鋼管・コンクリート複合構造部材の
正負交番載荷試験

渡辺将之1・今泉安雄2・緒方辰男3・田中浩一4・大内一5

1正会員 日本道路公団 東北支社 建設部 建設技術課長代理（〒980-0021 宮城県仙台市青葉区中央3-2-1）
2正会員 日本道路公団 九州支社 建設部 建設技術課長代理（〒810-0001 福岡県福岡市中央区天神1-4-2）
3正会員 日本道路公団 技術部 建設技術課（〒100-8979 東京都千代田区霞ヶ関3-3-2）
4正会員 株式会社大林組 技術研究所（〒204-0011 東京都渋谷区下渋谷4-6-40）
5フェロー会員 工博 株式会社大林組 技術研究所（〒204-0011 東京都渋谷区下渋谷4-6-40）

山岳橋梁における高橋脚の強化化、急速施工をめざした鋼管・コンクリート複合構造橋脚は、断面内部に複数本の鋼管を配置し、帯鉄筋のかわりにPC鋼より線を主鉄筋周囲にスパイラル状に巻き付けていることなどの特徴を有する。本研究は1) 鋼管内、曲げ補強および鋼管の配置が曲げ耐力や変形性能に及ぼす影響に着目したはり型模型試験、2) PC鋼より線の量と断面形状が変形性能に及ぼす影響に着目した柱型模型試験、3) PC鋼より線量と鋼管の有無がせん断耐力に及ぼす影響に着目した柱型模型試験から成っている。曲げ耐力に関しては鋼管の挙動、変形性能に関しては弾性率と帯鉄筋比、断面形状との関連を検討する。またせん断耐力に関しては、PC鋼より線や鋼管の挙動を検討していく。

Key Words : high pier, steel tube, high strength strand, ductility factor, shear strength

1. はじめに

山岳橋梁における高橋脚の省力化、急速施工を目的として開発した「鋼管・コンクリート型複合構造橋脚」は、断面内部に複数配置された鋼管や、帯鉄筋の代わりにスパイラル状に巻き付けたPC鋼より線を用いているなどの構造的特徴を有する。高橋脚では一般にそれ自身の自重低減のため、中空断面とするものが多いが、本構造では鋼管内部を中空とする事でその低減を図っている。鉄筋工や内型枠工の省力化に寄与するだけでなく、スリップフォームによる急速施工のための反力架台としての役割も兼ねている。さらに内型枠不要という点で環境面からも望ましい。

本構造の橋脚を設計する際、曲げ剛性や曲げ耐力、変形性能ならびに履歴減衰特性、せん断耐力などの評価方法が必要となる。

曲げ剛性、曲げ耐力評価する点で、鋼管 (S) と鉄筋コンクリート (RC) の一体性が問題となる。通常、鋼構造では弾性設計を、鉄筋コンクリート構造は鉄筋の付着を通じた一体性は平面保持を仮定して設計される。一方、断面内に単一鉄筋を配置した被覆型SRC構造において、これまで様々な研究がなされており、SRC構造の曲げ耐力をRCとSを独立にそれぞれの曲げ耐力を累加して評価する設計法が採用されている1)。しかしながら、本構造の採用される橋脚は作用せん断応力度が0.5〜1.0N/mm2と比較的低く、さらに断面に複数本の鋼管を配置しているなど、従来建築で用いられてきた被覆形SRC構造とは作用応力や構造という点で異なっている。また高木戸野での被覆形SRC構造と比較しても、主として帯鋼を鉄筋の代わりに用いる点で異なっている2)。

大規模地震に対する耐震設計を行う際、変形性能に対する配慮が重要である。通常のRC橋脚では配置された帯鉄筋および中間帯鉄筋の体積比からコンクリートの終局ひずみを与えて弾性を評価する手法が一般に用いられるようになった。しかしながら本構造は鋼管の存在に加え、主鉄筋周囲にスパイラル状にPC鋼より線を配置している。経済性を考えるとPC鋼より線強度の有効利用が望まれるが、変形性能や終局曲げ耐力に関する研究はない。また変形性能はPC鋼より線の巻付け量や断面幅 (B) と高さ (D) の比 (以下、扁平率: B/D) の影響も受けることが予
想される。そこで鋼管と鉄筋コンクリートの曲げ耐力はもちろん変形力特性および変形性能に着目して本構造模型の繰り返し水平加力試験を行った。

一方、本構造のせん断設計を考える時、PC鋼より線および鋼管の負担力評価が問題となる。前者については建築分野でこれまでに2=1,500N/mm²程度までの高強度せん断補強筋を対象にしての実験(4)、(5)が行われてきたが、PC鋼よりも線はそれ以上の強度を有し断面形状も異にしている。後者は施工性向上および主筋代替として用いるが、せん断力負荷も期待でき、経済設計を目指す上でその挙動を明らかにする必要がある。そこでPC鋼より線量と鋼管の有無をパラメータとして同様に繰り返し水平加力試験を行った。

2. 鋼管・コンクリート複合構造橋脚の試設計

(1) 試設計橋脚

本研究を行うに先立ち、道路橋示方書(6)に準じて、高さが40 〜 80m級の本構造高橋脚の試設計を行った。試設計では鋼管とコンクリートの完全付着を仮定して、震度法に用いる設計水平震度(6)に対し許容応力度に収まるよう断面を決定した。対象とした橋梁は3腿間連続ラーメン橋であり、各橋脚高さにおける上部工重量、スパンは以下の通り。

(橋脚高さ : H=40m)
上部工重量=3442tf, 中央間=70m, 側間=45m
(橋脚高さ : H=60m)
上部工重量=5672tf, 中央間=100m, 側間=65m
(橋脚高さ : H=80m)
上部工重量=8236tf, 中央間=130m, 側間=75m
なお主鉄筋は一段配置とし、D38とD51の2ケースを考えた。決定した橋脚断面形状を図一に示す。

試設計結果より得られたせん断スパン比 (a/D) と橋脚高さとの関係を図二に示す。橋脚方向では橋脚高さに関わず4.6 〜 6.0、また橋軸直角方向では橋脚高さが大きくなるほど大きく6.6 〜 10.0となっていた。鉄筋や側付着状にはせん断スパン比が小さい方が不利であるため、試験体のせん断スパン比を5程度とすれば安全側に評価できる。

鋼管量は橋脚高さとの関係を図三に示す。橋脚高さに関わりらず、鋼管全断面積および主鉄筋断面積を断面外寸断面積で除した値 (以下、それぞれ鋼管量: p2= Σ A, / (B・D), 鉄筋量: p2= Σ A, / (B・D)) を累加したもの、すなわち鋼管量は橋脚高さに関わらず約2%である。参考に、橋脚高さ40 〜 80mでの全鋼材量(鉄筋、鋼管、PC鋼より線)は、試設計中のRC橋脚（主鉄筋、帯鉄筋）と比べ66 〜 83％と少ない。鋼管量は0.9 〜 1.8%の範囲(平均1.3%)であり、径厚比(厚さ/鋼管径: t/ϕ)は0.91 〜 1.06%の範囲(平均0.98%)であった。また鉄筋量は主鉄筋にD38とD51で
大きく異なるものの0.3～1.0%の範囲にある。

