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In recent years, researchers have paid a lot of attention to Layered Neural Networks (LNNs) as a non-
parametric approach for the classification of remotely sensed images. This paper focuses on the
generalization capability of LNNs, that is, how well an LNN performs with unknown data. First, we clarify
its description from the point of view of information statistics. With this discussion, we provide a feasible
technique to design the LNN in consideration of its generalization capability. Finally, we apply the
proposed technique to a practical land cover classification using remotely sensed images, and demonstrate
its potential.
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1. INTRODUCTION

Among supervised classification methods for
remotely sensed data, Maximum Likelihood
Classification (MLC) is presently the most widely
known and utilized (e.g. Curran and Hay ", Yool et
al.?). MLC is often used as a standard classification
routine against which other classification algorithms
are compared. This popularity is due to the fact that
MLC is the optimal classifier in the sense of
minimizing Bayesian error. However, MLC is a
parametric  classification method where the
underlying probability density function must be
assumed a priori. We may obtain a poor MLC
performance if the true probability density function is
different from what is assumed in the model. In
recent years, researchers have attempted to provide
non-parametric classification methods to overcome
this disadvantage of MLC, and Layered Neural
Networks (LNNs) have been proposed as suitable for
the efficient classification of remotely sensed
images.
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When using an LNN classifier, however, users
have often been faced with a generalization problem;
generalization is concerned with how well an LNN
model performs with input on which the model has
not been previously trained. That is, an LNN
classifier usually performs well on a set of training
data, but it may not guarantee good generalization
over all unknown data during the actual classification
process.

This paper discusses LNN classifier generalization,
a controversial and often vague term in the neural
network literature ¥, and clarifies its description.

We introduce some techniques for generalization
based on Akaike’s Information Criterion and provide
a feasible technique to design an LNN in
consideration of its generalization capability. Finally,
we apply the proposed technique to a practical land
cover classification using remotely sensed images,
and demonstrate its potential.



2. BASIC FORMULATION OF THE
LAYERED NEURAL NETWORK

CLAS-SIFIER

It has been proved that a three-layered neural
network, when the appropriate number of nodes are
set in the hidden layer and the sigmoidal activation
function is used in the hidden and output nodes, can
approximate any continuous mapping (Gallant and
White ¥, Funahashi ¥, Cybenko ®, and Hornik et al.”).
Therefore, in this study, we only focus on three-
layered neural networks, as shown in Figure 1.

Layered feed-forward neural networks have been
broadly applied to prediction, classification, pattern
recognition and other modeling problems. Hill e al ¥
gave an almost perfect review of studies comparing
LNNs with conventional statistical models.

Let x= {x,} ({=12,---,I) represent the feature
vector which is to be classified. Let the possible
classes be denoted by w ; (j=12,---,J). Consider

the discriminant function d;(x), and then the

decision rule is

x€w;, if dj(x)zdj.(x) for all j =j.(l)

An LNN is expected to be the input-output (I/O)
system corresponding to the discriminant function.

The multi-layered neural network being applied to
a variety of classification problems has an input layer,
an output layer and several hidden layers. The neural
network to be trained can be viewed as a
parameterized mapping from a known input to the
output which should be as close as possible to the
training data.

A feature vector is an input to the input layer; that is,
the number of neurons in the input layer corresponds
to the dimension of the feature vectors. The number
of neurons in the hidden layer can be adjusted by the
user. The output layer has the same number of
neurons as the classes.

Let the state of the / th neuron be represented by

uy, = g(x,w)

!
= EXI Wi »
i=1

)

where w;, is a parameter functioning as a synaptic
weight between neurons included in the designed
LNN. These parameters are mainly constituted by the
connection weights (synaptic weights) between
neurons. The output signal from the j th neuron in the
output layer is regarded as the discriminant value.
The output of LNN, under presentation of x, is

Hidden Layer Output Layer

Input Layer

Fig.1 Architecture of three-layered neural network,

0;(x,w)=f(u;), 3)
where f () is an activation function. The following

sigmoid function, which is bounded, monotonic and
non-decreasing, is frequently used,

1

f(“j)=m-

(4)

The feature vectors x, (k =1,2,---,K) for training
the LNN are prepared. The classes to which these
feature vectors belong are all known. Training data
(target data) are given as follows:

1 if x, €Ew;

dj(xk) = (%)

0 otherwise .

