直接基礎を緩い砂礫地盤へ適用する場合の検討方法

古山章一 \(^1\)・瀧内義男 \(^2\)

\(^1\)正会員 東日本旅客鉄道㈱ 建設工事部 構造技術センター（〒151-8578 東京都渋谷区代々木2丁目2番2号）
\(^2\)正会員 東日本旅客鉄道㈱ 東北工事事務所（〒980-8580 仙台市青葉区五橋1丁目1番1号）

緩い砂礫地盤に直接基礎を採用する場合には、地盤による地盤強度の低下と基礎の沈下が問題となる。今回、秋田新幹線工事において、支持力性状の把握を目的として大型平板載荷試験を実施し、上記の問題を解決し比較的緩い砂礫地盤に直接基礎を採用した。本報告では、まず平板載荷試験によって明らかとなった支持力性状を検討し、つきに建設時に測定した沈下量との比較から、直接基礎とする場合の載荷試験の評価法と沈下量の算定法について提案する。

Key Words: spread foundation, plate bearing test, bearing capacity, settlement, gravel bed

1. はじめに

基礎において経済設計を目指す場合は、設計手法や許容値の設定等も考えられるが、基礎形式の選定において、直接基礎の適用法について適切な判断を行い、可能であれば杭基礎を直接基礎にすることの方が、著しく経済的となることが多い。

鉄道構造物において直接基礎は、N値で評価すれば砂質土地盤で30以上、粘性土で20以上の「良好な支持層」がある場合に採用されるのが一般的である。この理由としては、良好な支持層を支持しないと、変位量が大きいこと、地震時に支持力が減少しやすいこと、地盤変位の影響を受けやすいなどの問題が生じやすいからである。

しかし、これらは原則的なことであって、十分な地盤調査とそれに応じた構造計画を行えば、良好でない支持層であっても直接基礎とすることが十分可能であり、これによって経済的な構造物とすることができる。

今回、秋田新幹線計画に伴う盛岡アプローチ橋の高架橋建設において、工期、用地、経済性等の制約条件からN値20前後の比較的緩い砂礫地盤に直接基礎を採用したことが計画された。

筆者らは、この直接基礎形式の高架橋建設にあたって、緩い砂礫地盤の支持力性状を把握するために、直径30cmの円形載荷板から、一边の長さが1.5mの正方形の大型載荷板まで、4種類の載荷板を用いて平板載荷試験を実施した。

また、高架橋構造物時には構造順序に従い、基礎の掘削終了時点から構造設え完了時まで、高架橋基礎の下沈を継続的に測定してきた。

本論文では、高架橋建設に先立ち実施した大型載荷試験と、実際の構造物設計に反映させるため、緩い砂礫地盤の支持力、沈下特性等の支持力性状を検討したのでその結果を報告する。あわせて高架橋建設時の沈下測定結果について考察し、これから直接基礎とする場合の載荷試験の評価法と沈下量の算定法を提案する。

2. 直接基礎とする場合の検討

(1) 盛岡アプローチ橋高架橋

盛岡アプローチ橋は図-1に示すとおり、現在の盛岡駅の北側において東北新幹線より分岐し、東北本線等の在来線群の上空を横断し、田沢湖へ乗り付ける部分である。このアプローチ橋は大別すると、東北本線から分岐する部分の高架橋部、東北本線等を乗り越える部分の線路橋部、現在の田沢湖線に接続する部分の高架橋部の3つからなる。

このうち高架橋部は、人家の密集地域において田沢湖線の線路敷地に秋田新幹線を構築しなければならない部分である。施工法としては、列車を運行しながら線路の両側に基礎と柱を構築し、それらを結んで上に桁をかける直上高架方式も考えられたが、工事費が高く、工事用道路の確保も困難で、工期も長くなることから、田沢湖線を1年間運転休止し、その間に高架橋を構築する鉄道施工方式を採用することにした。ただし、この1年間のうち3ヶ月は転送工事や電気工事に、また、3ヶ月は各種試験や試験運転に要するので、高架橋等土木構造物の施工期間は運転休
図-1 盛岡アプローチ部概念図