断面の中に鋼管による中空部分の占める割合（以下、ボイド率：Void/(B-D)）は、断面形状と寸法が同じ場合、地震時橋軸慣性力が基盤に作用する度合いの指標となる。試設計中空RC橋では高さ40～80mで0.43～0.56であるのに対し、本構造では図-4に示すように0.2～0.45（平均値0.3）となる。橋軸高さ60mの試設計中空RC橋軸に着目すると、橋軸単位長さ当たりの重量は本構造の方が約10%大きい。

橋軸断面幅と断面高さとの比（以下、扁平率：B/D）を図-5に示す。また図中に本構造適用予定の橋梁（設計橋梁）での回帰曲線を示す。B/Dは1.0～2.5の範囲となる。主鉄筋外周のみを筋を有する本構造ではB/Dが大きいほど鉄筋に不利であることや、本構造が最も多く採用される橋軸高さが40～60mであることから、回帰曲線で橋軸高さ50mでのB/Dである1.5を基準として鉄筋を確認するのが良いと考えた。

橋脚基部に作用する常時軸圧縮応力度（γ）を図-6に示す。軸圧縮応力度は1.5～2.0N/mm²程度である。軸圧が鉄筋性能に及ぼす影響は、軸圧縮応力度がコンクリートの圧縮強度（Fc）の約10％（0.1Fc≒2.9N/mm²）以下であればほとんどないという報告がある。このことから、対象となる軸圧縮力の範囲ならば、鉄筋に大きく影響を与えないと考えられる。

曲げ耐力は橋軸断面積で除した値（以下、曲げ耐力時作用せん断応力度）と橋軸高さとの関係を図-7に示す。ここで曲げ耐力は、コンクリートを約50層に分割し、各鋼管は8分割して鉄筋を置き換え平面保持を仮定して求めた（以下、RCばかり理論）。コンクリートの応力-ひずみ関係は最大応力ではなくFattis-Shahモデル、軟化域特性はDarwin-Pecknoldモデルとし、鉄筋と鋼管の応力-ひずみ関係バイアリニアとした。橋軸方向、鉄筋直角方向それぞれの曲げ耐力時せん断応力度は0.4～0.7N/mm²、0.2～0.5N/mm²であった。

3. 両面模型の曲げ試験

(1) 試験体および加力方法
a) 試験体
試設計計算結果を基に、鋼管量は鋼管杭（SKK490）で約1.5％相当とした。模型に用いる小径の鋼管（SS400）では材質が異なるため強度換算（1.5％×3200/2400）として約2％の鋼管を配置している。強度換算したことと小径鋼管の種類の制約によりボイド率は0.17と試設計での最小値より多少小さく、また径厚比は約3％と試設計の約3倍である。また鉄筋量は試設計計算結果と同等とした。断面形状は橋軸高さが大きくなるほどB/Dが1に近づくや曲げ耐力の
確認が主目的であることなどから正方形断面とした。またせん断スパン比は試計算計算結果の最小値より多少小さい値とした。なお曲げ耐力の確認は橋脚と異なるばかり型模型で行っていると分であると考えた。

ばかり型模型試験では主に鋼管の配置や鋼管量をパラメータとした。曲げ耐力は鋼管とコンクリート間の付着性状の良否により決定される。作用するせん断応力や鋼管内部のクラフトの有無は、その付着性状に影響を及ぼすと考え、主鉄筋量とクラフトの有無もパラメータとした。試験体一覧を表1に示す。

ばかり型模型11, 12は試設計橋脚と曲げ強度（鉄筋量、鋼管量）を同程度とした試験体3体（B-4T14F、B-8T10F、B-4T10F）は以下、一般型と称する）と、曲げ耐力を意図的に増加させて作用するせん断応力度を一般型の約2倍にした試験体（B-8T10FR、B-8T10NR：以下、曲げ補強増加型と称する）の計5体とした。いずれの試験体もPC鋼より線をスパイラル状に配置し、帯筋比は鉄筋（SD345）で強度換算した値（以下、等価帯筋比：P_r）で0.2%に相当する量とした。すなわち等価帯筋比は次式でえられる。

\[P_r = \left(\frac{\sigma_{u}}{\sigma_{y}} \times A_{y} \right) \]

ここで,

\[\sigma_{u} : PC鋼より線の降伏強度（N/mm²）\]
\[\sigma_{y} : 鉄筋（SD345）の降伏強度（N/mm²）\]
\[A_{y} : 帯鉄筋の総断面積（cm²）\]
\[B : 断面幅（cm）\]
\[a : 帯鉄筋間隔（cm）\]

試験体断面を図9に示す。鋼管の内部には実橋脚基部を想定し、一般型の試験体にはいずれも座屈を防ぐためクラフト材を充填した。また曲げ補強増加型の試験体では特に充填しないものにした。ラーメン橋脚を想定したとき、本構造橋脚の柱頭部ではリブ付き鋼管で定着が施されているため、梁束直角方向における端部付着性状良好である。一方、梁束方向では、応力モーメントの反極点位置にはリブ付き鋼管を使用していないため、付着性状は悪い。そこで安全側に曲げ耐力を評価するため、鉄筋は試験体端部の鉄板に溶接したが鋼管端部は抜出しを許容させるため溶接していなかった。

b) 加力方法

加力は図9に示すような単純ばり型の正負2点繰り返し水平加力とした。軸圧縮応力度が1.47N/mm²（15kgf/cm²）となるよう断面中心位置に配置されたPC鋼棒を張緊した後、軸力を定額滑り保持装置で保持した。加力は部材角: R = 1/200, 1/100, ... 5/100においてそれぞれ2サイクルずつとした。最後に正荷重側にてジャッキストロック限界のR = 8/100まで加力した。

c) 使用材料

断面内に鋼管が複数配置されているのでコンクリートの締固めが困難なことや、ばかり側面から打設を行うためプリーリングによるとコンクリートと鋼管の付着を低下させない配慮から、逆打ち用高流動コンクリートを用いた。フロー値は平均して63cm、またプリーリング率は3時間で0%であった。曲げ耐力
表 2 コンクリートの配合

<table>
<thead>
<tr>
<th>水セメント比 W/C (%)</th>
<th>マルシイラス率 %</th>
<th>細骨材率 %</th>
<th>粗骨材率 %</th>
<th>単位量 (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.1</td>
<td>51.6</td>
<td>168</td>
<td>289</td>
<td>940</td>
</tr>
</tbody>
</table>

最大骨材寸法：13mm

表 3 コンクリートの材料試験結果

<table>
<thead>
<tr>
<th>試験体</th>
<th>压縮強度 (N/mm²)</th>
<th>引張強度 (N/mm²)</th>
<th>弾性係数 (kn/mm²)</th>
<th>材質 (日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-4T14F</td>
<td>36.0</td>
<td>2.36</td>
<td>25.1</td>
<td>28</td>
</tr>
<tr>
<td>B-8T10F</td>
<td>36.8</td>
<td>2.65</td>
<td>22.5</td>
<td>42</td>
</tr>
<tr>
<td>B-4T10F</td>
<td>33.6</td>
<td>3.24</td>
<td>25.1</td>
<td>35</td>
</tr>
<tr>
<td>B-8T10FR</td>
<td>38.0</td>
<td>2.28</td>
<td>22.6</td>
<td>70</td>
</tr>
<tr>
<td>B-8T10NR</td>
<td>38.0</td>
<td>2.28</td>
<td>22.6</td>
<td>70</td>
</tr>
</tbody>
</table>

