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A second-order manifold method has been developed and is described. By means of a singular
boundary element method proposed by the author, the failure process of a structure can be numerically
analyzed. Mohr-Coulomb’s law is employed as a criterion for new crack initiation and maximum
circumferential stress theory is used as a criterion for the propagation of existing cracks. Comparison
of the computed stress intensity factor with results obtained via the collocation method demonstrates
the high predictive accuracy of the present method. Examples of our present method applied to static

and dynamic problems are presented.
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1. INTRODUCTION

Several numerical methods are available for
simulating crack propagation and the failure of
structures with discontinuities. These methods
include the Finite Element Method (FEM), the
Boundary Element Method (BEM), the Discrete
Element Method (DEM) and the Discontinuous
Displacement Analysis (DDA). Although the FEM
and the BEM using fine meshes with special
elements can model crack propagation and the
failure of structures, it is difficult to describe the
discontinuities after cracks begin propagating, and
small deformation restrictions are usually needed.
Also the number of cracks that can be handled is
limited. Therefore the behavior of failed structures
and problems involving many discontinuities
cannot be readily analyzed. The DEM and DDA
can be utilized to model the behavior of
discontinuities or block systems, but the stress
distribution inside the blocks cannot be calculated
properly, hence the propagation of cracks through
the blocks cannot be well modeled.

Proposed by Shi"> ?, -the Manifold Method
(MM) is a new numerical tool for solving problems
involving both continuous and discontinuous media.
By introducing the concept of a cover and two sets
of meshes, the manifold method combines the
advantages of the FEM and DDA. It can deal with

not only discontinuities, contact, large scale
deformation and block movement as does the DDA,
but also the stress distribution within each block as
accurately as does the FEM.

To simulate crack initiation and propagation by
the manifold method, Zhang et al® “ have extended
the original MM by using the Mohr-Coulomb’s law
to determine the fracture criterion. But a
misevaluation may occur on account of the stress
concentration near the crack tip. Because the stress
at the crack tip is always infinite even for a small
load (in the brittle fracture problem), the crack may
continue propagating indefinitely when the meshes
are fine enough if the Mohr-Coulomb’s criterion is
utilized. Chiou et al® have calculated the Stress
Intensity Factor (SIF) using fine meshes near the
crack tip and have also used a maximum
circumferential stress criterion to simulate crack
propagation. But the meshes must be refined
constantly with the propagation of cracks, which
may interrupt the computation because of the
distortion of the elements.

In this paper we propose a method that
combines the second order MM and the singular
BEM to simulate crack initiation and subsequent
propagation. The stress and displacement fields are
calculated via the second order MM; the SIF at the
crack tip is computed using the singular BEM. The
Mohr-Coulomb’s fracture criterion is only used to



(b) Sub-region containing a crack.

Fig. 1 Structure containing cracks and an enlarged sub-
region.

locate the initial crack; for analyzing its subsequent
propagation the stress intensity factor is the
criterion used. Numerical examples are given to
illustrate application of this method.

The numerical procedure for simulating crack
propagation is as follows: Firstly, calculate the
displacement and stresses of a structure {Fig. 1 (a)}
with discontinuities including joints and cracks
using the second order manifold method. Secondly,
specify a sub-region including at least one crack tip
as a specific problem, solve this problem using the
singular BEM. In doing this, the displacement
obtained by manifold method along the boundary of
sub-region is taken as the restraint conditions, and
the traction free condition on the crack surface is
considered {Fig. 1 (b)}. Finally, calculate the SIF at
the crack tip, judge the crack to be propagating or
not, reform the mathematical and physical meshes
as needed and recalculate, and then move to the
next region.

2. STRUCTURE ANALYSIS BY MM

(1) Basic concepts of MM
a) Cover and two sets of meshes

The manifold method uses the concept of cover
and two sets of meshes. Cover is used to define the
local function that will be described in the next
section. Every cover overlays a fixed area, the
size and shape of this area can be chosen arbitrarily
depending on the problem to be solved. The covers

Fig. 2 General covers with one joint.

overlap one another and overlay the entire physical
domain.