図-2 当該区間の平面図と地質断面図
止後の6ヶ月に限られた。そこで、急速施工法の工夫と、今回、問題となった直接基盤の支持地盤条件が良好でないことへの対策が必要となった。

（2）地形・地質
盛岡市は西側の奥羽御梁山脈と東側の北上山地にさかれた位置にあり、盆地地形を形成している。盛岡市街地には、西側より高石川、習志野川、北側より北上川、東側より馬瀬川が流れ、盛岡市の南約1km付近でこれららの河川が合流している。そのため地形的には、これらの河川によって形成された冲積地となっている。

図2に当該区域の平面図と地質断層図を示す。当該地
区の地盤は第四紀更新世の冲積堆積物、段丘堆積物、火山
岩層（火成、礫、砂、粘土等）によって構成されている。
地質断層図から層相の変化が激しいことがわかるが、これ
は当該地域が太平洋系等大河川の氾濫により形成された、
微地形的に変化の激しい箇所となっているからである。

次に地質断層を示す。地表から3～10mまでN値20、前
後の沖積砂礫面（As）、その下にN値15～20の礫泥じり砂礫
粘土（As1）が2～3mの厚層で堆積し、さらにその下にN値
30前後の礫泥じり粘土質砂（As2）が4～8mの厚層で存在し、
N値50以上の沖積砂礫面（Dg）が基盤層となっている。

今回、直接基盤の支持地盤と考えたのは、地表面下2.5m
（標高12.5m）付近のN値20前後の細粒礫層である。こ
の細粒礫層に直接基盤の採用を計画したのは、図1に
示す高架橋部、高架橋方式、直接基盤748mのうち、大曲
方476mの「細粒地盤」である。

（3）設計標準による検討
鉄道の基礎構造物用途の設計標準である「建造物設計
標準解説（基礎構造物）」1）では、直接基盤所要の支持力が得られる地盤に支持させるものと規定している。この所要の支持力が得られる「良質な支
持層」の目安として、砂礫層の場合はN値30以上を推奨し
ている。強度の小さい土層を支持層とする直接基盤の設計
においては、地盤による地盤強度の低下および基盤の沈下
などについて十分な検討を行うことを義務づけている。今
回、支持地盤と考えた礫層の地盤強度が、基盤標準の推
奨値を満たさないことから、本高架橋の建設に当たり、地
盤による地盤強度の低下に関して、液状化の検討を行う
こととした。検討の結果、液状化抵抗率Fpは1.5以上あり、
液状化起こし可能性が低いことが分かった。また、資料
文献調査3）でも、過去の地震の際に液状化を起こしたこと
がないことが分かった。加えて液状化抵抗率Fpが1.5以上
あることから、耐震設計上、士質指数数（地盤反力係数、土の内部摩擦角）を低減させないと用いて良いこととなる。

基盤の沈下に関しては、支持力損失の把握を目的として、
大型載荷試験を含む平板載荷試験を行い、鉄直支持力の確認
と沈下量の検討を行うことにした。

（4）設計・施工実施調査
緩い砂礫地盤に直接基盤形式の高架橋を建設した近年の事例としては、金網線網走高架橋3）や日豊本線宮崎高架橋
がある。

そこで、今回高架橋の計画・設計・施工の参考とする
ため、網走高架橋については資料調査を、宮崎高架橋につ
いては資料調査と現地調査を実施した。その結果の概要を
表1に示すが、いずれの高架橋も供用に供されるような
変状は、特に認められていないことが分かった。

3. 平板載荷試験

（1）試験位置
試験位置は当該高架橋区間を代表することを、載荷試験に
必要な地表面積を確保できること、営業している田沢湖線
に影響しないことを考慮し図2に示す箇所を選定した。