表 4 鋼材の材料試験結果

<table>
<thead>
<tr>
<th>鋼種</th>
<th>弾性係数 (kn/mm²)</th>
<th>降伏強度 (N/mm²)</th>
<th>引張強度 (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>鉄筋</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SD345)</td>
<td>139.8</td>
<td>186</td>
<td>385</td>
</tr>
<tr>
<td>(SS400)</td>
<td>101.6</td>
<td>291</td>
<td>385</td>
</tr>
<tr>
<td>2.9mm 鋼板</td>
<td>223</td>
<td>1873</td>
<td>586</td>
</tr>
</tbody>
</table>

*1 鋼管引張試験は、HN ゴムを使用して行行った。
*2 鋼筋は公称断面積、鋼管はノギスで計測した厚さと長さで長さを求めた。すきみはすきまゲージにより求めた。
*3 鋼管およびPC鋼より線の降伏強度は、0.2%引張力とした。

の確認には骨材の寸法効果の影響が少ないと考え、入手が容易で小さな骨材としても最大骨材径は13mmのものを用いた。コンクリートの配合を表 2 に、また材料試験結果を表 3 に示す。

各鋼管とも SS400 を、鉄筋はいずれも SD345 を、また PC 鋼より線は SWPR2 を使用した。これらの引張試験結果を表 4 に示す。

(2) 試験結果

a) 荷重-変位関係

荷重と変位との関係を図 10-14 に示す。荷重はジャッキ荷重であるせん断力としている。一般型ではいずれの場合も板材長 R=2100 の第 1 サイクルで最大荷重となり、その値は RC はり理論値の 0.97 ～1.01 倍であった。また同一変位での第 2 サイクルは荷重低下するが、さらに変形が進むと荷重は増加するもので最大荷重まで至らない。試験体 B-8T10F では、等曲げモニメント区間において PC 鋼より線が破断してコンクリートが破壊する効果が低下し、主鉄筋が破壊するため耐力は低下した。なお鋼管量の少ない B-4T10F では、最大荷重後の第 2 サイクルでの荷重低下の傾向は少なく変位領域での耐力回復も大きい。これは鋼管量が少ないため鋼管の滑りによる耐力低下の影響が小さく、鉄筋コンクリートに近かったためと思われる。

曲げ補強増加型では、鋼管内部をグラウトした B-8T10FR 試験体は、一般型と同様に RC はり理論値の最大耐力近傍まで達したが、グラウトしない B-8T10NR 試験体はそれに達しない。またいずれも部材角 R=100 で PC 鋼より線が加力点近傍のせん断スパン中で破断して耐力が低下するが、鋼管の存在もあり大きな耐力低下であった。

曲げ降伏までの曲げ曲線を図 15-19 に示す。一般型では RC はり理論で求めた値に一致している。B-
8T10FR と B-8T10NR ではせん断応力度（作用せん断力を全断面積で除した値）が約0.8N/mm²以上では、鋼管とコンクリートとの付着劣化による一体性の低下により試験値の方が剛性が低くなる。このことから、RCより理论で曲げ剛性評価可能な範囲は、作用せん断応力度が約0.8N/mm²以下といえる。

b) 主鉄筋および鋼管の座屈性

写真-1に示すように一般型の中ではB-8T10Fのみ主鉄筋座屈が部材角R=5/100で等曲げモーメントスパン中に発生したが、その他はかぶりコンクリート剥落するものの主鉄筋座屈はほとんど認められない。

鋼管の座屈について試験結果にコンクリートをはつり出して観察した。鋼管内部のクラッドの有無を比較するため、B-8T10NR と B-8T10FR の鋼管状況を写真-2に示す。クラッドされている場合は鋼管が外側に座屈しているのに対して、クラッドのない場合は内側に座屈している。鋼管が圧縮力を保持する点では外側に座屈した方が望ましい。従って鋼管内部を充填することで十分内側座屈を防止でき、前述した曲げ耐力の観点からも構造性能を向上させている。

鋼管内部のクラッドの有無による鋼管の挙動について鋼管の軸方向ひずみと円周方向のひずみに着目したものが図-16である。クラッドされている B-
8T10FR では、鋼管の軸方向の引張に変形ひずみが増加すると円周方向の圧縮ひずみも増加している。一方、グラウトされていない B-8T10NR では、変位 d = 30mm 付近で軸方向と円周方向のひずみが増加せず、減少している。これは B-8T10FR においては観察されていない。鋼管内部がグラウトされていない鋼管は、引張力が作用するとフックの法則により鋼管径が減少するため、コンクリートと鋼管との間の付着性状がグラウトされているものに比べて悪く。そのため、鋼管の引張力負荷が減少するため、鋼管断面が斜め、曲げ耐力も RC ばかり理論値より小さかったと思われる。

c）鋼管の挙動

等曲げモーメント区間中央での鋼管上下縁に貼付したひずみゲージから図 - 17 に示すように測定点以外の鋼管任意点のひずみを推定し、パラメータ応力一ひずみ関係を仮定して鋼管応力を推定した。ここで、鋼管の応力は 2 軸で算定すべきであるが、等曲げモーメント区間であることからせん断成分（γ sy）はほとんどないと考えた。この計算結果から鋼管に生じた軸力により断面図点位置からの距離を乗じたモーメントと、鋼管自体のモーメントを累加して求めた値を鋼管の曲げモーメント負担分（Ms）とした。これと変形との関係を図 - 18 に示す。鋼管の曲げモーメント負担分は、各鋼管の全塑性軸力と仮定した曲げモーメント（以下、全塑性モーメント）に近い。試験終了後に試験体端部の鉄筋を取り外し、鋼管の滑りを写真 - 3 に示すように目視で確認した。このことから、終局状態では鉄筋コンクリートと鋼管は別々に挙動すると考えられる。

d）修正累加強度

前述したように終局状態では鋼管とコンクリートとの付着を絶え、鋼管は全塑性モーメントと同程度の曲げ負荷をする。このことから図 - 19 に示すように本構造の終局時の曲げ耐力を、鋼管を除く鉄筋コンクリート部分の終局曲げ耐力と鋼管の全塑性モーメントを累加した値（以下、修正累加強度[11, 12, 13]）

\[M_{s+RC} = M_{RC} + M_s \]

