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This paper is intended to report the results of the two-dimensional elastic analysis for test specimens
consisting of two layers: an asphalt mixture to which the beam theory is inapplicable due to its low
stiffness, and a thin steel plate on which the mixture is placed. Then, numerical computation has
provided the authors with valuable data and information, such as the sizes and shapes of test specimens,
friction between the upper and the lower layers, and the stiffness ratio between the two layers. All of
these are essential factors in determining the mechanical property of a mixture by using the results of

displacement measurement for the purpose of evaluating the elasticity of a pavement mixture.
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" 1. INTRODUCTION

The prediction of the service life of pavements
is based for the most part on the evaluation of
various factors associated with durability, such as
fatigue strength resistance and flow ability
resistance, of a pavement mixture which contains
bitumen material in most cases ". The laboratory
evaluation of the fatigue strength and elasticity of
the mixture, in particular, relies on repeated
bending tests, although testing methods have yet to
be further investigated to solve the problems
arising in this type of test *.

The present authors are proposing a method of
determining the mechanical property associated
with the elasticity of asphalt mixture by using
solutions to the elastic problems of displacement
components, which can be obtained through
two-dimensional elastic analysis, and displacement
measurements in repeated bending tests. When
the specimens employed for the testing are larger
than nommal size, this method lends itself to
facilitating a more rational evaluation of the
fatigue and elasticity of a mixture *”. And yet
the proposed method has been found to be less

than effective in evaluating the mechanical
property of the material when its stiffness is low
(i.c., when its temperature is high), whereas the
method has proved to be applicable when the
stiffness of the material is sufficiently high (.e.,
when its temperature is low). This is due to the
fact that a degree of deflection by self-weight
under a no-loading condition changes over time
because of the viscoelasticity of asphalt, thereby
making it extremely difficult to maintain a stable
status before loading. Accordingly, the effect of
deflection whose degrees vary over time must be
removed in employing this method for the
evaluation of pavement materials with low stiffness.

In an effort to find a solution to the problem,
Himeno et al. conducted a series of repeated
bending tests on a beam-shaped test specimen of
asphalt mixture (4cmx4cm=30cm) that was placed
on a steel plate ». This type of approach for
evaluating the fatigue strength of asphalt mixture
by the use of a two-layer specimen has been
proved to be highly effective in expanding the
applicability of the repeated bending test, so that it
will be adopted for evaluating elasticity,
viscoelastity and other aspects of the durability of
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Fig.l Analyzed beam model with unit width under
symmetrical loads with parabolic distribution.

materials characterized by low stiffness.
Furthermore, this specific approach is expected to
be useful in evaluating asphalt mixture on steel
decks. Problems yet remain unsolved in some
respects, including deflection measurements
required for evaluation, the bonding of asphalt
mixture and a steel plate, and applicability of
analysis results based on the beam theory, as well
as problems on the shapes and sizes of test
specimens as posed by the authors 7. This paper
describes investigations by means of two-
dimensional elastic analysis of a beam of
two-layered structure under bending load. The
analysis was carried out by using the
above-mentioned test method in combination with
larger-than-conventional sizes of test specimens,
with a view to determining the mechanical
property required for evaluating the elasticity of an
asphalt mixture with low stiffness. For the sake
of practicality, and because the use of a personal
computer was preferred in order to shorten
calculation time, an analysis model was produced
by using an elastic material for the upper layer of
the asphalt mixture, while a straight steel beam
with higher rigidity was used for the lower part.
For setting the load and the continuous conditions
of displacement for the interface between the upper
and lower layers, the differential equation ¥ of the
beam theory was adopted. In contrast to the
elastic analysis of a two-layered structure
consisting of elastic materials only, this method of
using both elastic and rigid materials in a model
structure produces approximate results.
Consequently, this analysis method entailed
discussions on the applicability of the analysis
results to confirm the usefulness of the analysis
method.  The discussions were followed by
calculations for examining the effect of the sizes
and shapes of specimens and the bonding
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conditions of the upper and the lower layers on
deflection to be analyzed, as clarification of such
effects are essential for determining the mechanical
property of asphalt mixture. Some calculations
were also carned out to delve for factors that
might influence stress in horizontal direction when
mechanical property was determined on the basis
of analysis results of stress in horizontal direction
and strain measurements.