Training of the LNN is performed through the
adjustment of connection weights. The most
commonly used method 1is so-called back
propagation, which is a gradient descent method in
essence.

An error function can be defined as the sum of the
squares of the errors for the overall training set:

K
E = EEI‘ y
k=1

(6)

where

J
B3 3bimom-4,e0f . )
2

The LNN is trained by minimizing the value of the
error function; that is,

min E.
w

(8)
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Among several methods for training the LNN,
gradient descent methods are most commonly used.
There are two approaches for their application to
feed-forward neural networks ?. One is based on
modifying the weights according to the rule,

old

Wi =wh 0 Awy, )
w,"u.ew = w,‘,’;" + n-Aw,,j , (10)
oFE
SiC v )
ih
oF
Aw,,; _—_aw,,~ ) (12)
i

where 7> 0 is the step-size parameter. The other is

based on modifying the weights according to the rule
(9), (10) and

JE,
Awy = =-—=, 13
Mip (13)
E,
Awyy =~—= (14)
hj

The data are repeatedly presented in either approach,
until the processes converge, although there is no
guarantee of convergence to the solution.

Following precedents, we call the former approach
periodic updating and the latter continuos updating .
And an entire pass through all the data set is called an
epoch.

Through chain differentiation

OBk _ OBy %05 M o  duy
Wy doj duj O duy Iwy
=(0j ‘dj)'f'(“j)'whj ) x,

B ok o a1
o'?w,,j (90! (9“! (9Whj
=(0,' 'dj)'f’(“j)'xh E (16)

Back propagation has the advantage that the
derivatives on the right sides of (15) and (16) are
calculated by the inputs and the outputs of the
neurons, for the sigmoid function has a simple
derivative as follows

fa=fw-fi-fw} . 17)
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3. GENERALIZATION OF THE LAYERED
NEURAL NETWORK

When using an LNN classifier, however, users
have often been faced with a generalization problem.
In this chapter, we discuss LNN classifier
generalization, which has been a controversial and
often vague term in the neural network literature®,
and provide a clear description from the viewpoint of
architecture design and learning paradigm. Then, we
provide a clear description of the generalization of an
LNN classifier based on information statistics by
introducing an information criterion.

(1) Generalization and network architecture
design

The architecture of an LNN is basically defined as

the number of layers, the number of nodes in each

“layer and the form of the activation function, so that

the selected model will identify the relationship
between input and output, and will predict correctly
with new input data.

The problem of choosing the optimal number of
nodes and layers is analogous to choosing an optimal
subset of regressor variables in a regression model ',
We know that if a model y = ¢(x) with too many

free parameters is used to fit a given set of training .
data (x,y)then it may “over-fit” the training data,

while with too few parameters it may not be powerful
enough to describe the relationship between input x
and output y. In other words, if the number of
parameters is too large, the calibrated function may
pass through all the specified training data (x;,y;)

without error. However, the function could be highly
oscillatory, leading to large errors at unknown data
that are not included in the training data set. This
phenomenon is to be explained in detail in section

).

(2) Generalization and learning paradigm

Once the architecture is fixed, the behavior of the
trained model depends on the values of connection
weights obtained from the training paradigm and the
limited number of training data.

Given the architecture of an LNN, it is possible that
repeated training iterations successively improve the
performance of the LNN on training data by
“memorizing” training patterns. However, due to the
limited number of training data and the presence of
noise, over-training usually presents problems.
Over-training is the phenomenon whereby after a
certain number of training epochs, more training
epochs will further reduce the learning error (only
slightly in many cases) on the training data set but



will produce greater errors on a new data set which
are not included in the training data set.

(3) Akaike’s Information Criterion

In order to discuss the generalization of an LNN
classifier based on information statistics, we
introduce an information criterion.