試験を実施するにあたり、試験位置において地盤確認の
ためのポーリング等を実施した。その地質柱状図を図3
に示すが、当初、直接基盤の支持層と想定していた沖積砂
礫層のN値は21~38とばらつきははあるものの、平均で32
と大きいため、その厚層が3.5mと厚いこと、また、この砂
礫層の下に平均N値17の礫泥じり砂礫粘土の厚層2.5mで
存在していることが判明した。

載荷面の深さ、想定上のラーメン高架橋のフーチング
下面に合わせて、地表面下2.5mの砂礫層上とし、そこま
で均配をつけて掘削し、水平なテストビットを造成した。

（2）載荷板の大きさ
載荷板の大きさは、試験結果に及ぼす粘着力の影響を極
大除去するために、実際の高架橋基盤からの荷重が伝達さ
れるであろう地盤の支持力特性を把握するため、最も大き
なものは、底面の大きさ 1.5m の正方形とした。以下1m
の正方形、50cmの正方形、直径30cmの円形の4種類とし
た。図4にテストビット内に各載荷板を配置示す。

（3）試験方法
試験は土質工学会基準「地盤の平板載荷試験方法・同解
説」4）に準拠し、多サイクルで実施した。試験内容を表
1に示す。試験で直径60cmの載荷板を用いたもののうち、
1つは土被りを考慮したものとした。

計画最大荷重は、以下に示すような方法で極限鉄直支持
力を算出し、これに余裕をもたせたものとし、載荷装置等
は、この荷重に十分耐えられるものとした。

①N値20の礫砂地盤であるが、湿潤状態にあることから、粘着力（c）1.0t/m²を考慮する
②内部摩擦角（φ）は基礎標準11）の算定式に従ってN値か
表1 紙に粘着剤を塗装・貼付の基準設定条件

<table>
<thead>
<tr>
<th>項目</th>
<th>塗装条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 地盤条件</td>
<td>支持圧力はN値10〜20程度の耐圧圧力に当たる5〜15m</td>
</tr>
<tr>
<td></td>
<td>地下水はGL〜4.5m</td>
</tr>
</tbody>
</table>
| 2. 基本設計の構造 | 延長600m、単線、R 8m半径
| | 車両・試験された高架（8m〜5m間隔） |
| | 基礎は地中下部分の適切な高さ |
| | 鉄道路路（2.5m、鉄道路路：6m） |
| 3. 設計の考え方 | 支持地盤をN値10の持地土として基礎の安定基準を基に基礎設計の検討を実施
| | 旧基礎基準および地盤計画図表に基づき状況を基にした安全性を確認 |
| 4. 設計時の検討 | 設計、標準試験試験、試験結果検討等
| | 大切な見解の検討を含めた建築設計計画検討 |
| | 60.5mmの平板試験検討を実施 |
| 5. 施工時の検討 | 施工設計、施工検討、設計検討、設計検討、検査検討 |
| | トンネルの破壊を試験、検討、検査、検査、検査 |
| 6. 施工時の留意点 | チャートを用い、施工水準を低くし、設計を基に
| | 基礎設計の検討を基に
| | 地下水位の長期的な計画 |
| 7. 検討結果 | 基礎検討、設計検討、設計検討、検討、検討、検討、検討、検討 |
| | 地下水がN値20〜30程度の耐圧圧力に当たる5〜15m |
| | 地下水がGL〜4.5m |

図3 地質柱状図（1Km377m）

図4 各構築物配置

地表面下2.5m前後であり、耐圧試験に当たる基準を基に試験荷重を加え数8度に加えて、基準設計により若干下方を試験し、基準設計により若干下方を試験し、基準設計により若干下方を試験した。
表-2 試験内容