2. TWO - DIMENSIONAL ELASTIC
ANALYSIS

(1) Equations for Displacement and Stress
Components

Stress components in horizontal direction x and
vertical direction y and shearing stress are denoted
by ox, oy and respectively, while
displacement components in x and y directions are
denoted by # and v. For the elastic analysis
related to the problems of boundary values of
plane stress, a method of the finite Fourier
transforms that had been publicized by Nomachi ?
was adopted. Since the authors have already
derived elasticity solutions of stress and
displacement components, releasing a paper
describing the actual use of this method 7, no
explanations are deemed necessary here conceming
the solutions and processes for deriving them.

The use of the above-mentioned solutions makes
it possible to analyze the stress and displacement
of two-layered structure of elastic materials. In
case of the two layers, however, number of
unknown squarely increase, and it results in much
more CPU time on the level of the personal
computer. Because the elastic material for the
lower layer of the specimen takes the form of a
long, thin beam, an increase in the number of
terms of series causes overflow in floating point
computation for a mathematical function in the
programming software, preventing accurate
calculation results from being produced. It should
be noted that the researches being reported in this
paper aimed to identify the behavior of stress and
displacement of a test specimen whose upper layer
was assumed to be made of elastic material. In
other words, it was not necessary to examine the
elastic behavior of the materials of the lower layer,
since the elastic property of the material was
supposed to be known.

In view of the above, a model was constructed
assuming that the lower layer of the specimen was
a straight beam, instead of using the analysis
method for a test specimen in which elastic
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materials are used for both the upper and the lower
layers. Analysis of the stress to the lower layer
and the continuity conditions of displacement was
carried out through the differential equation of the
beam theory ®. As  mentioned above, for
simplification purposes, the lower layer takes the
form of a straight beam. Since no significant
difference in flexural nigidity is observed between
the upper layer and the lower layer, it can be
assumed that the resistance to bending deformation
is caused by the two layers being combined.
Accordingly, the beam discussed in this paper is
defined as a two-layered structure beam.

According to Fig. 1, which indicates the
bending test model of elastic material on a long,
thin beam, boundary conditions can be represented
by Equations (1) to (3). For Equation (3), however,
there are two cases: when no friction is observed
over the interface (CASE 1) and when friction
takes place over the interface (CASE II).

When X=O,L g x)x=L= g x)x=0=0, T xy)xﬂL =

T w)et=0, V)et=V)ro )
‘When y=h g y)y=|\ = PU(x), T xy))=l\ =0 (2)
When y=0 CASE] <txlo=20

CASE T 7)o # 0 Q)

Where Pu(x) represents the distribution of load
intensity applied on the top surface of the upper
layer. Equations (3) are to be addressed later.
Considering the aforementioned boundary
conditions, integral transforms (APPENDIX (A))
for stress and displacement components included in
solutions to elastic problems are as seen in
Equations (4).
Ci[V)x=L]=Cj[V)x=0]=Aj, Cm[u)y=h]=Bm, Cm[u)y=0]=
Bm’, Sm[ U'y)y=h]=Dm, Sm[Uy)y=0]=Dm’ (4)
Where Aj, Bm, Bn’ , Dm, and Dn’ represent
the unknown boundary quantities, with j,m=1,2,3+
Then, general equations for stress and
displacement components that include these
unknown boundary quantities turns out to be:

u=- %};sinjy[[mgx)- G<°>(Jx)]- V{Fm(Jx)
- G(Z)(Jx)]]Aj— %;cosMx[ [ZaQ(My)

- (1+v)13P(My)}Bm- {2aQ(My)- (1+v)aP(My)}Bm'

L vy
EM

(£°(4y)Dn- @)D ||
®)

v= -zl-h-zj“sin]y[2{aQ(Jx)- ﬁQ(Jx)}- (1+v) [a"(Jx)
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- vG<2>(My)]B,,,- {FW)(My)- vFW)(My)]Bm'
J [26004)+ (1-¥)G@)(My)) Da
EM

LA {ZF(O)(My)+ a -v)m(My)]D ] +o
EM "
(6)

-sinJy [ﬁP(Jx)- aP(Jx)}Aj
Tsindds [EM[2ﬁQ(My)- ,BP(My)}B,..
- EM[2a%(My)- a*(Mp)|Ba'+ (1 +9)7(4)