Let us assume that p(x) is a probability density

function and p(x,w) is a model distribution. The

discrepancy between the model and the real
distribution can be measured in terms of Kullback-
Leibler’s information distance:

D{p(x),p(x,w)} = fp(x)ln;%dx .(18)

If we assume that the real distribution p(x)

belongs to a model set and the number of
observations is sufficiently high, the information
distance in (18) can be expressed as a function of the
distance between the real and the Maximum
Likelihood Estimate (MLE) of the parameters:

D(p(x,w),p(x,w5)) =D(w,wp)

g%(w —wo) M(w-wp) , (19)

where M is Fisher’s information matrix and ¢ denotes
a transpose of a matrix, w is the true parameter vector
and w, is the parameter vector for MLE.

Under the assumption that the competing models
belong to a sequence of hierarchy where the lower
dimensional models are included into the higher
dimensional ones as sub-models, Akaike has
extended Maximum Likelihood Estimation (MLE) in
such a way that An Information Criterion (Akaike’s
Information Criterion: AIC ) can be used to
simultaneously address both the parameter
estimation and optimal model selection 'V, Akaike
defined AIC as an estimator of the expected
information distance by using approximation (19),

E[2K - D{p(x,w), p(x,w()}]
K
=AIC= 2{— Slnp(x,wp)+ l} » (20)
k=1
where E[-] denotes the expectation operator, K is the

number of data and / is the number of independent
parameters.

(4) Application of AIC to LNN
We should notice that neural networks and
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traditional statistical classifiers are not to be related
in normal cases. However,-when the output of the
LNN has been trained with a sufficient number of
training data, it is considered as an approximated
estimate of a Baysian posterior probability (Wan®
and Ruck et al.'?). It makes a big difference that we
have sufficient number of training data in the case of
the classification of remotely sensed images, which
provide a theoretical interpretation of the output from
the LNN classifiers as an estimate of a posterior
probability. Thus, AIC is applicable to LNNs as a
criterion for generalization and is determined by

AIC =2(— ﬁfln{pj(xk,"’)}*“ L) » (21)

katjal

where p; is output of the node j in the output layer

(corresponding to class j) and L is the number of
independently adjusted parameters.

The model that minimizes AIC is the best model. If
only one model set is used, that is, the number of
parameters is fixed, then AIC will result in the MLE
solution. If two different model sets have the same
value of the maximum likelihood, the model with the
smaller number of parameters will be selected
(principle of parsimony or Occam’s razor).

(5) Generalization based on AIC

In case of LNNs, the number of parameters in (21)
is determined by the number of parameters in the
activation function and the number of connection
weights. The number of parameters is basically
determined by the numbers of input nodes, output
nodes, hidden layers and hidden nodes. Here, the
trade-off between the number of parameters and the
overall goodness-of-fit of the mode! is also
inevitable.

Although the expectation of AIC is asymptotically
unbiased up to the terms of order O(1), it has a large
variance, so that the procedure discussed in the
previous sections are also problematic'.

To give an example of over-training, let y be a
linear function of x,

ye=xw+g  (k=1--K), (22)
where ¢ is the error term, and w is the coefficient
vector.

Let the regression model be expressed by matrices

y=Xw+e . (23)

Suppose € ~N(0, 021), where o is an unknown



standard error. ML estimator

wo =(X'X)_1X'y (29

is the solution to

max logL(w,0°) = —-gloan - £2<—loga2

w,o

1 '
- —;(y - Xw) (y - Xw) . (25)

The situation where the determinant of X'X is
nearly zero is called multicollinearity where the
problem (25) is ill-posed, that is, unstable. It is
regarded as an over-fitting.

The generalization of LNN classifiers is considered
to be a problem of the search for an appropriate
architecture and appropriate training algorithm so
that the LNN performs well and minimizes the errors
over all unknown data. In the following chapters, we
propose an LNN design with some techniques for
improving the generalization of LNN classifiers;
these are characterized by the architecture and
training algorithm.

4. LAYERED NEURAL NETWORK
ARCHITECTURE DESIGN BASED

ONAIC -

In this chapter, we propose an LNN architecture
design for choosing an appropriate model in terms of
not only the size of network but also a suitable
activation function based on AIC.