<table>
<thead>
<tr>
<th>載荷板形状</th>
<th>30cm</th>
<th>50cm</th>
<th>1.0m</th>
<th>1.5m</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験番号</td>
<td>①</td>
<td>②</td>
<td>③</td>
<td>④</td>
</tr>
<tr>
<td>土被り</td>
<td>有</td>
<td>無</td>
<td>無</td>
<td>無</td>
</tr>
<tr>
<td>計画最大荷重</td>
<td>10tf</td>
<td>42tf</td>
<td>100tf</td>
<td>200tf</td>
</tr>
<tr>
<td>載荷板変位測定点数</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>地表面変位測定点数</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

表-3 最大荷重と計算値

<table>
<thead>
<tr>
<th>載荷板形状</th>
<th>30cm</th>
<th>50cm</th>
<th>1.0m</th>
<th>1.5m</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験番号</td>
<td>①</td>
<td>②</td>
<td>③</td>
<td>④</td>
</tr>
<tr>
<td>土被り</td>
<td>有**</td>
<td>無</td>
<td>無</td>
<td>無</td>
</tr>
<tr>
<td>載荷試験値</td>
<td>10.0**</td>
<td>8.0</td>
<td>9.0</td>
<td>42.0**</td>
</tr>
<tr>
<td></td>
<td>(141)</td>
<td>(113)</td>
<td>(127)</td>
<td>(168)</td>
</tr>
<tr>
<td>計算値</td>
<td>5.94</td>
<td>4.48</td>
<td>16.5</td>
<td>73.2</td>
</tr>
<tr>
<td>基礎標準化</td>
<td>(83.6)</td>
<td>(63.1)</td>
<td>(66.0)</td>
<td>(73.2)</td>
</tr>
</tbody>
</table>

注**: 土被り0.3mの場合。

荷重強度と沈下量

荷重強度P(tf/m²)

凡例

図-5 各載荷試験のlogP-logS曲線
(1) 極限鉛直支持力
a) 試験値と支持力算定式による計算値の比較
表4に試験時の最大荷重と支持力算定式による計算値を示す。試験結果のうち載荷試験のlogP-logS曲線を図4-1に示す。

試験計画では基礎標準から求まる極限鉛直支持力に対し、計画面は荷重を十分大きくして、極限状態に至るようにしたものであるが、結果は極限鉛直支持力が予想以上に大きくなり、試験番号3、4、5以外は極限には至らなかった。

計算値と載荷試験結果を一致させるためには、粘着力cと内部摩擦角φを修正する必要がある。計算値については、基礎標準16)に記載されている粘着力cと内部摩擦角φの両方を評価する。一般地盤の場合における極限鉛直支持力算定式(式4)を用いて計算することにした。

\[Q_t = A_t \alpha_n N_c + \beta_4 B_t \alpha_n P \]

ここでQT: 載荷板の極限鉛直支持力(m)
At: 載荷板の面積(m²)
αn: 載荷板の形状係数
C: 粘着力(m/3)
Nc: Nc: 支持力係数
Bt: 載荷板の幅または直径(m)
T: 載荷板底面の土の強度基準体積重量(ton/m³)

粘着力cと内部摩擦角φの修正の上にあたっては、明確な極限に至った試験番号2,3,4と、これに載荷板寸法が同じであるが土被りを有していることにより、極限には至らなかった試験番号1と比較、同一条件であるが極限に至った試験番号2,3,4,5の比較により推定してみることにした。

ここで、極限鉛直支持力の大きさに影響を及ぼす粘着力cについては、平板載荷試験終了後に地盤を掘削し、その自立高さ等から概略の値を求めた。具体的には、約30°の勾配で地表から2.5cm掘削し、さらにそこから0.5cmの深さを水中掘削したが、掘削面は崩壊した。この掘削による自立高さと勾配の値から粘着力cを逆算するとき、1.5tf/m²以上があることが推定できる。

粘着力cと内部摩擦角φを修正して極限鉛直支持力を計算し直したものを表4-2に示す。試験番号1,2,3,5から粘着力c=1.5tf/m²、内部摩擦角φ=35°として仮定し、試験番号4,6から粘着力c=2.0tf/m²、内部摩擦角φ=39°と仮定すると、計算値と試験結果に大いに一致することわかった。試験番号5,6で粘着力cを0.5tf/m²大きくした方がよく一致するのは、載荷板を設置した砂礫層より下方の粘性土層の影響を含めているためと考えられる。