- (M) Du- {(1+v)aP(My)- 2va%(My)| D]
Q)
o= %)jj}-sm}y[- [ﬁP(Jx)- aP(Jx)]
+2[ﬁQ(Jx)- aQ(Jx)}A,-]
+ —212-);sipr [EM{ﬁP(My)Bm~ a"(My)Bm'}
- {a+vpran)+ 252)| De {1 +v1a" )

+ 2aQ(My)}Dm']
®
Tay=- f—hzjy-cos.ly[ [Fm(Jx)- Gm(Jx)}A,-

+ %;“cosMx[EM[G(”(My)Bm- m)(My)Bm']
+ [GowMy)- vGOMy)| Du- {FOMY)

- vm(My)}Dm'] ©)

In the above equations, a*, a% B%, B FO, F?,
G®, and G® are the sum of infinite series of the
Fourier transforms, as shown in APPENDIX (B).
Jis equal to j m /L, M is equal to m = /L, and vo

is obtained from V)ier, =0

(2) Determination of Unknown Quantities of
Boundary
The five unknown quantities of boundary are
identified by solving five simultaneous equations:
the second equation in Equations (1), 2 equations
in Equations (2), and | equation in Equations (3),
plus the conditional equation (the differential



equation of the beam theory), assuming that
displacement on the interface between the upper
and the lower layers are continuous.

As mentioned above, there are two cases for
Equations (3): CASE I, where friction was not
caused on the interface, and CASE II, where
friction occurs on the interface. For CASE I,
Equation (9) should substitute for the left term of
the first equation in Equations (3). The
differential equation of the beam theory in this
case is as follows.

4
Note that Pu(x) in the equation is the load
distribution intensity on the bottom surface of the
lower layer, while I represents the moment of
inertia on the section of the beam constituting the
lower layer, which is equal to 4%/12 .

CASE 1L is further divided into two sub-cases:
CASE II-1, where the upper and the lower layers
are completely bonded to each other, and CASE I
-2, where some friction is caused between them. In
CASE 1I-1, the equilibrium of shearing force T
and axial force N on the interface is:

(10)

dT+N=0 (1D
and dT and N are represented by
dT =1,)-dx
_ du)y=o
N=Esh, e (12)

Hence the second equation in Equations (3) results
in:
dzu)y=o

Txy)y=0= -Eshy &

2 (13)

L

Eshs) cosMx-M?-By,'

In CASE II-2, when the shearing force on the
bottom surface of the upper layer is assumed to be
proportionate to the difference between
displacement in x direction of the upper and that of
the lower layers that are observed on the interface,
the relationship between them is indicated by the
following equation.
txy)y'=0=k{u)y=0' uD} (14)
Where £, called the "spring constant" in this paper,
is a constant with load intensity dimension for a
unit length. Therefore, no friction occurs on the
interface when k=0, whereas the upper and the

lower layers are completely bonded when k=, as
derived from Equation (14). The difference in
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Table 1 Dimensions of analyzed model for numerical
computation. (b=1cm)

L/b 4

Ly 0.375L
Dimensions Lo 0. 125L

L 0. 005L

hs 0. 0025~0. 01L

h 0. 1~0. 25L
Mechanical [Es/E | 1~1000
properties v 0.3

k Q~o00

the k value represents the difference in the
magnitude of friction on the interface. For uo,
which is displacement in x direction on the top
surface of the lower layer, the following
relationship is formed as the shearing force on the
bottom surface of the upper layer is equal to that
on the top surface of the lower layer.

dzuo
ey

Esh,
dx

(15)
When Equation (14) is differentiated twice to be
followed by the substitution with Equation (15),
the result is:

== Tayly=o

k
ery)y=o=k
Thus the following equation is obtained for CASE
o-1

& “)y=o
dx?

drxg)y-o
T

(16)

Txy) y=0= ;cosMx Cn

When this is substituted in Equation (16) to

determine unknown number Cm, the second
equation in Equations (3) becomes:
2 kM?
X == — SM _—Bl“'
Py T eosMe an

For both CASE II-1 and CASE 1 -2, the
differential equation for the beam theory tumns out
to be:

d"v)yuo hs

EnIs A =0y)y=0’ PL(x)' 7

= (18)

dxyly=0
Ad

When it is assumed that steel rods are used for the
loading point and the support in Fig. 1 and that
they constitute parabolic loads with load
distribution width 2L’ | the equations indicated
below are formed for Pu(x) and Pu(x), which are
the load intensity distribution of the top and the
bottom surfaces respectively.