(1) Choosing the appropriate size based on AIC

In the three-layered neural network, the number of
parameters L is determined by the number of hidden
nodes H, the number of input nodes J and the number
of output nodes J as follows

L=IxH+HxJ. (26)

The numbers of nodes in the input and output
layers are, in general, fixed according to the practical
application problem. The users, therefore, are only
able to adjust the number of nodes in the hidden
layer.
a) Choosing the number of hidden nodes

If we begin to select a hidden layer with too few
nodes, the LNN may not be powerful enough for a
given learning task, while too many hidden nodes
would lead to over-fitting the training data. Therefore,

an appropriate number of hidden nodes should be
chosen so that the LNN can guarantee the
generalization ability.

The relationship between the number of hidden
nodes H and the number of output nodes J has been
fairly well discussed by Mehrotra et al.'”, Weigend
and Rumelhart'®, and Amirikian and Nishimura'®.
They conclude that an LNN with one hidden layer
and H hidden nodes the number of which equals the
number of output nodes J, is considered an
appropriate size to execute a given classification
task.

We suggest choosing an appropriate size of LNN
by using an AIC that can be used to simultaneously
address both the parameter estimation and
forecasting the generalization ability of the model on
unknown data during the training process. We can

" choose the appropriate number of hidden nodes by

changing the number of hidden nodes to get different
sizes of LNN. Their AIC values are determined after
the completion of training. The LNN yielding the
minimum value of AIC will be chosen as being of the
appropriate size to execute a given classification
task. ‘
b) Pruning the connection weights

Network pruning algorithms can be applied to get
the minimum number of parameters (reducing the
redundant parameters) so that the LNN is more
efficient in both forward computation time and
generalization capability. These algorithms have
already been discussed by several researchers such as
Sietsma and Dow'”, Karnin'® and Hassibi and Stork
19

While the simplest procedure for network pruning

- 18 to heuristically find and prune those connection

9

weights whose removal does not change output
values, we suggest carrying out these procedures
based on AIC. That is, we prune weights whose
values are relatively small and re-train the network.
Then, we calculate the AIC of each network and
choose the appropriate combination of connection
weights based on the minimization of AIC.

(2) Choosing the appropriate activation function

The architecture of an LNN classifier with one
hidden layer is composed of the number of nodes in
the hidden layer and the type of activation function.
Therefore, the optimal architecture of the LNN
should be chosen from the viewpoint of not only the
size of network but also the activation function form
suitable for the training data set at hand.

From the theoretical interpretation of the LNN by
Shimizu *, we can get various types of probability
distribution by changing the value of parameter
a(=z -1) in the generalized activation function



1

T as exp(-Bu;) @)

f(“j)

to get the best fit to the training data. We estimate 8
conjoined with wy and w,;. Hence, without

essential loss of generality, let 8 be 1. For the use of

the generalized activation function, the weight

update rule of the ordinary back-propagation
algorithm should be modified with its derivative

f@=f@-{tva-f@} (28
in place of (14).

We apply the modified back-propagation algorithm
and change parameter a of the generalized
activation function in the training process to get the
best fit to the training data based on AIC. After the
appropriate size of the LNN has been fixed, the value
of AIC is determined by the maximum log-likelihood
alone.

~MLL=-3 $infp;(x, W)} . (29)

£oljal

The advantage of this approach is to provide
information of the best fit of the activation function
to the training data at hand comparing competing
activation function forms.

(3) Practical procedure

The procedure described in this chapter is only an
example and there may be many alternatives. In
addition, the procedure described here should be
carried out with feedback or simultaneity searching
for an optimal architecture. However, it is almost
impossible or computationally too costly for us to
make a search of all possible subsets of the models.
Thus, from the viewpoint of practical application, it
is to a certain degree reasonable to start by choosing
the number of nodes in the hidden layer and to prune
the connection weights before tuning the activation
function. Then, we choose the model of LNNs which
minimizes AIC.

5. LEARNING PARADIGM OF LAYERED
NEURAL NETWORK

It is known that AIC has a large variance, so that
the proposed procedures are problematic. Given the
architecture of an LNN, it is possible that repeated
training iterations will successively improve the
performance of the LNN on training data, but due to
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the limited number of training data and the presence
of noise, over-training often occurs.

In order. to improve the over-training problem, we
introduce Tikhonov’s regularization.