平板載荷試験により支持力状態を把握できる深さは、一般に載荷板直径の1.5~2.0倍程度までといわれている。この支持力状態を把握する深さと載荷板寸法の関係を今回の試験から求めてみた。試験番号3,5の正方形の載荷板を

<table>
<thead>
<tr>
<th>載荷板寸法</th>
<th>30cm</th>
<th>50cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験番号</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>土被り</td>
<td>30cm</td>
<td>50cm</td>
</tr>
<tr>
<td>砂礫試験値</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>(c, φの修正後)</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>修正粘着力c (tf/m²)</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>正方内部摩擦角(°)</td>
<td>39</td>
<td>39</td>
</tr>
</tbody>
</table>

注: 1. *土被り0.3mの場合
2. **: 明確な極限に至らなかったもの（S-logS曲線で判別）
表-5 試験結果

<table>
<thead>
<tr>
<th>試験方法</th>
<th>φ30cm</th>
<th>□50cm</th>
<th>□1m</th>
<th>□1.5m</th>
</tr>
</thead>
<tbody>
<tr>
<td>土被り</td>
<td>5*</td>
<td>無</td>
<td>無</td>
<td>無</td>
</tr>
<tr>
<td>養女荷重によるkυ</td>
<td>8.1</td>
<td>8.7</td>
<td>8.9</td>
<td>7.0</td>
</tr>
<tr>
<td>偏荷荷重による</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第1</td>
<td>129</td>
<td>217</td>
<td>221</td>
<td>9.8</td>
</tr>
<tr>
<td>第2</td>
<td>140</td>
<td>184</td>
<td>181</td>
<td>9.9</td>
</tr>
<tr>
<td>第3</td>
<td>136</td>
<td>196</td>
<td>9.0</td>
<td>19.0</td>
</tr>
<tr>
<td>平均</td>
<td>13.5</td>
<td>196</td>
<td>19.0</td>
<td>9.2</td>
</tr>
</tbody>
</table>

注) *: 土被りを30cmとした場合

表-6 試験結果と計算値

<table>
<thead>
<tr>
<th>載荷板</th>
<th>平板載荷試験結果</th>
<th>基礎性状別計算値</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ30cm*</td>
<td>8.5</td>
<td>19.3</td>
</tr>
<tr>
<td>B=26.6</td>
<td>(1.00)</td>
<td>(1.00)</td>
</tr>
<tr>
<td>□50cm**</td>
<td>6.8</td>
<td>9.1</td>
</tr>
<tr>
<td>B=50.0</td>
<td>(0.77)</td>
<td>(0.97)</td>
</tr>
<tr>
<td>□1m**</td>
<td>4.35</td>
<td>6.2</td>
</tr>
<tr>
<td>B=100.0</td>
<td>(0.49)</td>
<td>(0.32)</td>
</tr>
<tr>
<td>□1.5m</td>
<td>2.4</td>
<td>3.2</td>
</tr>
<tr>
<td>B=150.0</td>
<td>(0.27)</td>
<td>(0.17)</td>
</tr>
</tbody>
</table>

注) *: 土被り無しの2試験の平均値, **: 2試験の平均値

()内の数値はφ30cmを1.00とした場合の比率

計算式

(地質土) \[kv = 0.2 \alpha E_a B_a^{-0.42} \]

(地質土・粘性土の互層) \[k = 0.5 \alpha E_a B_a^{-0.34} \]

(粘性土) \[k = 1.2 \alpha E_a B_a^{-1} \]

ここに \(\alpha = 1 \), \(B_a = A / \) (cm), \(E_a = 200 / \) (kgs/cm²)

