に対してどれ程度の力を持つジオシニックセティックス補強材に及ぼすかを検討する。このような検討は、設計・施工時のジオシニックセティックスの選択、つまりどれ程度の剛性と強度を持つジオシニックセティックスを選べばよいのか、どれ程度の敷設間隔を取ればよいのか、といった問題を意識している。ジオシニックセティックスの敷設パターンや構造物の形状などに依存する境界值問題であるが、ここでは図 7 に示されるような、簡単なジオシニックセティックス補強縮め土のモデルを取り上げる。縮められた土の周囲にジオシニックセティックスで囲み、単純せん断する。縮められた土は平面要素、ジオシニックセティックスは棒要素（bar element）を用いて表現した。図 7 に示すように変位 d を与え、棒要素に発生する軸力を調べた。

図 8(a) は関口・太田モデルの場合の解析結果である。縮め度合いを過圧密比（OCR）で表すとして、ジオシニックセティックスに作用する軸応力と変位量 d の関係を示した。OCR の増加に伴い、ジオシニックセティックスに作用する軸応力が増加しているのがわかる。図 8(b) は Drucker-Prager モデルの場合の解析結果である。締
固め度合いを直接に反映することはできないが、有効粘着力 c' を一定とし、有効内部摩擦角 ϕ をパラメータとして、ジオシンセティックスに作用する軸応力との関係を示す。内部摩擦角の増加に伴いジオシンセティックスの軸応力が増加している。

図9は図8の結果を、横軸に圧密比 OCR と、有効内部摩擦角 ϕ を取って整理したものである。土の締固め度合いと、必要とされるジオシンセティックスの強度との関係を示している。関口・太田モデルの場合、ジオシンセティックスの軸応力にピークが見られ（$d=3.0\text{mm}$ の場合）、過度の締固めは補強効果の減少を引き起こす可能性を示唆している。しかしながら、これらの結果を検証する実験データはなく、現在のところ定性的な傾向を予想する域を出ない。

4. 実大現場実験の概要

1992年から1994年にかけて、石川県金沢市内において実物大補強盛土の現場実験が複数回行われている。ここでは1992年に行われた箱形盛土構造物の現場実験 (a,b) と、1994年に行われたリークを有する土構造物の現場実験 (a,b) を取り上げる。

(1) 1992年実大現場実験

1992年に実施された実験盛土は、高さ1.5m、最大スパン10.0m 奥行き4.5m の梁形状を持ち、ジオシンセティックスが0.5m間隔で計3列敷設されている。

図10に盛土概略図を示す。補強材としては、アラミド繊維を芯材としてポリエチレン樹脂をグリッド状に成形したジオシンセティックスA（図21参照）を用いている。盛土材は地質（土壌）使用し、ジオシンセティックスを敷設する際に、盛土側面付近には10cmを、その他の部材では25cmごとに敷き出し、被覆ローラーによってD値が90%以上になるよう締め固めた。

図11でD値管理に用いた室温締め試験の結果が示されている。最大スパン10mの梁部分は、初ねH鋼により支えられている（図10(a)）、図10(b)に示す順序でH鋼を撤去することにより、梁部分のスパン長を徐々に拡大し、梁部分の変形およびジオシンセティックスの伸びを測定した。実験盛土側面には、0.3m間隔で格子状にマーカーが設置され、梁部分のスパン長が拡大するたびに、写真計測によりこれらの移動を記録した。

計測された梁部分中央のたわみ等が表3である。表中のH型鋼の番号は図10(b)に示す通りである。H鋼を順に撤去することにより最大たわみは大きく、第8ステップで最大変位が1.2mを越え、梁形状が保たずなくなった。また、図10(b)中のNo.7のH鋼を撤去した際に、H鋼との摩擦力が下降層のジオシンセティックスが切れてしまい、最後段第1反は崩れる結果となった。