2 _3P(1- (- 1)m
ZZ MLy

sinML'
ML

Py(x)=



Table 2 Precision of computed shearing stress on boundary faces.

x/ L 0.0 0.25 0.5 0.75 1.0
CASE I -0.00001 0.00000 0©.00000 0.00000 O.00001
T xy)yh/q | CASEIL -2 (k=0) -0.00001 0.00000 0.00000 0.00000 O.00001
CASEIL-1 -0.00009 0.00000 0.00000 0.00000 0.00009
CASEII -2 (k=00) | —-0.00009 0.00000 0.00000 0.00000 0.00009
CASE I -0.00000 0.00000 ©.00000 O0.00000 O0.00000
CASEII -2 (k=0) -0.00000 0.00000 0©.00000 0.00000 O0.00000
T xy)y=0 /q | CASEIL-1 -0.00011 0.03041 0.00000 -0. 03041 -0. 00011
CASEI -2 (k=o0o) | —0.00011 0.03058 0.00000 —0.03058 -0. 00011
y/h 0.0 0.25 0.5 0.75 1.0
CASE I -0. 00000 -0. 00001 -0. 00001 -0. 00001 -0. 00001
T w)x=0/q | CASEI -2 (k=0) -0. 00000 0. 00001 -0. 00001 -0. 00001 -0. 00001
CASEII -1 -0.00011 -0.00011 -0. 00011 -0. 00011 -0. 00009
CASEII -2 (k=c0) | —0.00011 -0.000t1 -0. 00011 -0.00011 -0. 00009
- cosML'}sinMLUsjnMx (19) 1.04
——— Point A
2 3pQ Point B
- (- ™) [ sinML’
Pu(x)= f); Oy [ ViR _ 1.03
(20)
- cosM. '}sinMLLsinMx -
\b 1.02
3. VALUE CALCULATIONS ®
1.0t -
(1) Accuracy and Applicability of Calculations L“‘;:
Table 1 shows conditions for calculations made )
by a personal computer (CPU: Pentium processor 1.00 e

166 MHz, program language: C++). In matrices
for calculations through the simultaneous equations,
m and n are set to be 300 terms for each.
Calculation accuracy is determined depending on
whether or not the boundary conditions in
Equations (1) through (3) can be satisfied. Of these,
the first and the second equations in Equations (1)
are basically satisfied through Equations (6) and
(7) and APPENDIX (B), but it is difficult to
satisfy other conditional equations due to
limitations in computations for the series. With A,
hs, and EJE set 0.25L, 0.005L, and 100
respectively, the shearing stress of the boundary
surface is divided by load frequency ¢ in order to
see whether or not the conditions are satisfied. The
Table 2 shows that variation of 7 /¢ with x/L
and in the periphery ©x nearly vanishes. It can
be said the boundary conditions are well satisfied
in these two cases, CASE I and CASE II-2
(k=0) where no friction is on the interface.

In CASE II-1 and CASE II-2 (k=0), where
the upper and the lower layers are completely
bonded to each other, the boundary conditions are
almost satisfied with regard to the top and the side

Fig.2 Effect of hs/L on o x in central section.

surfaces, while symmetrical shearing stress
occurred on the cross section at the center of the
span of the interface.

As indicated in (2) in Chapter 2, the beam
theory was applied to the conditional equation
representing the continuous displacement of the
upper and the lower layers at their interface, as
well as to the conditional equation conceming
shearing strength. In other words, the lower layer
takes the form of a beam to which the beam theory
is applicable. When an eclastic analysis is
conducted for the two layers, the results of such
analysis may not necessarily coincide with the
results obtained from the present ahalysis because
of the thickness of the lower layer. Therefore, in
an attempt to evaluate the stress and displacement
in CASE II-1, a comparison was made between
the results of two cases with different calculations:
one in which the elastic coefficient of the upper
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Fig.3 Effect of hs/L on vertical displacement on top face.

and the lower layers is assumed to be EvE=1
according to the results of the present analysis, and
the other in which Asth was used as the thickness
of the beam according to the analysis result of
Reference 5), while employing values identical
with the present calculation for the length and for
the mechanical properties associated with elasticity
of the specimen (hereunder called the "one-layer
analysis).