(1) Tikhonov regularization
Tikhonov’s regularization is a method that
optimizes a function E +y -z(w), where E is the

original error function, z(-) is a smoothing function,

and yis a regularization parameter > . Although there
are obviously many possibilities for choosing the
forms of the smoothing functions, the Euclidean
norm of the parameters is most commonly used.
Thus, in this paper, we adopt it as a smoothing
function.

In case of regression model (22), we can obtain the
modified maximum log-likelihood as follows:

max logA(w,02)= —Elogln —£<--log02
w,a? 2 2
S XW) (- Xw) -y ',
202

(30
yielding

w, =(X'X+y1)_‘lX'y . (31)

Solution (31) is called a Ridge estimator and was
proposed to Least Squares Method by Hoerl and
Kennard 2 . Mean Squared Error (MSE) of the
parameters is defined as:

MSE = E[(wo —w)! (wg - w)] L 3
In case of regression model (20) , MSE is
2 t -1
MSE(wg) =0 tr(X X) . (33)

By introducing Tikhonov's regularization, MSE is
modified as

MSE(w,) = E[(wy -w)'(w, - w)]

. oztr{(X'X ot xx(xex + 71)"}

(34)
Hoerl and Kennard ) show that there always
exists a constant y > Osuch that

/

MSE(w, ) < MSE(w,) . (35)



However, it should be noted that the parameter y
which minimizes MSE depends on unknown
parameter w .

(2) Application of Tikhonov’s regularization to
training algorithm
By using Tikhonov’s regularization method, the
generalization problem of an LNN can be solved by
optimizing function E + y -z(w) analogously.
We adopt the square of the Euclidean norm of
weights w;, ,w,; as a smoothing function. Then, we

. can obtain the modified error function as follows

K

S bixem -, |

{545

The rule of changing the value of weights in the
back-propagation algorithm is also modified as **-29

EG)=5

H I 2 J H 2
+y- hEIE]w,.h + 2 S wi (36)
elia J=

1h=1

old

Wi = wh +n-Awy, 37
W =W e ey, (38)
IE(y) oE
Awy =——F=————y wy , (39
Mip M l (39)
dE(y) JE
Awy = ———"F=———y Wy . (40
j " Py j (40)
or (37), (38) and
oF JE
Aw; —‘%"_;@L"Y'Wih , (41)
ih Wik
O (v) _ _9E4
Awy =———"F=——F—y W, , (42
j oy wy; Whi > (42)
where
. L4
Ectn)=3 3 b (xem) -4 (x0)f
. =
Hi , I H ,
+y- EEWM + E Ewhi . (43)
h=tiz] j=1h=1

A modified back-propagation algorithm based on
Tikhonov’s regularization * for improving the
generalization .ability of an LNN is called weight
decay in some literature >

Needless to say, an ordinary back-propagation
algorithm is considered to be a special type of
algorithm when the penalty parameter y is zero. f we
adopt an optimal regularization parameter y , we
obtain a better weight so that the expected residual
sums of squares might be less. However, as was

explained in the previous section, selecting the best
regularization parameter depends on information on
the value of the true parameter. Thus, there have been
some methods proposed to select appropriate
regularization parameters. One of the most popular
methods among them is to determine the value of a
regularization parameter by testing how it performs
on the validation data set 2.

6. CASE STUDY

In this chapter, we will design an LNN based on the
suggested procedure and apply it to a practical land
cover classification problem.

(1) Study area and data used

The study area is located in Nagakute town, Aichi
prefecture in Japan. Airborne Multi-Spectral Scanner
digital image data of 256 x 256 pixels were acquired
with 12 bands. A pixel size is 6.25 by 6.25 m.

We classified the area into seven classes based on
the land cover by different model sets and tested the
possibilities of practical application of the suggested
techniques for generalization problem.

(2) Experimental results

Figure 2 shows the LNN based remotely sensed
image classification system with 7 nodes in the input
layer and 7 nodes in the output layer. The number of
hidden layer nodes was chosen based on AIC.

Each pixel consists of 12 spectral measurements to
be assigned to one of seven classes. Training data of
1500 pixels and test data of 400 pixels were extracted
from digital ground truth data with the same pixel
size (6.25 by 6.25 m) for all models.