(2) 1994年実大現場実験

1994年に実大現場実験が、1992年実験現場の近郊で実施された。1994年の実験盛土は、両側面垂直で高さ5.0m、奥行き7.0m、幅22.0mの大きさであり、片側に60°の逆勾配斜面を持つ。逆勾配斜面は、初期支保盛土によって支えられており、支保盛土を徐々に取り除いた時の逆勾配斜面の変形を計測する。図12に盛土の概略図を示す。補強材としては、アラミド繊維とポリエステル繊維を交織し、樹脂でコーティングしたジオシンセティックスB（図21参照）を用いている。
盛土材には1992年に同貫の砂質土（大砂浜）を使用し、ジオシンセティックスを敷設した後に、6.5cmごとに撤き出し、振動ローラーによってD値が90%以上になるように締固めた。図14にD値管理に用いた室内締固め試験の結果を示す。ジオシンセティックスは0.5m間隔で計10層敷設した。盛土側壁は垂直に立ち、逆勾配斜面部分には、図13に示された位置に合計10箇所のマーカーを設置し、変形の計測を行った。逆勾配斜面の支保盛土を上部から順次バックホウドにて撤削除去することにより実験を開始した。図12に示す水平面から角度60°および70°の線上に位置するジオシンセティックス直下に切削用のカッターが予め敷設されている。逆勾配斜面の支保盛土を除去した後、このカッターをバックホウドで引き抜き、ジオシンセティックスを切断した。実験では、支保盛土を上から0.7m撤削した時に逆勾配先端部分が変形したが、支保盛土を4.1m撤削した時点で、逆勾配先端部分の土がジオシンセティックスの間からこぼれ落ちるように崩落していった。支保盛土を完全に撤去した後、図12中の角度60°および角度70°の線上に位置するジオシンセティックスをそれぞれ上部から切断した（まず、角度60°の線沿って上からジオシンセティックスを切断し、その後、角度70°の線沿って同様にジオシンセティックスを切断した。1)。角度70°線上の4番目（第7層目）のジオシンセティックスを切断した時に、盛土本体部分が逆斜面方向に倒れこむように崩壊した。

5. 入力パラメータの決定

（1）関口土圧モデルに必要なパラメータ
関口土圧モデルに必要なパラメータは、等体積一面上せん断試験より決定することにした。不挾乱試料を1994年の現地実験の際に、隔層ごと（1,3,5,7,9層）に採取しており、この不挾乱試料を用いて等体積一面上せん断試験を実施した。しかしながら試験機の構造上、正規圧密に相当する状態までの圧密処理が行えず、せん断試験による有効応力経路は過圧密土の特徴を示し、先行圧密効果を求めることができなかった。そこで同一の材料に対して、含水比を調整した挾乱試料を用意して、同様の試験を実施した。この挾乱試料の実験結果を用いて、土圧を15の方法によって“含水比一乾燥密度一せん断強度”の関係図を作成する。この関係図を締め付けの指標とし、挾乱試料による等体積一面上せん断試験の結果を照らし合わせることにより、パラメータを決定する。この関係図を用いるということは、不挾乱の締め付けをそれに相当する飽和過圧密粘土に置き換えることを意味している。以下“含水比一乾燥密度一せん断強度”の関係図を“締め付け管理図”と呼ぶ。

挾乱試料を用いた試験結果より図15を得た。含水比
20%から30%の間で5段階に調整した掟乱試料を、圧密圧力39.2, 78.4, 157, 314 kPaの4段階で圧密し、乾燥密度と圧密圧力の関係を得た。これらのプロットを含水比ごとに結んだラインが図16の上図である。含水比の違いによって、それぞれ平行な直線となった。さらに、それぞれの圧密圧力で等体積一軸せん断を実施し、せん断強度と圧密圧力の関係を得た。含水比の違いに関わらず、各圧密圧力ごとにほぼ同一のせん断強度が得られ、その強度増加率は、図中の実線で示すようにSu/σ_w' = 0.23となった。

この図15に、不揃乱試料を用いた実験結果を書き加入る図16となる。不揃乱試料の実験結果による含水比と最も近い等含水比線と交わるように、各プロットを連ねる直線を引き、この交点の横軸の読みが不揃乱相当圧力であるとした。求めた先行圧密相当圧力が図4に示されている。

不揃乱試料に対しても、各圧密圧力で等体積一軸せん断試験を実施している。得られたせん断強度をブロックしたのが図16のAである。この不揃乱試料の強度と、揃乱試料の強度との整合がとれているかどうかをチェックする。揃乱試料の強度は、周密圧密に相当する強度に対応していると考えられ、その強度増加率は上記のようにSu/σ_w' = 0.23であった。一方、不揃乱試料の強度は表4に示されているように、各最終圧密圧力に依存した過圧密相当圧力であると考えられる。そこで、この過圧密相当強度を周密圧密相当強度に変換したのが図16の下図である。不揃乱試料から得られた強度増加率の線上にのっているのがわかる。これに加えて、室実験から推定された先行圧密相当圧力（表4）の妥当性が問われる。