Fig. 2 presents the results of o/0x’ , a ratio
between o x, stress in CASE II-1, and o. ,
stress from one-layer analysis *. Horizontal stress
in points A and B are examined by changing /L,
the thickness of the upper layer. The difference
between 0x/0x and 1 indicates an analytical
error between the result of this analysis and strict
solution. When the thickness of the lower layer
remains constant, 0/ 0x’ decreases as'the upper
layer becomes thicker. In other words, analytical
errors increase as the upper layer becomes thinner.
The fact that the analytical error is larger at the
bottom surface is believed to reflect the influence
upon the assumption of the straight beam for the
lower layer, because the percentage of the lower
layer in the total thickness increases as the
thickness of the upper layer is reduced, provided
that A/L is small.

Fig. 3, on the other hand, shows the results of
similar investigations into analytical errors that
were obtained in the form of v’ | where v is
vertical displacement at point A and point C in Fig.
1, while v’ represents vertical displacement
_derived from one-layer analysis. When h/L is
within a range from 0.025 to 0.01, the figure
indicates that the largest analytical error is close to
5%, much more significant than ermrors for stress.
Note that the error also increases in proportion to
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Fig.4 Convergent conditions on vertical displacement.
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Fig.5 The local deformation on bottom face. (hs/L=0.005,
h/L=0.25)

hIL. This presents a contrast to the tendency
observed with respect to stress components. When
h/L=0.005, for example, the analytical error of
stress components is relatively small, but the error
of displacement components is nearby 3%. In
relation to this fact, Fig.4 illustrates the
convergence condition concerning the vertical
displacement of the upper central part. For both
m and n, results are represented as the ratio of v
(displacement with respect to 300 terms) to v
(calculation results for respective terms). In both
the results of the present analysis and the results of
one-layer analysis, computations for the series are
converged almost completely in less than 300
terms. The ermrors therefore are not attributed to
calculation but are probably due to the application
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of Equation (10) and Equation (18) for the
continuity between the upper and the lower layers,
although the cause of the errors cannot be clearly
identified.

On a two-dimensional plane in rectangular
coordinates, the influence of sheaning force on
deflection takes the form of local deformation ' of
the loading point and the support ®. As Fig. 5
shows, studies were conducted on deflections due
to local deflection of support, by dividing v
(displacement of the bottom of the lower layer) by
ve (deflection on point B in Fig. 1). When a
comparison is made between the results of the
present analysis and the results of one-layer
analysis under the condition that the upper layer
and the lower layer have the same elastic
coefficient, the difference of deflections becomes
obvious near the support. According to Fig. 5,
however, the deflection caused by local
deformation is gradually reduced as EJ/E increases
in accordance with the rigidity of the lower layer.
Consequently, the effect of shearing force is
expected to diminish as the rigidity of the lower
layer becomes higher. Since the results of the
present analysis are deemed applicable when the
rigidity of the lower layer is higher than the
rigidity of the upper layer, the analytical error of
about 3% in Fig. 5 is not so serious as to prevent
us from applying the analysis results of
displacement components to the evaluation of
elasticity of pavement mixture.

Based on the above, it is considered that the
results of the present analysis are applicable when
the thickness of the lower layer is not more than
0.5% of the total length of the beam, provided that
A/L is between 0.1 to 0.25. The sizes of the test
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specimens and the steel plate that were used in the
experiments by Himeno et al. were 0.13 in 4/L and
0.005 in hJ/L with the beam length of 30 cm *.

(2) Calculation Results
a) Horizontal Stress

Discrepancy is observed between the results
from the beam theory and those from elastic
analysis, with regard to stress in x direction that is
derived from one-layer analysis *'". According to
increases in A/L, the discrepancies between them
become clearer on the top and the bottom surfaces.
It is now known that the disparity is not due to a
difference in elastic modulus £ or Poisson's
ratio ™. On the other hand, Equation (21) ® is
formed for o, stress in x direction at the central
cross-section being derived from the beam theory
for a two-layered structure. It is readily anticipated
that the results calculated through this equation -
will ‘be different from those obtained from the
present analysis in Chapter 2.