ここに

\[M_{s+RC} \]: 修正累加強度 (kN·m)

\[M_{RC} \]: 有効断面を考慮した RC 断面

\[M_s \]: 鋼管による全塑性モーメント (kN·m)

\[= \sum (n_i \times N_{sy} \times e_i) \]

\[(n_i) \]: 同一断面面積における鋼管本数（本）

\[(N_{sy}) \]: 鋼管の全塑性引張（圧縮）力 (kN／本)

\[(e_i) \]: 断面中心から鋼管までの偏心距離 (m)
表－5 試験体一覧

<table>
<thead>
<tr>
<th>試験体名</th>
<th>扁平率 (B/D)</th>
<th>鋼 管</th>
<th>主 鉄筋</th>
<th>帯 筋</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>公称外径 (mm)</td>
<td>公称厚さ (mm)</td>
<td>鋼管量 ΣA_p/(B·D) (%)</td>
</tr>
<tr>
<td>D10-2</td>
<td>1.0</td>
<td>114.3</td>
<td>2.8</td>
<td>4</td>
</tr>
<tr>
<td>D15-1</td>
<td>1.5</td>
<td>114.3</td>
<td>2.8</td>
<td>6</td>
</tr>
<tr>
<td>D15-2</td>
<td>1.5</td>
<td>114.3</td>
<td>2.8</td>
<td>6</td>
</tr>
<tr>
<td>D15-3</td>
<td>1.5</td>
<td>114.3</td>
<td>2.8</td>
<td>6</td>
</tr>
<tr>
<td>D25-2</td>
<td>2.5</td>
<td>114.3</td>
<td>3.5</td>
<td>8</td>
</tr>
</tbody>
</table>

図－20 断面形状および配筋図

各試験体での修正累加荷重を図－10～14の図中に示してある。鉄筋コンクリート部分の曲げ耐力を持つ鉄筋は、鋼管の負担モーメントを仮定した全塑性モーメントに大体に達しないが、鋼管の配置や鋼管量の違い、また後述する理由により鋼管端部の定着に関係らず、終局耐力は修正累加荷重に近づいていくため、修正累加荷重で本構造の終局耐力を概ね評価できる。

4．柱型模型の曲げ試験

(1) 試験体および加力方法

a) 試験体

模型に用いる鋼管の降伏強度は熱処理により鋼管杭と同様にしたものため、鋼管量は試験結果を合わせるように鋼管の制約によりボイド率は0.16とは型柱と同様となっている。また径厚比は2.4～3.1％と大きく、またせん断スパン比、鉄筋量、曲げ耐力時作用せん断応力度は試験結果をほぼ等しくした。また断面形状の鉄筋を安全側に評価する目的から試設計で得た標準的な長方形断面（B/D=1.5）とした。

図－21 配筋状況（側面図）

実験橋では塑性ヒンジ部にもせん断力が生じる片持ち梁構造となっている。一方、前述した型柱模型では塑性ヒンジが等曲げモーメントスパン中生じる実験橋と異なる。そこで構造性能については橋と同様の柱型模型で確認した方がよいと考えた。また同時に曲げる耐力や復元力特性についても確認することとした。型柱試験体はスパン長さ（m）が0.5で鋼管（B/D）をパラメータとしている。p_{en}=0.1, 0.2, 0.3以上の3種類。B/D=1.0、1.5、2.5の3種類の組み合わせで5体である。試験体の一覧を表－5に示す。

試験体断面形状寸法を図－20に、配筋状況を図－21に示す。各試験体とも全鉄筋比p_fは0.6％であるが全鋼管比p_{en}が1.5～1.7％である。いずれの試験体も鋼管内部は中空であるが、実験橋基部と同様に柱基部より10D上方（D=500mm）でグレートしている。

また、フーチング内の鋼管はアンカープレートに溶接定着し、天端は後述の試験体と同様の理由により定着していない。

b) 加力方法

加力装置を図－22に示す。水平加力は柱主筋および鋼管筋が両とも降伏するときの加力点水平変位
図－22 加力装置

表－6 コンクリートの配合

<table>
<thead>
<tr>
<th>水セメント比</th>
<th>細骨材率</th>
<th>単位重 (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/C (％)</td>
<td>s/a (％)</td>
<td>水セメント</td>
</tr>
<tr>
<td>58.3</td>
<td>48.9</td>
<td>175 300</td>
</tr>
</tbody>
</table>

最大骨材寸法：13mm

表－7 コンクリートの材料試験結果

<table>
<thead>
<tr>
<th>試験体</th>
<th>壓縮強度 (N/mm²)</th>
<th>引張強度 (N/mm²)</th>
<th>弾性係数 (N/mm²)</th>
<th>寸法 (日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D10-2</td>
<td>34.4</td>
<td>3.19</td>
<td>26.5</td>
<td>34</td>
</tr>
<tr>
<td>D15-1</td>
<td>35.0</td>
<td>2.73</td>
<td>26.3</td>
<td>49</td>
</tr>
<tr>
<td>D15-2</td>
<td>35.0</td>
<td>2.73</td>
<td>26.3</td>
<td>49</td>
</tr>
<tr>
<td>D15-3</td>
<td>37.0</td>
<td>3.00</td>
<td>26.0</td>
<td>75</td>
</tr>
<tr>
<td>D25-2</td>
<td>34.4</td>
<td>3.19</td>
<td>26.5</td>
<td>34</td>
</tr>
</tbody>
</table>

表－8 鋼材の材料試験結果

<table>
<thead>
<tr>
<th>鋼材</th>
<th>弾性係数*2 (kN/mm²)</th>
<th>降伏強度*3 (N/mm²)</th>
<th>引張強度 (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼筋 (SD345) D13</td>
<td>197</td>
<td>354</td>
<td>519</td>
</tr>
<tr>
<td>鋼管*1 (SS400) t=2.8</td>
<td>226</td>
<td>281</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>δ 114.3 t=3.5</td>
<td>224</td>
<td>295</td>
</tr>
<tr>
<td>鋼管より軸2.9mm2本より</td>
<td>220</td>
<td>1852</td>
<td>2032</td>
</tr>
</tbody>
</table>

*1）鋼管引張試験は、JIS Z 2202 12号管で軸方向に行った。
*2）鋼筋は公称断面積を、鋼管はメギスで計測した厚さと幅で面積を求めめた。ひずみはひずみゲージにより求める。
*3）鋼管および鋼管より軸の降伏強度は、0.2%ひずみとした。

を降伏変位とし、その整数倍の変位で各3サイクル繰り返した。曲げ耐力が修正累加強度を下回った後、部材角R=+10/100 (R=加点変位8/柱高さH) まで加力して試験を終了した。試験結果から軸圧縮応力が1.5 ～ 2.0N/mm²と低く、軸力が鉛直性に大きく影響しない*7, 8) と判断して軸力は導入していない。

c) 使用材料

実験結果を同様にコンクリートは柱上部より打設したため、鋼管に沿うプリーチングの影響は実橋と同等であると考え、特別なコンクリートを用いずに入り

呼び強度24N/mm²のレディーアミックスコンクリートとした。粗骨材最大寸法は13mm。セメントは普通ボルトランドセメントを用いた。コンクリートの配合を表－6に、材料試験結果を表－7に示す。また用いた各鋼材の材料試験結果を表－8に示す。

（2）試験結果

a) 荷重－変位関係

柱型模型における荷重と変位の関係を図－23～27に示す。より試験体と同様に部材角2/100程度で最大荷重となり、また第2.3サイクルでの耐力を低下も認められる。大荷重以後、耐力は徐々に低下するが、部
表-9 はり型模型、柱型模型の最大荷重およびじん性率一覧表