図16の線図をもとに、関口・太田モデルに
表5 関口・大田モデルのパラメータ

<table>
<thead>
<tr>
<th></th>
<th>case 1</th>
<th>case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>非可逆比</td>
<td>Λ</td>
<td>0.85</td>
</tr>
<tr>
<td>静止土圧係数</td>
<td>K₀</td>
<td>0.54</td>
</tr>
<tr>
<td>限界応力比</td>
<td>M</td>
<td>1.09</td>
</tr>
<tr>
<td>压縮指数</td>
<td>λ</td>
<td>1.92</td>
</tr>
<tr>
<td>ダイレイタンシー係数</td>
<td>D</td>
<td>0.85</td>
</tr>
<tr>
<td>初期間隔比</td>
<td>ε₀</td>
<td>0.77</td>
</tr>
<tr>
<td>ポアソン比</td>
<td>ν</td>
<td>0.35</td>
</tr>
</tbody>
</table>

表6 Drucker-Pragerモデルのパラメータ

<table>
<thead>
<tr>
<th></th>
<th>case 3</th>
<th>case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>有効粘着力</td>
<td>c'</td>
<td>17.6</td>
</tr>
<tr>
<td>有効内部摩擦角</td>
<td>φ'</td>
<td>34.1</td>
</tr>
</tbody>
</table>

必要なパラメータを決定する。関口・大田モデルにより、正規圧密経験に対する等体積-一面せん断強度の理論式

\[
\frac{Su}{\sigma_{σ_{0}}^{2}} = \frac{1 + 2K_0}{3\sqrt{3}}M\exp(-\Lambda)
\]

が求められているので,これを利用して有効内部摩擦角を推定する。ここで, K₀は静止土圧係数, Mは限界応力比（\(\frac{M}{3 - \sin \phi'} \)), Λは非可逆比である。式(11)に

強度増加率を表しているから,実験から求まった強度増加率と等価すればよいのだが,式が1つに対して未知数が3つあり,値が定まらない。そこで、以下の様な経験式を用いて、2通りの入力パラメータ(φ')の推定方法を考える。1つは M=1.75A（軽部）, K₀=1-\sin φ'（Jaky）の経験式を利用した式(11)を φ'のみで表した場合（推定式D）, 他の1つは M=1.75A（軽部）, K₀=0.44+0.42P/100（Massarsch）, \sin φ'=0.81-0.233log P（Kennedy）

の経験式を利用した式(11)を φ'のみで表した場合（推定式E）である。これらの推定式をグラフに表わしたのが図17である。この図に総合管理図より求めた Su/σ_{σ_{0}}=0.23を与えると,推定式D1からは φ'=27.5°,

推定式E1からは φ'=41.9°と求まる。有効内部摩擦角が求まったので,他の構成パラメータは, Iizuka and Ohta2を参考にして図18に示すような手順で推定することにした。このようにして決定されたパラメータの一覧を

表6に示す。有効内部摩擦角が2通り推定されたので,それに合わせて入力パラメータも2通り（case 1, case 2）のケースを考えることにした。なお,図6に示す等体積-一面せん断試験の有限要素シミュレーションには, case 1のパラメータを用いている。

表7 ジオシンセティックスAのパラメータ

| 最大引張り強度 | N_f (kN/m) | 67.3 |
| 断面積×弾性係数 | A×E (kN) | 1340.0 |

表8 ジオシンセティックスBのパラメータ

| 最大引張り強度 | N_f (kN/m) | 35.6 |
| 断面積×弾性係数 | A×E (kN) | 530.0 |

(2) Drucker-Pragerモデルに必要なパラメータ

Drucker-Pragerモデルに必要なパラメータは, 三軸圧密非排水せん断試験より決定している。1992年の現場実験の際に,現場付近または現場盛土から大桑砂の攪乱試料を採取し,三軸CU試験を実施した。3通りの圧密圧力を選び,破壊時のモールの応力円を描くと図19, 図20のようになる。ただし,図20のデータは同じ大
6. 実大現場実験の有限要素シミュレーション

ふたつの実物大補強盛土の現場実験を有限要素シミュレーションし、現場実験で得られた計測結果との比較を試みる。すなわち、いずれの有限要素解析も完全排水条件を仮定している。

（1）1992年実大実験の有限要素解析

有限要素解析に用いたメッシュを図-22に示す。メッシュの下部1層がH鋼部分、上部6層がジオンセシティックスで補強された盛土部分を示す。また、ジオンセシティックスは弾性棒材（トラス材）としてモデル化し、現場と同じように、3層にわたって敷設している。H鋼の引き抜きは、図-22の中の下に示す番号順にH钢部分の要素を取り除くことによって表現している。