The two sets of meshes are the physical meshes
and mathematical meshes. The physical meshcs
describe the physical domain (including boundaries,
joints and the interfaces between blocks) and define
the integration areas. The physical meshes are
definitively determined by the problem being
analyzed. The mathematical meshes, on the other
hand, are enclosed lines more or less arbitrarily
selected for the problem. The areas enclosed by the
mathematical meshes are called the mathematical
covers, on which the space function is built. The
mathematical meshes should be large enough to
cover every point of the physical meshes.

The physical and mathematical meshes intersect
each other and form physical covers. If the physical
meshes divide a mathematical cover into two or
more completely disconnected regions, each of
these regions is called a physical cover.

All of the enclosed areas generated by the
intersection  between physical meshes and
mathematical meshes are defined as elements.
Elements can have any shape. One or more physical
covers may overlay an element. All of an element’s
covers determine its behavior.

Figure 2 gives an example of general covers of
the MM in blocks with one joint?. Two circles and
one rectangle (thin lines) delimit three mathematical
covers V,, V,and V; to form mathematical meshes.
The physical meshes (thick lines) divide V,, into
two physical covers 1, and 1,; V,, into two physical
covers 2, and 2,; and V;, into two physical covers 3,
and 3,. Eleven computational elements are
generated by the intersection of the two sets of
meshes and are denoted in this figure as 1, 1,2,
1,2,3,, 1,2,3,, etc.

The meshes of the FEM can be used to define
covers for the MM. For any node, all elements
having this node form a mathematical cover. For
three node triangular meshes, three covers overlay



Fig. 3 FEM-type covers of the Manifold Method in one
block with two joints.

every element. For six node triangular meshes, six
covers overlay every element. Figure 3 shows an
example of FEM type covers. Seven hexagonal
mathematical covers around seven points, labeled
1-7 in Fig. 3, are apparent and formed by the thin
lines. The physical meshes (formed by thick lines -
one block with two joints a-b and c¢-d) divide the
mathematical cover around point 3, into two
physical covers 3; and 3, and divide the
mathematical cover around point 5, into two
physical covers 5, and 5,. Nine physical covers
(1,2,3,,3,,4, etc) and seven computational elements
(124, 245,, 45,7, etc) are generated.
b) Local function and global function

For each cover, a local function can be defined,
and these local functions can be combined using a
weighting function to form a global function that
defines the displacement and stress in the whole
region. If the local cover function u;(x,y) is defined
for a physical cover U; as:

u(xy) (%y)EU,

then the global function u(xy) for the whole
physical cover system can be expressed as:

u(%, y) = iw,-(x,y)u.-(x,y) @

where w,(x, y) is weight function defined as:

wi(x,y)20 (x,y)EU,
wi(x,y)=.0 (x’yﬁUl'

with ;w,. =1
(xy)8U,

With the cover concept and the definitions of
local and global functions, the MM can model a
wide variety of continuous and discontinuous

structures. The FEM and DDA can be regarded as

" second-order MM is

special cases of it.

¢) Simultaneous equilibrium equations

If the local displacement function for each
physical cover is assumed to be constant, that is, the
local displacement function for cover U, reads:

u,(x,y) = {':} -{D.}

then the simultaneous equilibrium equation takes
the form:

»{a%[M]+a—Z—t[C]+[K]}{AD}=ﬂ‘AZ‘t[M]{D}+[AF] @

~where Afis a time step, [M] is the inertia matrix,

[C] is the viscosity matrix, [K] is the global stiffness
matrix (including element stiffness, penetration of
the contact point and the stiffness of the fixed point),
{AD} is the increment of displacement, {p} is the
velocity vector, {AF} is the load increment
including initial stress, body force, point load,
bonding force and penetration force of contact,
and B are parameters defined as below:
a=p=1, for dynamic problems,
a=0, =1, for static problems.
A detailed discussion of Eq. (2) can be found in
papers reported by Shi'» 2.

(2) Second-order MM

The original first-order MM uses the constant
cover displacement u,(xy) and the linear weight
function w;(x,y) to construct the global displacement
function. Use of a linear global function reduces the
accuracy of the MM in simulating crack
propagation. To increase the predictive accuracy a
introduced here by
constructing a second-order global function.

A second-order displacement function can be
built in either of two ways: (a) the linear weight
function wy(x,y) and the linear cover function u(x,y),
(b) the second-order weight function w;(x,y) and the
constant cover function u(xy). We follow the
latter one here and consider the six node finite
elements forming the mathematical meshes. The
second-order weight function is:

w5 y) = fo+ fax+ fay + fi-zxz + fisky+ fi6y2 3
(i=12-96).