<table>
<thead>
<tr>
<th>試験体</th>
<th>最大荷重（kN）</th>
<th>降伏変位（mm）</th>
<th>座屈塑性率</th>
<th>終局変位（δu）</th>
<th>耐力観性率（δu/δy）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>実験値</td>
<td>実／計</td>
<td>变位 / δy</td>
<td>4)</td>
<td>実験値</td>
</tr>
<tr>
<td>B-4T14F</td>
<td>327.6</td>
<td>0.97</td>
<td>3.0 (2/100)</td>
<td>16.0</td>
<td>0.75</td>
</tr>
<tr>
<td>B-8T10F</td>
<td>383.5</td>
<td>0.99</td>
<td>2.7 (2/100)</td>
<td>17.5</td>
<td>0.85</td>
</tr>
<tr>
<td>B-4T10F</td>
<td>358.0</td>
<td>1.01</td>
<td>2.8 (2/100)</td>
<td>16.9</td>
<td>0.84</td>
</tr>
<tr>
<td>B-ST10FR</td>
<td>639.4</td>
<td>0.97</td>
<td>2.1 (2/100)</td>
<td>23.1</td>
<td>1.22</td>
</tr>
<tr>
<td>B-ST10NR</td>
<td>581.6</td>
<td>0.88</td>
<td>1.8 (2/100)</td>
<td>26.7</td>
<td>1.41</td>
</tr>
<tr>
<td>D10-2</td>
<td>131.4</td>
<td>0.93</td>
<td>3 (1/100)</td>
<td>14.07</td>
<td>(13.2)</td>
</tr>
<tr>
<td>D15-1</td>
<td>202.0</td>
<td>1.00</td>
<td>3 (1/100)</td>
<td>16.35</td>
<td>(14.9)</td>
</tr>
<tr>
<td>D15-2</td>
<td>199.1</td>
<td>0.99</td>
<td>3 (1/100)</td>
<td>15.92</td>
<td>(15.5)</td>
</tr>
<tr>
<td>D15-3</td>
<td>197.1</td>
<td>0.98</td>
<td>3 (1/100)</td>
<td>16.58</td>
<td>(16.2)</td>
</tr>
<tr>
<td>D2S-2</td>
<td>327.5</td>
<td>0.94</td>
<td>3 (2/100)</td>
<td>17.37</td>
<td>(16.4)</td>
</tr>
</tbody>
</table>

※1）計算値は鋼管を鉄筋とみなしたRCはり理論値。※2）引張鉄筋と鋼管外綫の両者とも降伏した時の変位。
※3）降伏変位の計算値は、循環変位を三角形分布として計算。
※4）主鉄筋の座屈は目視により主鉄筋の変位を確認し、その時の変位を降伏変位で除した値。
※5）修正座屈強度を下回る変位。
※6）耐力観性率は、終局変位を実験値の逆方向の降伏変位の平均値で除した値（はり型模型は正荷重のみ）。

図-26 荷重-変位関係（D15-3）
図-27 荷重-変位関係（D2S-2）

材角R=3～4/100（6°）までの第1サイクル時の耐力は、RCはり理論値と同程度となっている。部材角R=5/100では鋼管外綫の鋼管抜け出し量が急増するが、耐力低下はそれ以前に始まており、特に第2、3サイクル時の荷重は修正累加強度近傍に近い。このことから基部鋼管の付着切れにより曲げ耐力が決定されるため、鋼管端部定着の影響は少ないと考えられる。さらに変形が進んだ状態では曲げ耐力は上昇傾向にあり、急激に低下することなく、修正累加強度に漸近する傾向がいずれの試験体でも認められる。

b）座屈性状
表-9に主筋座屈開始点を示す。いずれもほぼ部材角R=5/100で発生しており、B/Dが大きいほど座屈開始が早いか、これはB/Dが大きくなるほどPC鋼より線による主鉄筋座屈防止効果が、通常矩形断面構脚に比べて低下するためである。写真-4にD2S-2の座屈状況を示す。PC鋼より線の主鉄筋拘束効果が柱角部に集中し、主筋の座屈部も短く主鉄筋の繰り返し疲労に伴う破断が生じてきている。これに対して断面中央部は拘束効果が小さうため座屈部が長く、主鉄筋の破断は生じていない。

c）耐力観性率
表-9には、はり型模型の結果も含めて修正累加強度を荷重が下回ったとしたで定義した耐力観性率（以下、耐
力靭性率) を示している。はり型試験体の曲げ補強増加型（B-8T10FR, B-8T10NR）はいずれも耐力靭性率が約4程度と小さいが、一般型はり型模型と柱型模型では耐力靭性率はいずれも9以上となっている。曲げ耐力時作用せん断応力度は、一般型では約0.91～1.07N/mm²，また柱型試験体では約0.52～0.54N/mm²であるのに対し、曲げ補強増加型では約1.62～1.77N/mm²と高かったためである。

靭性率と等価帯筋比および断面幅と断面高さとの比を図一28，図一29にそれぞれ示す。はり型模型での靭性率は、等曲げモーメントスパン中に塑性ヒンジができることもあり直接比較できないが、参考として図中に示してある。耐力靭性率は、降伏時の平均せん断応力度が大きなB-8T10FRとB-8T10NRを除くと、はり型および柱型いずれの場合でも、等価帯筋量やB/Dの影響は少ない。一方、座屈開始の塑性変形の高さ（以下、座屈靭性率）は、B/Dが大きくなるにつれて小さくなる傾向にある。しかしながら、座屈靭性率が小さい場合でも耐力靭性率は他の試験体と同等の耐力靭性率を保有する。従って本構造は通常のRCと異なり、木が剥落などによるコンクリートの圧縮力負担の低下を鋼管が補うため、主鉄筋が断面しても耐力を持続し、十分な耐力靭性率を保有する構造であるといえる。

d) 曲げ剛性

表一9中の降伏変位は計算値に比べてやや小さい。これははりの場合と異なり、フーチング用断面における主鉄筋の抜け出しによる回転変位成分が試験値では累加されているためである。降伏変位を計算値と比較すると主鉄筋の抜け出しにより、いずれも20～30%程度試験値の方が大きい。主鉄筋抜け出しによる回転変位成分を除いた軸力水平変位の変位の一例を図一30に示す。ここに試験値の回転変位成分は図一31に示した方法により算出した。また図中に示したRCはり理論による計算値は、柱高さ方向の曲率分布を自由端～降伏位置～基部までを直線として求めた軸力変位である。曲げひび割れが全域に拡が
る降伏荷重段階で計算値とはほぼ一致している。このことから、主鉄筋や鋼管が降伏するまでの荷重段階では、本構造の曲げ剛性はRCはり理論ではほぼ評価できる。

e) 柱基部の曲率分布

各変位での鉄筋に貼付したひずみゲージの値から求めた曲率分布の一例を図-32に示す。曲率は0〜1.0D区間（D;断面高さ）で卓越している。鋼管の座屈状況を写真-5に示す。試験体によってはばつきがあるが、鋼管の座屈は基部〜約280mm（0〜0.56Dに相当）の範囲でみられた。これは曲率の卓越部とほぼ一致している。基部鋼管内部はクラッドされているため層状の座屈が外側に起こっている。このことから基部での鋼管内部充填区間は基部1.0Dで十分であると考えられる。