. PUALeLy
O TIE+IsEs * @D

Where, for CASE 1,

y'=h-y  I=h12  L=h3N2 2)
and for CASE 1,
. 5 _ ER+Eshs®+2Ehhs
YV =W N Y W= 2(Eh+Eshs)
n 2h+ hgy2 hgd hgy2
I= T2—+h(yN- 5 ) 15—1—2+h5 (yN- 7)
(23)

Both Fig. 6 and Fig. 7 illustrate a manner in
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Fig.8 Effect of Es/E on ¢ x in central section.

which 0 x, stress in x direction, is distributed over
the central cross-section of the upper layer when
EJE is equal to 100. Fig. 6 presents solutions for
CASE 1, and Fig. 7 concems the calculation
results for CASE II. These figures also indicate
the ratio of ox to T, which was determined by
dividing o x, stress in x direction that was obtained
from the present analysis, by © xa, stress on point
A in Fig. 1 as derived from the beam theory in
Equation (21). Therefore, the results of
calculation based on the beam theory are also seen
in the two figures.

As Fig. 6 demonstrates, when layer thickness
accounts for 10% of beam length, the stress
distribution resulting from ‘the calculation for
CASE I is almost identical with the distribution
derived from the beam theory, and no difference
can be seen in the figure. Stress determined
through the beam theory is scarcely affected by
difference in thickness, but stress determined by
elastic analyses of the top and bottom surfaces
varies by several percent, according to the layer
thickness. This coincides with the tendency of
stress distribution that was identified assuming th
‘single layer ™. :

In contrast, Fig. 7 for CASE II shows a
notable difference between the results from the
present analysis and the results from the beam
theory. On the top surface, in particular, deviation
from the stress calculated through the beam theory
becomes more pronounced as the layer thickness
increases, while variation in the thickness does not
significantly affect the degrees of difference
between the two approaches.

The ratio of ox to 0xa is further examined by
changing EJ/E, as illustrated in Fig. 8. In CASE
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Fig.9 Deflection on top face. (CASE 1)

x/L
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------ Beam Theory
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Fig.10 Deflection on top face. (CASE II -1)

I, the difference in the ratio 0x /Gxa remained
almost unchanged regardless of the rigidity ratio of
the upper and the lower layers, while the
difference in 0« T xa is inconsistent as the rigidity
of the lower layer rose in CASE II -1,

The above-mentioned investigations have made
it clear that stress in x direction in the upper layer
is affected by the size of the specimen, the
bonding condition of the two layers along the
interface, and the elastic coefficients of the upper
and the lower layers.

b) Surface Deflection

Fig. 9 and Fig. 10 indicate deflection distribution
over the top surface of the upper layer under the
condition of £/E=100. Calculation results in Fig.
9 are concerned with CASE I, whereas Fig. 10
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Fig.11 Relationship between the deflection on top face and

h/L. (Es/E=100)

presents deflection distribution in CASE II-1.
These results for the two cases are presented in the
form of F, i.e., the ratio of analysis displacement
v in Equation (24) below to the center
displacement in a single layer, which is based on
the beam theory.

~ 2ER
P(Ly-Lo){3(L-2L1)%-4(Ly-L1)?}
The figures also include calculation results through
the beam theory. These deflections are represented
by the following equation.
o Plu-Ly)
12(EI+Esls)

v (24)

v

[ 8(Ly-L)?+3(L-2Ly)(L+2Ly-4Ly) 4.

(25)
In the equation above, I and I correspond to
Equation (22) in CASE I and Equation (23) in
CASE 1 -1, respectively.

As is clear from the above, when the thickness
of the upper layer was small, there was little
difference in deflection between the present
analysis and the beam theory, while the difference
became greater as the thickness increased. ~This
was always the case irrespective of the difference
in boundary conditions of the interface. Moreover,
an increase in the thickness of the upper layer
caused local deformation to appear directly below
the loading point. This tendency was also
observed in the results of calculation based on the
assumption for a single layer .