The global function to second-order is Eq. (3)
together with Eq. (1) for the constant local function

u(xy).
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(a) Cantilever with point load.
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(b) Physical meshes (thick lines) and mathematical
meshes (thin lines).

(c) Original MM.

(d) Second order MM.
Fig. 4 Deformation of cantilever by the Manifold Method.

Table 1 Comparison of computed displacements with
analytical solutions.

Displacement | Analytical | First Order | Second Order
(mm) MM (mm) | MM (mm)
A 0 0 0
B 84 23 844
C 264 85 266.8

A computational example is given here to
compare the predictive performance of the original
MM and our second-order MM. Figure 4(a) shows
a 2mx0.5m cantilever loaded by P = 980 kN. The
Young’s modulus and Poisson’s ratio for the
cantilever are 98 MPa and 0.24, respectively.
Computed displacements at points A, B and C are
compared with the analytical solutions in Table 1.
The calculation meshes and the deformations of the
cantilever by the first-order MM and the second-
order MM are shown in Fig. 4{(b)—(d)}. The results
confirm a drastic improvement in predictive
accuracy with the second order MM.
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Fig. 5 Infinite plane with point load at (s, 0).

(3) Unique features of MM

As a generalization of the FEM and DDA, the
manifold method differs from the FEM as follows:
(a) The manifold method utilizes mathematical and
physical meshes; the FEM can be understood as a
special case of the manifold method that combines
both sets of meshes. (b) Unknown variables are
defined at the nodes of the mathematical meshes
(covers). These nodes can be outside of the physical
domain (material region). The grouped integration
area for the mathematical and physical meshes can
have any shape and simplex integration? (analytical
integration) is used with the MM, whereas the FEM
involves numerical integration such as Gauss
integration. (c) The MM employs a “Penalty” (by
adding a hard spring) to deal with the contact of
discontinuities; it facilitates the analysis of
discontinuous problems/the block system. (d) With
the MM, the nodes of the mathematical meshes and
the vertices of physical meshes are adjusted at every
step of the calculation, which simplifies the
handling of large-scale deformations and the
movement of blocks. (¢) In simulating static
problems, setting 8 = 1 in the equilibrium Eq. (2)
allows the MM algorithm to continue computation
after the initial structural failure, while the FEM
computation cannot be continued once the structure
initially fails.

3. SUB-REGION ANALYSIS USING
SINGULAR BEM

The sub-region with a crack {Fig. 1(b)} and the
known boundary displacement u(n),v(n) can be
regarded as a boundary value problem and can be
solved by an indirect boundary element method. In
order to form the integral equations, necessary for
solving the problem, two kinds of fundamental
solutions are required.
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Fig. 6 Infinite plane with crack, and the point load P = F -iF,

(1) Static mechanical fundamental solution for
an infinite continuous region

F, +iF,

2n(1+x)
applied at point z = s on a complex plane (Fig. 5),
the stresses and displacements in the x,-y,
coordinate system which makes an angle o with the
x direction at point z can be obtamed from the
Kelvin solution®:

When a complex point force g is

‘Q[ ] ®

o) — 1
s, +0y =20~ 1
z-5 Z-s

1 1
o0, —it'®,, =0 ——xe'z‘“ ]
-5

2u z-s

where u is the shear modulus, ¥ = 3-4v for the
plane strain and x = (3-v)/(1+v) for the plane stress.

(2) Fundamental solution of a point force on
crack surface

In order to fix the singularity at the crack tip, a
singular fundamental solution should be used. For
an infinite region with a crack of length 2a
subjected to a paired point force P = F,-iF, at z = s,
as shown in Fig. 6, the stresses and displacements
in the x,-y, coordinate system can be obtained by
solving the Cauchy problem™:

o'®, —it'®,, = PC(z,a,s,a)+PD(z,a,s,0)
P )]
(z- s)\/ > -a*
e [AhEas-r@as)]
! ‘ ! Amu +1_>(z_2),/a2 -5°G(z,a,5)

where:

2
Ne . a’-s
o ® +0’®, =2 Re
x

G(z,a,5) =

(z-sW2*-a*
In V2t -a? +iva® -5* s
z-5 it _ 2

fl(z,a,s) =i [
~1n[1+ s
)
Cssa)= _-l—m[G(l,a,s) + e"Zi“W]
D(z,a,s5,a) = __ﬁ G(z,a,5)(1-¢7%%) ]

+e ¥ (2-2)G'(z,a,0)

(3) Boundary integral equations

Returning to the sub-region problem shown in
Fig. 1(b), we assume a distributed fictitious force
Q(s) is applied to the boundary I" and the fictitious
force P(s) acts on the crack surface. The stresses
and displacements at point z in the sub-region can
be defined by integrating Egs. (4) and (5):

w0y in0)= [t 010 viv Ol s

[Pl v P R0 2 s
0,0+, =[lo, *ls)acl+a, lozdls ()

+“{o,,“’[P<s>,z,oa+a ®lRs)adljs
0, 6a)-it,, 50) [b*)ms)zd—tr Ol ois

o]l Pl Pl zlps

-a

Suppose the displacement on boundary T
calculated by the MM is #(n) +iV(n), where
u(n) and V(n) denote the normal and tangential
displacements at point 7 on I'. Let point z in the
first formula of Eq. (6) approach the point 7 on the
boundary T, i.e, u(n)+iv(n) = (u(z)+iv(2)), .
an integral equation that satisfies the known

displacement condition on I can be obtained:

[l0kown s, loms, s
T ) : (7a)
+ f {t;(z) [P(s),n, B, ] +iv @ [P(s),n, B, ]}ds =u(n) + v ().

Another integral equation, which satisfies the
traction free condition on the crack surface, can be
obtained by letting point z in the third formula of
Eq. (6) approach the point & on the crack surface in



a similar way:

P&+ b, P08 8,1, P8 8, Jis-+
“ (70)

}{ayl“” [Pes)&. 8, ]-ir., @ lP@), By Jis <040

where B, =a, -a,.

Solving Eq. (7) by the boundary element
method yields solutions for Q(s) and P(s). The
stress intensity factors K; and Kj; at the crack tip can
then be calculated from Eq. (8) ¥:

, a+s
K, -iK,=-

1 f P(s) ds . (8)
Jna J,

In calculating the SIF using a traditional
numerical method like the FEM, fine meshes near
the crack tip arc usually necessary in order to
capture the stress concentration there. But actually
the singular area is restrained to a small region near
the crack tip, and its influences on the stress and
displacement in the far area are not significant. In
the present method, the stress and displacement are
firstly calculated by the second-order manifold
method and their precision far from the crack tip
can be ensured. Then the SIF is computed by the
singular BEM based on the stress and displacement
obtained. Therefore higher accuracy in the
calculation of the SIF can be ensured even when
relatively coarse meshes are used near the crack tip.

a-s

4. CRACK MODELING

Fracture criteria using the SIF can only be used
for existing cracks. For the initiation of new

cracks, a stress-based criterion should be considered.

In this paper, Mohr-Coulomb’s law with three
parameters is taken as the failure criterion for new
cracks. It is assumed that new cracks start appearing
if: (a) the first principle stress is larger than the
tensile strength of the material, or (b) the maximum
shear stress is larger than the shear strength of the
material. Take o; and o; to indicate the first and
third principal stresses, the failure criterion can then
be expressed as:

Tensile failure:
g =L
Shear(i;g i:;lure: o)
—l.c if(:q—.";")>0amiO<ol <T;,
2 2
(a‘_;og) =Cm¢_(‘%"llsin'¢
(a+a)

ifT<0 and 0<qg <T,,

where T}, is the tension strength of the material, C is
the cohesion and ¢ is the friction angle.

The maximum circumferential stress theory” is
taken as the criterion for simulating the propagation

-of existing cracks. This theory supposes that the

cracks propagate along the direction of maximum
circumferential stress near the crack tip if this stress
is larger than the critical value. Based on well-
known principles of fracture mechanics, the
circumferential stress oy near the crack tip can be
expressed by stress intensity factors in the form'®;

1 g 20 3. .
0, =———cos—(K ~_ZK sing) - 10
A J_cos (K, cos 1 5ind) (10

The crack propagation direction 6, is obtained by

performing 609/3910,;00 =0:
K, sin8, + K, (3cos 6§, -1)=0. (11)

The maximum circumferential stress op is then
obtained from Eq. (10).