f) 鋼管の挙動

柱型模型D15-3において、2δyでの繰り返し時圧縮側、引張側鋼管の軸力変動を図-33に示す。ここに鋼管軸力は、鋼管の上下縁に貼付した2軸ゲージから求めた鋼管応力を積分値である。ただし鋼管上下縁の応力の算定は軸方向ひずみ（εz）と円周方向ひずみ（εθ）の実測値を用いて、またせん断ひずみ（γyz）を0としてVon Misesの降伏条件に従い算定している。鋼管にせん断応力が働くため、鋼管上下端以外にはせん断ひずみが生じるが、曲げ耐力時作用せん断応力度が約0.5N/mm²と低く、ゲージが貼付されていない位置での鋼管応力を前述した方法で評価しても大きな差はないと考えた。正加力時に引張となる鋼管（以下、引張側鋼管）の軸力は概ね全塑性引張軸力の計算値に達しており、繰り返しの影響を殆ど受けていない。これに対して正加力時に圧縮となる鋼管（以下、圧縮側鋼管）の軸力は1サイクル時には殆ど圧縮軸力負荷はないが、2サイクル以降には圧縮軸力を負荷している。また引張側鋼管でも負加力時にはわずかではあるが、圧縮軸力が2サイクルで徐々に大きくなっている。この鋼管圧縮力負荷の増加によりコンクリートの圧縮力負荷が減少し、コンクリートの曲げモーメント負荷が低下する。そのため、全体としての耐力低下が見出されるものと考えられる。この繰り返し加力に伴う鋼管の曲げ圧縮軸力負荷の増加について、図-34に示すように柱の塑性変形により引張鉄筋が新しい塑性変形を起こすことによってびび割れ幅が増大し、コンクリートが曲げ圧縮軸力を負荷出来なくなり、鋼管に大きな圧縮軸力が流れるものと考えられる。しかしながら、さらに柱が変形を受けるとびび割れは閉じ圧縮側コンクリートが破壊し、鋼管軸力負荷は緩和される。一方、大変形時にと回復力による付着劣化の影響も
図－34 曲げびび割れによる鋼管の軸力変動メカニズム

図－35 曲げモーメント負担の内訳（D15-3）

図－36 鋼管の曲げモーメント負担分（D15-3）

ある。圧縮側コンクリートの圧縮力負担の回復が低下し、鋼管の圧縮塑性を進行させると考えられる。上記に対して検証した結果を図－35に示す。図中の鋼管の負担曲げモーメントは、前述した応力計算による鋼管の軸力に断面中心からの偏心距離を乗じた値と、鋼管自体の曲げ負担分との和である。また、鉄筋による曲げモーメント負担分は、断面ひずみからバイリニアの応力ひずみ履歴特性を考慮して求めた主鉄筋応力に基づき算定した。コンクリートの曲げモーメント負担分は、内力の釣合いから求めたコンクリート圧縮軸力用いて、等価応力ブロックを想定して求めた。ただし、中立軸は鋼管を鉄筋とみなしたRCより理論での釣合いの値を用いている。上記の方法により求めた鋼管、鉄筋、コンクリートによる曲げ負担の割合は、概ね外力と釣り合っている。また鋼管の軸力変動に伴う曲げ負担の増加よりもコンクリートの曲げ負担の低下が大きいため、繰り返しによる耐力低下が生じていたことが確認された。

鋼管の負荷モーメントの一例を図－36に示す。鋼管の負荷モーメントは図－17に示した方法により算定したものである。鋼管上下縁応力の算定は、前述した方法と同様である。鋼管の負荷モーメントは282から全塑性軸力による負荷終局モーメントに達しており、終局までそれを保持していたと考えられる。鋼管の軸力分布の一例を図－37に示す。図中にはRCはり理論より求めた降伏時の中立軸位置が示されている。
等価減衰定数：$h_{eq} = \frac{1}{4\pi} \left(\frac{\Delta W}{W} \right)$

除荷勾配：$K_d = K_y \left(\frac{\delta_y}{\delta_{max}} \right)^{\beta}$ とすると

$K_y = \frac{P_x + P_y}{\delta_x + \delta_y}$

P_x, P_y: ひび割れ荷重（計算値）

δ_x, δ_y: ひび割れ変位（実験値）

変位$=1\delta y$ (2,3cycle)

変位$=2\delta y$ (2,3cycle)

図-37 鋼管の軸力分布（D15-3）

1 δy 時での軸力分布をみると、繰り返しによる応力変動も少なく、RC は理路での降伏時ひずみ分布と対応している。一方曲げひび割れが卓越した δy では、一体としてのひずみ分布からかけ離れた圧縮軸力となり、繰り返しにより徐々に圧縮軸力が増大している。以上のことから、より型の同じ上大変形時の鋼管の軸方向力の挙動は、修正累加値で仮定する鋼管の挙動に近づく。

g）等価減衰定数

図-38 に示す方法で各変位サイクルで算定した等価減衰定数と部材角の関係を図-39 ～41 に示す。図中には、振幅変位を鋼筋と鋼管下線降伏時変位で除した値（塑性率）と、試験で得られた 2,3 サイクルでの骨格曲線に対武田モデルの復元力特性を与え求めた等価減衰定数の計算値も併せて示している。除荷勾配算定用に用いた塑性率は鋼管と鋼筋の両者の降伏変位で定義し、β の値は 0.4 を用いた。塑性率が 4 ～5、部材角で 3,100 度程度まではほぼ計算値と同等であるが、それ以降は計算値よりも大きな値となっている。このことから、塑性率が 5 度程度では復元力特性に武田モデルを用いるでも履歴吸収エネルギーを等価に評価することができる。また塑性率が 5 以上の大変形時には武田モデルでの復元力特性より大きな履歴吸収ができる構造といえる。

等価歪定数が 0.1% では部材角 R=5/10 以上、主鉄筋束位置の損傷が大きくなるため、わずかに等価減衰定数が他の試験体に比べて小さい。このことから相対的補強する PC 鋼より余裕の等価歪定数は少なくとも 0.2% 程度であれば、通常 RC よりも良好な履歴吸収性能を示される。また扁平率 (B/D) が 2.5 の場合も同様に、主鉄筋束に伴うひび割れの割裂により、等価減衰定数の低下が部材角 5/10 以下で認められる。しかしながら、いずれの場合も部材角 5/10 以上は通常 RC（0 ～0.30）と同程度の履歴吸収が期待できる。
5．柱型模型によるせん断試験

（1）試験体および加力方法
a) 試験体

橋脚においてせん断力は地震時に生じることから、繰り返し加力でのせん断破壊試験とし、せん断耐力や鋼管ならびにPC鋼より線のせん断力負荷を確認することとした。せん断試験のパラメータとして、ボイドならびに鋼管の有無の影響と、PC鋼より線の量とした。本構造ではPC鋼より線を主鉄筋外周のみに巻き付ける構造であるため、多量のPC鋼より線を配置することは難しい、そこで等価断筋比0.2%を標準値とし、それより少ない0.07%の2種類とした。0.07%は本試験体でPC鋼より線の巻付け間隔が断面高さの1/2に相当するため、PC鋼より線の最小巻付け量と考慮したためである。