Starting with a model where the numbers of hidden
nodes and output nodes are both 7, eight competing

size sets of LNN were compared. In each competing
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size sets, pruning the connection weights was done
based on AIC. The results are shown in Figure 3.
This indicates that AIC is minimized at the point
where the number of hidden nodes is 4 and the
difference of AIC between an LNN with 4 hidden
nodes and others is more than 30. Consequently, an
LNN with 4 hidden nodes was chosen. ,
Once the size of the nodes in the hidden layer in the
LNN was fixed at 4, competing architecture sets of
different forms of activation function were applied.
Let us stress again that the procedure described in
this chapter is only an example and there may be
many alternatives. Moreover it is desirable that the
procedure is carried out with feedback or
simultaneity searching for the optimal architecture.
However, as it is computationally too costly, we did
not search all possible subsets of the models. The
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Fig. 4 AIC and the form of activation function.

minimized AIC was 131 for the architecture which
adopted the parameter a =-0.8, and 138 for the one
which used the normal sigmoid function (2 =-1.0)
(Fig. 4).

After choosing the appropriate architecture, the
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Fig. 5 The regularization penalty parameter y and the
accuracy for validation data.

best parameter set of the model could be estimated;
this minimizes the modified error function for
validation data with the penalty parameter y =

2.0x107>. Figure 5 shows how introduction of the
penalty term contributes to the generalization of the
LNN and that the improvement of generalization by
Tikhonov’s regularization was notable.

The classification results of the selected
appropriate models at each step were compared with
those of the base model, which has seven nodes in the
hidden layer trained on the standard back-
propagation algorithm. Table 1 shows the
comparison among the results of the competing
models. The left column shows the results of Model
(a) in which the number of hidden nodes and output
nodes are equally 7, and pruning has not been done.
The middle column shows the results of Model (b)
which achieved the minimization of AIC by reducing



Table 1 The comparison among the results.

| @]l ol ©
Number of Input 12
Nodes
Number of Hidden 7 4
Nodes'
a -1.0 -0.8
Parameter -
Y 0 2.0%10°
AIC 246 | 131 | (225)*
Accuracy(%) 85.4 87.2 92,7

* The parentheses shows that 225 is not the value of AIC
properly but the value of corresponding objective function.

the number of hidden nodes and pruning some
connection weights. And the right column shows the
results of Model (c) obtained by applying Tikhnov's
regularization to Model (b).

It is shown that reducing the number of hidden
nodes and pruning the connection weights are
effective for the decrease of the number of
parameters so that the minimization of AIC can be
achieved. The improvement of generalization by
Tikhonov’s regularization is also notable.

7. CONCLUSION

In this paper, we introduced techniques for the
generalization of Layered Neural Networks (LNNs)
and proposed LNN design in the classification of
remotely sensed images.

We discussed the generalization of LNN classifiers,
a controversial and often vague term in the neural
network literature, and introduced some techniques
based on information statistics. Akaike’s Information
Criterion (AIC) was introduced for LNNs taking into
consideration the fact that the output of the LNN,
~ which has been trained with a sufficient number of
training data, is considered as an approximated
estimate of a Baysian posterior probability. Then, we
gave a clear description of LNN generalization from
the viewpoint of architecture design and learning
paradigm based on AIC.

Concerning the architecture design, the size of
network (the number of layers and nodes) and the
type of activation functions are important factors. We
proposed LNN architecture design based on the
minimization of AIC. Concretely, different sized sets
of LNN were trained with pruning, and the number of

hidden nodes and the connections weights between
nodes were determined based on the minimization of
AlC.

Once the architecture is fixed, the behavior of the
trained model depends on the values of the

connection weights. It is known, however, that AIC
has a large variance, so that due to the limited
number of ‘training data and the presence of noise,
over-training often presents problems. We

_introduced Tikhonov’s regularization to overcome

the problem of over-training.

Finally, we designed an LNN classifier based on
the proposed procedure and applied it to a land cover
classification problem. QOur experimental resuits
illustrate the potential of the proposed design
techniques. We believe that the insight gained from
this study is complementary to a more general
analysis for the generalization of feed-forward
layered neural networks based on information
statistics.
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