For points A and C in Fig. 1, investigations
were made on changes in Fv that occur with
variations in the thickness of the upper layer. Fig.
11 shows the results of these investigations, as
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Fig.12 Relationship between the deflection on top face and
Es/E. (WL=025)

well as the results of calculation relying on the
beam theory. Regardless of the boundary
conditions, deflection becomes larger as the
thickness of the upper layer increases, widening a
gap between the present analysis and the beam
theory. Note that the rate at which deflection
increases is not much affected by difference in
boundary conditions, although the rate of increase
in deflection varies from the center to the loading
point when the boundary conditions are the same.
When the thickness of the upper layer exceeds a
certain level, deflection due to the local
deformation at the loading point becomes markedly
larger, exceeding deflection at the center.
Particularly, when the two layers are completely
bonded to each other across the interface, the
deflection attributed to local deformation at the
center increases while the upper layer is still
thinner than in the case where friction is not
observed.

Fig. 12 illustrates changes in Fv at points A and
C in Fig. 1 that are caused by variation in EJ/E,
when h/L=0.25. The figure also shows the resuits
of a calculation based on the beam theory. When
the rigidity of the lower layer becomes higher than
that of the upper layer, deflection is reduced. The
rate at which deflection decreases varies depending;
on boundary conditions and positions, i.e., the
loading point vs. the center. In CASE I, the
difference in Fv between the two positions in
particular has been found to be hardly affected by
variations in EJE. This is also the case with the
results of calculations relying on the beam theory.
In CASE II, on the other hand, the difference in
Fy between the center and the loading point
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Fig.13 Relationship between the deflection on top face and
spring constant k for various h/L-values. (Es/E=100)

depends to a significant degree on variations in
EJ/E. Furthermore, according to elastic analysis,
the difference in Fv between the two points
becomes larger as EJ/E increases, while it
_diminishes with an increase in E/E when the beam
theory is adopted. The results of the present
analysis demonstrate that in the case where the
upper and the lower layers are completely bonded
to each other across the interface, local
deformation of the loading point becomes larger as
the difference in deflection between point A and
point C augments against the increases of E/E .
The above-mentioned results reveal that the
scale of deflection is affected by the thickness of
the upper layer, the rigidity ratio, and the
conditions of the boundary surface. However, the
calculations involving the status of the boundary
were carried out based on the assumption of two
extremes: boundary where no friction is found,
and a boundary along which the layers are
completely bonded to each other. Neither of them
was considered a actual condition under which a
loading test was conducted. In view of this

unlikelihood, the effects of varying friction on

deflection were examined through the calculation
CASE II-2. .

Fig. 13 shows changes in Fv at points A and C
in Fig. 1 as they occur for different levels of A/L
when spring constant k¥ varies. The Fv values
corresponding to 4=0 and k=<0 are indicated by
extended horizontal lines. As the figure
demonstrates, deflection is reduced as spring
coefficient & increases, but the rate of reduction is
not much affected by variations in layer thickness,
as long as positions for calculation remain within
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Fig.14 Relationship between the deflection on top face and
spring constant k for various Es/E-values. (h/L=0.2)

the same coordinates. Spring constants for Fv
values similar to those corresponding to 4=0 and
k= are 107 £ k and 10° = £, respectively, and
changes in F. are most pronounced when k is
within a range from 10° and 10°. On the other
hand, a difference is observed between the center
and the loading point as to the rate at which
deflection decreases according to increases in
spring coefficients,. When A/L=02, for example,
deflection at the loading point is larger than
deflection at the center, due to the effect of local
deformation. Such differences in the scale of
deflection are more notable when A/L is larger.

Fig. 14 shows changes in Fv at points A and C
in Fig. 1 as they occur for different levels of EJ/E
when spring coefficient k varies. The Fv values
corresponding to A4=0 and 4=o¢ are indicated by
the extended lines of the horizontal axis. As the
figure demonstrates, deflection is reduced as spring
coefficient k increases, and the rate of reduction is
significantly affected by variations in E/E. Spring
coefficients for Fv values similar to those
corresponding to k=0 and k=c0 are 107 S k and
10° = k, respectively, and changes in F are most
striking when k is within a range from 10° and 10°.
On the other hand, a difference is observed
between the center and the loading point as to the
rate at which deflection decreases according to
increases in spring coefficients. When EJ/E is 10 or
more, for example, deflection at the loading point
is larger than deflection at the center, due to the
effect of local deformation. Such differences in
the scale of deflection are more pronounced when
EJE is larger. According to the results from Fig.
13 and Fig.14, the spring coefficient of k& should