凡例

△ 0.30φ
■ 0.50角
△ 1.00角
× 1.50角

図-6 荷重強度と沈下量 (S/B) 注) 試験番号①を除く
30cm の円形載荷板の値を 1.0 とした。各載荷板の値の低下比率を指標とした。これをみると、絶対値は必ずしもあっ
っているとはいえず、低い低下比率をみると処女載荷時につ
いては、載荷板寸法の小さいものは基礎標準の砂鉱土の式
で算出した値に近く、載荷板寸法が大きくなると互いの式
により算出した値に近くなる。一方、総返し載荷時にお
よび荷重強度 20tf/m² のものについては、粘性土の式により
算出した値に近かった。これは、載荷面積の大きさの、総返し載荷時、載荷板径下である砂疊層より
下部の粘性土層の影響を受けるためと考えられる。載荷板
を設置した砂疊層の2m 下に存在する、N 値 17 の粘性土で
計算した値が、試験から算出される値に非常に近いことか
らもいえる。以上、載荷板の大きさによる鉛直地盤反力係
数の低下は、基礎標準から算出した比であることがわかった。

これらの結果を基に、実際に高架橋フーリングの大きさ
（3.0m×7.2m）に適用し、試荷重（増加荷重）による各基
礎の弾性沈下量を計算した。計算においては、載荷面積が
大きいことから下部の粘性土の影響を反映している試験結
果を用い、また実構造物では土被りがあることから、土被
り効果を考慮することにした。この土被り効果については
載荷面積の大小により線型的な性質を示すかどうかは明か
かではないが、本載荷試験において直径 30cm の円形載荷
板による土被り 30cm の試験データがあることから、これ
を利用することにした。これをみると、土被りがある場合
（土被り／換算幅＝1.0）は、土被りが存在しない場合における鉛直
地盤反力係数の 1.31 倍の値となっている。実構造物では土
被りが 2.5m、フーリング底面の換算幅 B が 4.65m で、そ
の比は 2.50/4.65＝0.537 となる。この比率により、直径 30cm
の載荷板による関係式を内挿すると 1.16 倍となり、これら
を考慮して計測すると、沈下量は 9.5mm と推定される。

(1)b) で推定した弹性沈下量 13mm と、実記で推定した
沈下量 9.5mm という値に関しては、この程度の値であれば
各基礎間の不同沈下に対しても対応できると判断し、直接
基礎の採用に踏み切った。

5. 建設時の沈下挙動

(1) 地盤調査

大型平板載荷試験を実施した箇所における高架橋を対象
に、フーリング構築のための調査において、支持地盤の
土の粒度試験うち直径 30cm の円形載荷板による平板載荷試
験（単調載荷）、および工事期間中に通じた地下水位の測
定を実施した。

対象とした高架橋全体図を図－7 に示す。土の粒度試験
は 2P、4P、6P、8P において、平板載荷試験および基礎
部面において実施した。粒度試験の結果、相関的であるが
あるが、起点方は中礫分以下の割合が高く、終点方は粗礫分
の割合が高い傾向となっている。平板載荷試験のKₚ値は表7に示すとおり5.44～8.80kgf/cm²という値であり、平均値は7.39kgf/cm²である。変動係数は0.15であった。この平均値7.39kgf/cm²という値は、図6の表－6中の約30cmの処女載荷の値より少し小さい値である。調査70cmの区間でも変動係数が0.15と、かなりばらついていることがわかる。

地下水は平成8年7月25日～平成9年3月22日までの期間において、地表面下2.3m～3.3mと1mの変動がみられた。

（2）沈下測定

基礎の沈下量を測定するため、均しコンクリート打設後、この上面に沈下板を1フーチングに1基ずつ設置し、沈下板のロッドを地表面からマイクロレベルにより測定した。測定回数は高架構の構造順に従い計11回とした。