試験体断面の扁平率（B/D）は、橋脚高さが40～60mで1.5が標準となることより、これに合わせた。高橋脚におけるせん断スパン比（a/D）は少なくとも4.6増以上であったが、せん断スパン比を大きくしてせん断破壊させるには曲げ補強量が大きくなり、費着割裂破壊を起こす可能性がある。逆にせん断スパン比が3以下となると、一般的にコンクリートのせん断耐力が増加する13) ため、この影響を最小にする必要もある。高橋脚と同程度のコンクリート強度が得られ、せん断破壊するよう配慮するため、この両者を勘案しせん断スパン比を2.5とした。

試験体一覧14) と試験体断面図および構造配筋図をそれぞれ表－10、図－42、43に示す。鋼管の有無に関わりず、曲げ耐力がほぼ等しくなるよう配慮した。

<table>
<thead>
<tr>
<th>表－10 せん断試験体一覧</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験体名</td>
</tr>
<tr>
<td>S-02N</td>
</tr>
<tr>
<td>S-02V</td>
</tr>
<tr>
<td>S-007T</td>
</tr>
<tr>
<td>S-007T</td>
</tr>
</tbody>
</table>

水セメント比

W/C (%) | W/C (%) | 細骨材率 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>水セメント</td>
</tr>
<tr>
<td>58.1</td>
</tr>
</tbody>
</table>

最大骨材寸法：13mm

<table>
<thead>
<tr>
<th>表－12 コンクリートの材料試験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験体</td>
</tr>
<tr>
<td>压縮試験 (N/mm²)</td>
</tr>
<tr>
<td>引張試験 (N/mm²)</td>
</tr>
<tr>
<td>引張強度 (×10N/mm²)</td>
</tr>
<tr>
<td>材令 (日)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表－13 鋼材の材料試験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>弾性係数 (N/mm²)</td>
</tr>
<tr>
<td>降伏応力 (N/mm²)</td>
</tr>
<tr>
<td>引張強度 (N/mm²)</td>
</tr>
</tbody>
</table>

*1 鋼管引張試験は、HS2202 12号片で横軸方向に行った。*2 110.25mm 2号片で横軸方向に行った。*3 110.25mm 2号片で横軸方向に行った。*4 110.25mm 2号片で横軸方向に行った。*5 110.25mm 2号片で横軸方向に行った。*6 110.25mm 2号片で横軸方向に行った。
各試験体の全鋼管比p_fは3.11～3.40%で鋼管を有する試験体の全鋼管比p_fは曲げ試験と同様（1.57%）である。試験区間の鋼管内部は実状とあわせ中空とし、フーチング内のみ無収縮モルタルで充填している。また鋼管下端は鉄板に溶接着付し、上端では特別な定着をしていない。主筋はせん断破壊を先行させるため、高強度鉄筋D26（SBPD930/1080）を用い、下端は溶接着付、上端はボルト定着を行った。

b）加力方法

加力装置を図－44に示す。加力制御は部材角（R=加力点水平変位／柱高さ）で2/1,000割合でR=3/100まで繰り返し水平加力した。これは事前に行った非線形FEM解析結果からせん断破壊時の変位を求め、十分な繰り返し回数となるよう配慮したためである。また不確定な変位の軸力レベル（σ_f）は試験計算結果から$\sigma_f=1.0$～1.5N/mm²と小さいことと、軸力を導入することによりせん断耐力を過大に評価しないためへの配慮から、軸力は導入していない。

c）使用材料

コンクリートは呼び強度24N/mm²、粗骨材最大寸法は13mmで普通ポルトランドセメントを用いたAEコンクリートを用いた。コンクリートの配合を表－11に、材料試験結果を表－12に示す。使用した鋼材の種類と引張試験結果を表－13に示す。

（2）試験結果

a）荷重－変位関係

荷重－変位曲線を図－45～48に示す。図中には鋼管のせん断力負担を無視したコンクリート標準示方書によるせん断力の計算値を示している。計算
表-14 諸荷重一覧

<table>
<thead>
<tr>
<th>試験体</th>
<th>斜めひび割れ発生荷重（K）</th>
<th>PC鋼より線の降伏</th>
<th>最大荷重（K）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>実験値</td>
<td>計算値</td>
<td>実／計</td>
</tr>
<tr>
<td>S-02N</td>
<td>470 (471)</td>
<td>344</td>
<td>2.26 (2.26)</td>
</tr>
<tr>
<td>S-02V</td>
<td>411 (452)</td>
<td>206</td>
<td>3.31 (3.48)</td>
</tr>
<tr>
<td>S-007T</td>
<td>441 (457)</td>
<td>206</td>
<td>3.56 (3.69)</td>
</tr>
<tr>
<td>S-02T</td>
<td>472 (499)</td>
<td>206</td>
<td>3.81 (4.02)</td>
</tr>
</tbody>
</table>

1) 目視観察により行った。 2) 鋼管部分を除いた有効幅を用いて計算し、曲げ補強筋の影響に鋼管は含めていない。 3) PC鋼より線の材料試験結果から求めた0.2%耐力（ねく度数）で除した値にひずみが達したときと定義。 4) 有効幅を考慮したコンクリートのせん断耐荷力＋帯鋼筋のせん断耐荷力。 5-4) と同値。鋼管は考慮せず。

ではせん断補強筋の強度としてPC鋼より線の材料試験結果に基づく降伏強度を用いている。コンクリート負荷分については全幅有効とした場合と、鋼管幅部分を無視した有効幅による場合の両者を示した。いずれの試験体も斜めひび割れはR=±4/1,000まで発生した。試験体S-02Tでは部材角R=14/1,000で、それ以外はいずれも部材角R=±12/1,000で計算耐力を比べているのに大きな差耐力を発揮した。実断面の試験体S-02Nは最大耐力時にPC鋼より線が破断し、その後で徐々に破断していき耐力も大きく低下する。それ以外の試験体は急激な低下が見られなかった。それは他の試験体では鋼管はパイプ側方の他補強コンクリートが剥落し、PC鋼より線の付着がゆるんだため破断は極めて少ないが、皮層に至らなかったことが一因として考えられる。特に鋼管を有する試験体は、せん断破壊ではあっても最大荷重後も比較的ダクトタイルな性状を示している。各試験体の試験終了後の破壊状況を写真-6に示す。
b) せん断耐力