be established before determining the mechanical
property of asphalt mixture. Although it is
difficult to obtain k through experiments,
parameters E and k that need to be determined can
be simultaneously defined by conducting two
loading tests in which the sizes of specimens and
the thickness and properties of steel plates differ
from each other, as Reference 6) indicates.
Consequently, the results from the two figures will
serve as basic'matenals to help identify the degree
of friction based on the & value.

4. CONCLUSION

As reported in this paper, models were
constructed for bending tests by using the
specimens of pavement mixture on a thin steel
plate, with a view to carrying out two-dimensional
elastic analysis for such a two-layer plate and
beam structure. However, this approach called for
mquiries into the applicability of the results of
such analysis, due to the fact that a differential
equation of the beam theory was applied for the
continuity condition of the load and displacement
of the lower layer. Investigations have made it
clear that the results of the present analysis is
sufficiently ‘accurate when the thickness of the
upper layer is between 0.1 and 0.25L and when the
thickness of the lower layer does not exceed 0.05L.
Then, a series of calculations was made to identify
factors in the analysis that might affect differences
in deflection when the analysis results described in
this paper are employed for evaluating the
elasticity of the asphalt mixture, resulting in the
following findings.

(1) When the length of a beam was the same,
deflection was considerably affected by the
thickness of the upper layer, the bonding
conditions of the upper and the lower layers, and
differences in rigidity between the two layers.

(2) According to the results of the analysis in
which spring constant was employed, the
difference in friction between the upper and the
lower layers had no small effect on deflection. The
range of spring constant affecting deflection the
most was found to be from 10° to 10°.

(3) When the beam length was the same,
deformation on the loading point increased
according to increases in friction over the interface
and/or rigidity ratio between the upper and the
lower layer.

Comparisons between the numerical computation
of stress in x direction and the values based on the
beam theory demonstrated that the extent to which
the two types of analysis differ from each other

depends on variations in the bonding conditions of
the layers and the ngidity. As a consequence,
close attention should be paid to strain
measurement when the results of such’
measurement are to be used together with the
outcome of stress analysis in order to determine
the constant of the material. It is also necessary
to be able to identify the bonding status of the
interface.  Since the time required for the
computation of one condition is only about .5
minutes, this analysis program may well be
practically applied. Nonetheless, in the tests for
determining mechanical property, where the same
sized specimens were used, the application of the
results of the present analysis gave rise to ‘the
problem of enlarged local deformation, because the
stiffness ratio between the upper and the lower
layers in case of the test piece of higher
temperature.  This is likely to be accompanied by
an increase in 2L’ , the load distribution width on
the loading point. Methods for applying the results
of the present analysis and actual examples of the
application have yet to be discussed in a separate
paper. In pursuing this subject, in-depth analyses
and experiments should be conducted on the
aforementioned issues and on the effects of friction
over the layer boundary surface.

APPENDIX ?

(A) Integral Conversion

When f{x) is a continuum between 0 and L, the
finite Fourier transforms of f{x) is expressed by the
following equation.

L
Salf0))= Jox)sindede

L
Calf(x))= f Joycoshxd

(B) Sum of Infinite Fourier Series

aP= PO+ PO) at=

QW+ Q@
fr= - PO+ P@ Bo=- Q)+ Q@
g((%))],: 1{(¢(1)+q;(|)) H(PDHp@) ]

gé?} 1 {(fb“)-tp“’) i((j)(l)-lp(z))}

P(l)(fr)}__ E{rsh&(l- r)t(l- r)shér}

POYEr) chélt]
QW(Er) =ch{(l- rytchér
QM) chéltl
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¢(1)(£r)]= sh&(/- r)ishér

PAEr) ch&l+l
pEr) |2 §{rehé(- N3 (- r)chér}
wa(Er) chél+1

In the above equations, sh x and ch x represent
hyperbolic functions sinh x and cosh x,
respectively. If & is M, r is replaced by y and /
by h; if € is J, r and / are replaced by x and L,
respectively.
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