沈下量の測定結果を図8に示す。これから、梁・スラブコンクリート打設前の沈下挙動を2P～5Pまでの沈下を示すグループと1P，6P～8Pの沈下を示す少ないグループの2つに区分することができる。ラーメン構造の完成（梁・スラブコンクリート打設後）以降、プレッキング状態での変位変動を示すもの等、基礎施工後においても挙動が変化を示すグループに分類した。特に梁・スラブコンクリート打設後においては、沈下挙動が著しく変化することを示している。なお、図8に示す6P～8Pの変位変動は、基礎施工後の沈下挙動を示すものである。
6. まとめ

今回実施した平板載荷試験および高架橋建設時の沈下の計測結果から、以下のようないく結論を得た。

1) 平板載荷試験では、載荷板面積が大きくなるに従い、その支持力性状（鉄筋鉄直支持力、鉄直地盤反力係数）は、載荷板面積以下下方の層の影響を受ける。この傾向は経返し載荷試験において顕著である。

2) 経返し載荷により、載荷板寸法の小さい試験では、より深い地盤の性状を把握することができる。この深さは載荷板寸法の4倍程度であった。

3) 平板載荷試験における極限鉄直支持力の計算では、施工状態における粘着力の影響を考慮に入れた経返し載荷による補正の効果として、内部摩擦角を2～3° 高目に考慮する必要がある。

4) 載荷板寸法の違いによる荷重強度とS/B（沈下率載荷板
一边の長さ）の関係においては、載荷板の寸法に関係なく一部の関係式が得られた。

5) 土被りと載荷板面積により下層の粘性土層の影響を考慮した鉄直地盤反力係数を用いて推定した沈下量が、高架橋建設時の実測沈下量に最も近いものとなった。沈下量推定の際に、土被りの影響を考えるべきことがわかった。

6) 実際の高架橋の沈下挙動は、隣接した基礎でもかかわりながら、各基礎位置で実測した長径30cmの平板載荷試験のKσ値は、開断面はみなならなかった。

7) 足踏みとそれに応じた構造計画を行い、良質でない支持層であっても直接基礎とはは十分可能である。

参考文献
1) 土木学会編：国鉄建造物設計標準解説（基礎構造部、抗土圧構造物），1998.3.
3) 梅原俊夫，福島弘文：礫砂地盤に架橋ができるまで-国鉄開発新線走行架橋一，土と基礎，Vol.34，No.9，pp.33～38，1986.9.
4) 土木学会：地盤の平板載荷試験方法に関して，1983.1.
5) 岡田勝也，梅原俊夫，福島弘文：直接基礎の支持力特性-礫砂地盤における平板載荷試験一，日本鉄道施設協会，構造物設計資料（国鉄構造物設計資料研究所），No.80，pp.17～23，1984.12.
6) 高架橋，古山孝一，佐々木弘：田村線新在来鉄道線導入部における高架橋基礎の設計，日本鉄道施設協会誌，Vol.32，No.5，pp.36～38，1994.
8) 古山孝一，高架橋，高架橋基礎設計法のための高架橋載荷試験，SED（JJR東日本建設工事開発技術PT部監修）No.1，pp.63～72，1993.11.
9) 高架橋：鉄道における最近の基礎技術（ミニ新幹線を中心に），土と基礎，Vol.45，No.11，pp.1～4，1997.11.

謝辞：本高架橋の計画および平板載荷試験の計画、結果の評価についてご指導いただきました前東日本旅客鉄道（株）

図9 土圧測定結果

建設工事部 担当部長 海野隆哉氏（現 長崎鉄道技術学校 大学教授）並びに現地調査にご協力いただいたJR九州の関係者に深く感謝します。
A STUDY OF ADOPTION FOR SPREAD FOUNDATIONS ON SLIGHTLY WEAK GRAVEL BED GROUND

Shoichi FURUYAMA and Yoshio TAKIUCHI

In order to adopt spread foundations on slightly weak gravel bed ground, Authors have conducted a series of plate bearing tests using for the purpose of establishing reasonable design method on spread foundations.

This paper describes not only the bearing capacity and the modulus of subgrade reaction but also useful information obtained from comparing plate bearing test results with actual elastic settlement.