解析のステップは、現場での計測ステップに合わせている。表-9に実験での計測ステップと解析に用いたステップとの対応が示されている。ただし解析では、図-10(b)に示されるNo.9とNo.10のH鋼の区別がつかないため、両ステップとも第8ステップとしている。

入力パラメータの違いによって、関口-大田モデルでは表-5のcase1とcase2に対して、Drucker-Pragerモデルでは表-6のcase3とcase4に対して有限要素シミュレーションを実施した。ただし、1992年に実施された架設状況実大実験においては、実験盛土の不摂乱試料に対し等体積一面せん断試験が実施されていないので、関口-大田モデルに必要な等価先行圧密圧力を得ることができなかった。そこで、表-4を参考にして先行圧密圧力を \(\sigma_{nt}=980 \text{kN/m}^2 \)（case1-1）と、\(\sigma_{nt}=1960 \text{kN/m}^2 \)（case1-2）の2通りを仮定することにした。なお、関口-大田モデルを用いた場合、case1とcase2とで、解析結果にほとんど差が現れなかったので、ここではcase1の結果のみを示している。

各解析ケースにおいて、盛土が崩壊した解析ステップを表-10に示す。ただし解析において盛土の崩壊は、ジオンセシティックスが破壊した時点のステップとしている。現場実験では、第8ステップ（スパン長5.5m）の時に盛土が架設状態を保てなくなり崩壊している。図-23は各解析ケースの第3ステップ時におけるせん断ひずみのコンターである。コンター線は関口-大田モデルでは0.01刻み、その他の0.02刻みで描かれている。関口-大田モデルの場合には、発生したせん断ひずみの量が実測とは若干異なるが、せん断ひずみの発生パターンは、関口-大田モデル、Drucker-Pragerモデルともに実測と類似したものとなっている。

図-24は変形状態部分の実測変形と計算結果の比較である。図-10に示されるNo.2とNo.5のH型鋼位置にお
（a）関口・太田モデル（case 1-1）

（b）関口・太田モデル（case 1-2）

（c）Drucker-Prager モデル（case 3）

（d）Drucker-Prager モデル（case 4）

図23 各解析におけるせん断ひずみ（step=3）

（2）1994年実大実験の有限要素解析
解析に用いたメッシュを図25に示す。ジオシンセティックスは弾性棒材（トラス材）としてモデル化し、現場実験と同じ位置に計10層にわたって設置している。ジオシンセティックスの切断は、実際の実験で切断された場所に位置するトラス材を取り除くことによって表現する。解析のステップは、現場実験での計測に合わせて表11に示す順序とした。

解析ケースとして、関口・太田モデルに対しては表5にあるようにcase1とcase2を、Drucker-Pragerモデルに対しては表6にあるようにcase3とcase4の合計4通りを計算した。ジオシンセティックスのパラメータについては、実際の実験で用いたジオシンセティックスの材料定数である表8の値を用いている。

各解析ケースにおいて、盛土が崩壊したステップを表12に示す。解析において盛土の崩壊は、ジオシンセティックスが破断した時点であるとし、その時のステップ番号が示されている。一方、実際の実験では、表11の第7ステップで逆勾配斜面部分が崩落し、次の第21ステップで、ジオシンセティックスの切断により、補強盛土本体部分も、図25（または図12）中の70°の線から傾斜面側に倒れ込むように崩壊している。

図26に計算から得られた実験盛土の変形図を示す。各解析ケースにおいて、盛土が破壊した（ジオシンセティックスが破断した）ステップにおける変形図を示している。
1994年の現場実験については、実験盛土側面全体の
表11 解析におけるステップ