The critical circumferential stress (o). is a
material-dependent property and can be determined
as a special case. For a first mode fracture problem,
Ky = 0and g, =0, then (0y). can be expressed ‘as:

K | (12)

(94)c = N
Substituting Eq. (12) into Eq. (10) yields the
fracture criterion for the mixed mode fracture
problem as:

0030—20(1(; cos’ % ‘%Kn sinfy) =Ky . (13)

We now have two fracture criteria, Eq. (9) for
the onset of new cracks and Eq. (13) for the
propagation of exiting cracks. For dynamic
problems, however, Eq. (9) is also used for judging
the propagation of existing cracks as a compromise
method in the present study. Since multi-crack
propagation and branching are always accompanied
by dynamic fractures, the single crack-based
criterion {Eq. (13)} may not be directly applied.

The present research assumes no energy loss in
the fracture process, that is, the total energy of the
cover before fracture has to equal the energy of the
two covers after the fracture. In order to ensure
energy conservation during fracture, new-formed
covers are forced to have the same velocity, stresses
and coordinate as the original ones. Consider a
cover i, which is fractured into covers i, and i, at a
certain time, the total energy of this cover before
and after fracture can be expressed as: .
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Fig. 7 Meshes used in the analysis of rectangular plate.
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where m is the mass of cover i, m;=m;;+my,, Vis the
volume cover, V,=V,;+V,,. D,- is the velocity of the
original cover, D, andD, are the velocities of new
covers i; and i,.

Because D, = D,=D, and 0, =0,,=0,, the
energy conservation can be ensured.

5. APPLICATION EXAMPLES

Applications of the method developed here are
presented in this section for calculating the SIF of
cracks in a rectangular plate and for simulating both
static {examples (2)~(4)} and dynamic problem
{example (5)} of structural failure. Theoretically,
cracks may initiate and propagate in any direction
in spite of the arrangement of the meshes; however,
for all applied examples presented here the cracks
are assumed to initiate and propagate along the edge
of the mathematical meshes for considerably
simplifying the programming.

(1) SIF of edge crack and central crack in

rectangular plate

In the first example, we compute the SIF of the
edge and central cracks in a rectangular plate to
examine the accuracy of the method. The results are
compared with the collocation method'”. Figure 7
shows the meshes used in the calculation. The
results are given in Fig. 8. It can be seen that the
SIF calculated by the present method agrees quite
well with that obtained via the collocation method.
For the central crack with a/w = 0.25 the error is
less than 5.5% although only two elements are set
on the crack. Further calculation shows that the
error reduces to less than 0.5% if four elements are
used for the crack.
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(b) SIF of a central crack.

Fig. 8 Stress Intensity Factor (SIF) of cracks in
rectangular plate.

Table 2 Material properties and calculation conditions.

Elastic Modulus 19600 MPa
Poisson’s _ Ratio 0.24

Fracture Toughness 490 Njcm*?

Unit Mass 23.52kN/m®
Tension Strength Ty 0.98 MPa
Cohesion  C 2.94 MPa

Friction Angle ¢ 30 degree
Calculation Mode Static

Penalty 4900000000 kN/m

(2) Failure of block with point-loaded edge

crack

This example simulates crack propagation in a
2mx2m block with a 1m long crack. A load of H =
980 kN acts horizontally. Figure 9(a) shows a
diagram of the block and load. The material
properties and calculation conditions are listed in
Table 2.
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(a) shape and load.

(b) beginning of propagation.

400TAn2
—

(c) new crack initiation.

(d) crack penetration.

Fig. 9 Stress distribution and crack propagation in block.

Figure 9 depicts the principal stress field and
the crack propagation process in the block. In the
calculation, the load H is divided into 10 sequential
steps. With each step, an additional 98 kN load is
added. For the first and second (loading) steps, the
stresses in the block and the SIF at the crack tip are
not large enough to initiate new cracks or propagate
existing cracks. At the third step, the SIF at the
crack tip reaches the fracture criterion {Eq. (13)}.
The crack starts propagating {Fig. 9(b)} in a
direction that is about 70 degrees with the
horizontal. The crack continues propagating and
changes its propagation direction and finally
penetrates the whole block {Fig. 9[(c) and (d)]}.