せん断耐力とp∞の関係を図－49に示す。せん断耐力は各試験体とも正負の内小さい方で定義した。図中にはコンクリート標準示方書によるコンクリートとPC鋼より線のせん断負担分の計算値を参考に示した。なお、コンクリートせん断負担分算定の際、曲げ補強筋の影響に鋼管は含めていない。せん断耐力を正負の内小さい方で定義すると、試験体S-02NとS-02Vの比値からパワーバイドによる影響は殆どないと。また試験体S-007TとS-02Tの比値からp∞による補強効果は認められ、計算値での帯筋筋による強度増分の割合と同様である。試験体S-02TとS-02Vの耐力差が鋼管の影響であり、約200kNのせん断強度増加を示していた。

c) PC鋼より線の一ひずみ分布

試験体S-02Tにおける最大荷重時と側面のコンクリートの剥離開始点（部材角R=16/1000）でのPC鋼より線のひずみ分布を図－50に示す。PC鋼より線は最大荷重時にはほぼ降伏ひずみに達しており、柱高さ1.0D(D=500mm)近辺で卓越している。このことから最大荷重時にはほぼPC鋼より線は全強度を発揮していたといえる。またウェブコンクリートが剥離する段階では、最大荷重時に対称ひずみが大きいが、分布はあまり変わらない。また他の試験体でも同様の傾向を示していた。

d) せん断力負担割合

各試験体におけるPC鋼より線のせん断力負担を図－51に示す。これはPC鋼より線の測定ひずみに材料試験結果の弾性係数と断面積を乗じて45°トルス理論により求めた値を示している。図中の破線は次式に示す式(1)で求めた降伏強度を発揮したときのPC鋼より線のせん断負担分である。PC鋼より線のせん断負担は変形とともに増加し、最大荷重時近傍(部材角：R=12/1,000)でほぼ全降伏強度を発揮していることがわかる。鋼管を有していないS-02NでもPC鋼より線は全強度を発揮している。このことから鋼管の有無または鋼管量にかかわらず、斜め圧縮耐力より少ない帯筋筋ではPC鋼より線は全強度を発揮すると考えられる。また最大荷重以後のPC鋼より線のせん断負担分は低下するが、これは作用せん断力の低下に起因すると考えられる。

図－52には、式(2)に示す各試験体における鋼管のせん断力負担分を示す。鋼管はせん断力強度を発揮するまでに至っていない。なお、式(3)により求めた鋼管のせん断強度(Vc∞)も図中に示している。

PC鋼より線のせん断強度
\[V_{C∞} = 2 \times A_{PC} \cdot f_{p,y} \cdot d / (1.15 \cdot a) \] (1)
鋼管のせん断力負荷分
\[V_{\text{ce}} = n_x \tau_{ce} (A_y/2) \alpha_{cm} + n_x \tau_{ce} (A_y/2) \alpha_{cm} \] ②
鋼管の組せん断強度
\[V_{\text{cw}} = (A_y/3) \sigma_{y} (n_x \eta) \] ③

ここで、\(A_{PC} \) は鋼管の軸方向の断面積、\(\sigma_{y} \) は屈服強度、\(A_y \) は鋼管の断面積、\(n_x \) は圧縮側の材料の各本数である。また試験値としての鋼管のせん断力負荷分\(V_{\text{ce}} \) は図中に示す区間で45°の破壊面を想定し、左側鋼管の負荷せん断力の和として求める。貼付した3軸ひずみゲージによりウェブ位置でのひずみ\((\epsilon_x, \epsilon_y, \gamma_{xy}) \) を求め、2軸の弾塑性力ひずみ構成分別に算出せん断力\(\tau_{ce} \)を求め、圧縮側と引張側を合算して算出した。

試験体S-02Tにおける鋼管の高さ方向のせん断力負荷分布を図-53に示す。図中に示すように45°ひずみ割れ面沿い左右鋼管のせん断力分布を、その平均高さ位置でのせん断力負荷として示している。各鋼管の負荷せん断力は式（2）の方法により算出した。斜めひずみ発生前のせん断力負荷分布は高さ方向に一定であり、30 ～ 40kNの範囲となっている。最大耐力近傍の部材12/1000、14/1000では、鋼管のせん断力負荷は、せん断ひずみ割れの卓越する1/3 ～ 1/2高さ部で大きくなり、鋼管の有無の違いによるせん断耐力差である約200kNと同等の値であった。

6. まとめ

複合構造高橋脚を対象として、曲げ耐力に着目したばかり型モデル、変形性能に着目した柱型モデルでの繰り返し水平加力試験を行った。また本構造でのせん断耐力確認のため、柱型型式でのせん断破壊試験を行った。

今回の試験結果から、以下のことがいえる。

(1) 鋼管の径厚比（R/f）が約3%と試設計より付着の観点から不利益な試験体でも使用せん断応力度で約0.8kN/mm²以下までは曲げ剛性、曲げ耐力を鋼管とコンクリートが一体として挙動すると仮定したRCばかり理論ではほぼ評価できる。その適用範囲は今回の試験で行った範囲、すなわち試設計橋脚の範囲である。また鋼管内部のクラウトはコンクリートと鋼管の付着性状に寄与し、曲げ耐力に影響を与える。最大耐力に比べて鋼管と鉄筋コンクリート部との付着切れにより一体性は低下し、修正係数は漸近していく。
(2) 最大耐力以降の鋼管の負荷モーメントは、修正係数で仮定した値と結果的にほぼ同値となる。
(3) 鋼筋コンクリートブロックと鋼管とのせん断力負荷を累加した値は、ほぼ外力と釣り合い、3つのサイクルでの耐力低下も評価できた。その適用範囲は（1）で述べた範囲である。
(4) PC鋼より種の主軸座標が制限された重い形状が平らに見えると低力するものの、主軸座標や定義した座標変位率は700程度を有する。主軸鋼が座標として鋼管の圧縮力を負荷により急激な耐力低下はなく、修正係数が負荷を下回る点の変位を降伏変位で除した耐力変位は約0.9程度を有する。等価変形が耐力変位に及ぼす影響は殆どない。
(5) 部材角が3/100までの履歴減衰特性は、デクレーティングトリニア型の武川モデルでほぼ評価でき、履歴減衰特性は通常のRC構造と同一である。
(6) せん断補強筋として用いたPC鋼より線は、鋼管の有無に関わらずせん断耐力近傍で全強度を発揮する。またコンクリートのせん断耐力が高い場合でも立瓦状のリングを用いるスケルトンの構築やその際の履歴吸取エネルギーが残留を安全側に評価できるような履歴モデルの検討が今後の課題となる。
(7) せん断耐力が配置しない場合に比べて大きくならないだけでなく、最大耐力以降の耐力低下はかえってある。
(8) 電棟の設計に向け、設計せん断耐力評価法の整備に向けた検討が必要となる。

謝辞：本研究を実施するに当たり、鋼管・コンクリート複合構造橋脚の設計法に関する検討委員会（財団法人高速道路技術センター）委員長 東京大学岡村
A CYCLIC LOADING TEST OF COMPOSITE MEMBER

Yasuo IMAIZUMI, Masayuki WATANABE, Tatsuo OGATA, Koichi TANAKA and Hajime OHUCHI

The composite bridge column aiming high-speed construction time, has significant features that several steel tubes are placed inside the section and high strength strand are set spirally. The cyclic loading test has focused on the moment capacity, composite action and placing effect of steel tubes using beam-type model, and the effect of lateral reinforcing ratio and width/depth ratio of cross section for ductility, and shear strength using column-type model.

The following result were obtained that the maximum moment capacity coincides with the calculated value assuming perfect bond action between steel tube and concrete, and the ductility was better. On the other hand, the behavior of shear failure was ductile due to the existence of steel tube.