<table>
<thead>
<tr>
<th>step</th>
<th>盛土状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>支保盛土撤去前（初期状態）</td>
</tr>
<tr>
<td>1</td>
<td>支保盛土0.7m撤去</td>
</tr>
<tr>
<td>2</td>
<td>支保盛土1.5m撤去</td>
</tr>
<tr>
<td>3</td>
<td>支保盛土2.4m撤去</td>
</tr>
<tr>
<td>4</td>
<td>step=3の状態で5日間放置</td>
</tr>
<tr>
<td>5</td>
<td>支保盛土3.3m撤去</td>
</tr>
<tr>
<td>6</td>
<td>支保盛土4.1m撤去</td>
</tr>
<tr>
<td>7</td>
<td>支保盛土5.0m撤去（逆勾配部分崩壊）</td>
</tr>
<tr>
<td>8</td>
<td>60°部分10層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>9</td>
<td>60°部分9層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>10</td>
<td>60°部分8層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>11</td>
<td>60°部分7層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>12</td>
<td>60°部分6層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>13</td>
<td>60°部分5層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>14</td>
<td>60°部分4層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>15</td>
<td>60°部分3層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>16</td>
<td>60°部分2層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>17</td>
<td>step=16より1時間経過</td>
</tr>
<tr>
<td>18</td>
<td>70°部分10層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>19</td>
<td>70°部分9層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>20</td>
<td>70°部分8層目ジオシナンセティックス切断</td>
</tr>
<tr>
<td>21</td>
<td>盛土崩壊（70°部分7層崩壊）</td>
</tr>
</tbody>
</table>

7. おわりに

本論文では、ダイレクターによる土の体積膨張を考慮した、ジオシナンセティックスによる補強効果メカニズムを考察している。せん断による締固め度のダイレクターを考慮した構成モデルとして、関口・太田モデルとDrucker-Pragerモデルを取り上げ、有限要素プログラムで組み込んだ。用いた弾性構成モデルの特性を確認した後、ジオシナンセティックスで補強された段階の土構造物の変形・破壊実大現場盛土実験事例の解析を行った。解析に必要な入力パラメータの決定方法を提案し、実測挙動との比較を示した。得られた結果をまとめると以下のようになる。

1. 関口・太田モデルでは、せん断による体積膨張は、ひずみ軟化挙動を伴う、ひずみ軟化域での負荷と除荷をも判定できるように、Asaoka et al.に準拠して負荷判定基準を改めた。

2. ジオシナンセティックスの効果、せん断による土の体積膨張を拘束すると、その拘束効果は土の違い（締固め度合いの違い）によってどのように現れるかを解析的に調べた。関口・太田モデルの場合、強固な締固めすぎるとジオシナンセティックスの拘束効果をかなえて除荷する場合があることが予測された。

3. 締固め土を対象として、解析に必要な入力パラメータの決定法を提案した。締固め管理図を描くことにより、締固め土を過圧密粘土の概念を用いて量き換え
比較したが、どちらのモデルがより適しているか、優劣をつけるに至らなかった。ふたつの実大実験では、土はほぼ同程度にしか締められなかったと考えられるため、Drucker-Prager モデルと関口・太田モデルとで解析結果に明確な差を示すことができなかった。ただし、Drucker-Prager モデルの場合、有効内部摩擦角は、締め度合いを表す一つのフィッティングパラメータとなり、物理的意味が曖昧となっている。また、今後、さらなる予測能力の向上に努めてゆくと考えている。

謝辞：本論文を作成するにあたって、ご協力頂いた前田工織（株）、真柄建設（株）の関係各位、ならびにお世話にないご援助をいただいた神戸大学の横部大蔵教授に感謝いたします。

参考文献

3) 森谷幸博、横田敬弘、河合浩、大木秀樹、山田道幸：北陸地区で実施された4回の補強土大実験の報告、第13回ジオテキスタイルシンポジウム発表論文集、pp.32-40, 1998.

6) 吉田洋、井上秀行、津田正之、内田哲也、藤山佳雄、大木秀樹：ロックフィルダム遮水ゾーンの長期沈下挙動、土木学会論文集、No.582/II-41, pp.197-205, 1997.

7) 井上秀行、内田哲也、望月直也、石黒範、太田秀樹：ロックフィルダム遮水ゾーンのため水倉後長期沈下メカニズム、土木学会論文集、No.582/II-41, pp.275-284, 1997.

THE NUMERICAL SIMULATION OF GEOSYNTHETICS-REINFORCED SOIL STRUCTURES USING ELASTO-PLASTIC DILATANCY MODELS

Masafumi HIRATA, Atsushi IIZUKA, Hideki OHTA, Takayuki YAMAKAMI, Yoshihiro YOKOTA and Kouji OHMORI

This paper describes the numerical modeling of geosynthetics-reinforcement mechanism in soil structures. The confining effect brought by the geosynthetics working so as to prevent dilation of soils is considered by introducing constitutive models that can express dilation of soils with shear. Then, the deformation-failure behaviors of two full-scale geosynthetics-reinforcement soil structures are simulated using the finite element computation technique. Herein, the compacted soils are treated as saturated-heavily over-consolidated clays and the determination procedure of input parameters needed in the models is proposed. Numerically predicted behaviors are compared with monitored ones.