(3) Failure of three point bending beam

A beam with a vertical load P = 490 kN at the
central point of its upper surface is shown in Fig. 10.
The Young’s modulus and Poisson’s ratio of the
beam are 19600 MPa and 0.2 respectively. The unit
weight of material is 19.6 kN/m®. Other parameters
and computational conditions are the same as that
used in the previous example. The static mode is
also used in this example. The load P is subdivided
into ten loading steps. The principal stress
distribution, the crack propagation and the
displacement of the beam at loading step 3 are
shown in Fig. 11. 4

P=49kN, Loadstep=10

»

2.0m

Y.

Fig. 10 Three-point bending beam.
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(d) Beam deformation.

Fig. 11 Principal stress distribution and crack propagation in
three point bending beam.

Figure 11 shows that the stress is concentrated
near the two restraint points and the loading point.
The maximum tensional stress occurs at the middle
of the lower beam surface. At the third (loading)
step, the maximum tensional stress reaches the
failure criterion and a new crack starts forming in
the middle of the beam’s lower surface {Fig. 11(b)}.
The crack propagates until the beam ruptures {Fig.
11(c)}. The direction of crack propagation is nearly
along the vertical. Computations show that under
the given conditions, the bearing capacity of the
beam is less than 294 kN. Continued additions to
the load result in movement of the broken blocks as
shown in Fig. {11(d)}.
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Fig. 12 Structural failure and block movement.

(4) Failure of structure and the movement of

blocks

Figure 12 shows another computational
example of the failure of a structure and the
movement of blocks. The structure is loaded by a
horizontal point load P = 196 kN. The load P is
subdivided into four loading steps for the
calculation. At the third loading step, the crack
begins to form at the left corner {Fig. 12(b)}. The
crack propagates into the structure until the
structure is broken into two blocks [Fig. 12{(c)-
(d)}]. The upper block starts to move with a
continued application of the load [Fig. 12{(e)-(D}].

(5) Arch failure by a hitting load

As an example of the modified MM applied to a
dynamic problem, the failure of an arch hit by a
flying object has been simulated.

Table 3 Material properties and calculation conditions.

| Abutment Arch
Elastic Modulus 1960 MPa 1960 MPa
Poisson’s _Ratio 0.24 0.24
Unit Mass 23.52kN/m* 23.52kN/m®
Tension Strength T, | 9800 MPa 0.01 MPa
Cohesion  C 29400 MPa 0.03 MPa
Friction Angle @ | 30 degree 10 degree
Calculation Mode | dynamic dynamic
Penalty 98000000 kN/m | 98000000 kN/m
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Fig. 13 Arch failure process.

Figure 13(a) shows the analysis domain with a
thick line indicating the boundary and physical
joints and a thin line the mathematical meshes in
the simulation. The bottom of the structure is fixed.
The material of the arch and abutments is the same,
but the strength of the abutments has an extremely
high value so that the cracks can only form and
propagate within the arch. The material properties
and numerical parameters are listed in Table 3. The



velocity of the flying block is v, = 0, v,= -140 m/s.

Figure 13 {(b)-(d)} illustrates the time
evolution of the failure process for the arch. The
object hits the arch (at time t = 0), cracks initiate
near the percussion point and rapidly propagate
along two sides. By t = 0.0095 sccond, almost all
the elements have failed, and in a very short time
the arch collapses into many blocks, with some of
them reaching the bottom at t = 0.044 second.

6. CONCLUSION

A second-order manifold method has been
described for calculating the distribution of stress
and displacement in structures with discontinuities.
The process of crack initiation and propagation has
been numerically analyzed via both the MM and the
singular BEM. The present manifold method is less
mesh-dependant than the FEM, and the SIF at the
tip of the crack can be predicted very well. Various
examples have demonstrated the versatility of this
MM for simulating processes involving crack
formation and propagation in different structures
with discontinuities and the subsequent movement
of the component blocks after the structure fails.

Further improvements in the present code will
be needed for dealing with crack propagation along
any direction. Future studies are also required for
simulating fracture problems with pressure stresses
at the crack surface and for developing criteria to
analyze the second mode fracture problem.
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