各種高強度吹付けコンクリートの強度特性
および大断面トンネルにおける試験施工

福留和人1・長沢教夫2・杉山律3・喜多達夫4・笠川幸男5

1正会員 株式会社関組 技術研究所（〒305-0822 窪敷県つくば市洞開字西向515-1）
2正会員 株式会社関組 土木本部 トンネル技術部（〒107-8658 東京都港区北青山2-5-8）
3正会員 株式会社関組 土木本部 技術設計部（〒107-8658 東京都港区北青山2-5-8）
4正会員 工修 株式会社関組 技術研究所（〒305-0822 茨城県つくば市洞開字西向515-1）
5正会員 電気化学工業株式会社（〒100-8455 東京都千代田区有楽町1-4-1）

高強度吹付けコンクリートを適用することによる大断面トンネル施工の合理化・コストダウンの可能性を検証することを目的に大断面トンネルの一部区間で試験施工を行った。なお、試験施工に先だって、適用する高強度吹付けコンクリートの材料・配合を適切に選定するための吹付け実験および高強度吹付けコンクリートの適用による支保部材の低減の妥当性を検証するためのNUMS解析を実施した。その結果、使用材料・配合を適切に選定すれば経済的に高強度化が可能であること、高強度吹付けコンクリートによる支保部材の低減が妥当であることが確認された。また、試験施工時の地山挙動の計測の結果、大きな変状は見られず、高強度吹付けコンクリートの適用により支保部材の低減の可能性が高ことがあることが確認された。

Key Words : high-strength-shotcrete, tunnel support, accelerator, high strength cement additive, superplasticizer, large-scale tunnel, site trial

1. はじめに

山岳トンネルの施工において吹付けコンクリートとロックボルトを主要な支保部材とするNATM工法が我が国に導入されて以来数十年が経過し、山岳トンネルの標準工法として定着している。吹付けコンクリートは、塑性を用いることなく施工できることから地山条件等に応じた柔軟な施工が可能であり、また、岩盤へ直接吹付けるため岩盤との付着性が高く、支保部材として有効な材料・工法として位置づけられる。このようにNATM工法の普及に伴い、吹付けコンクリートに関する技術開発が精力的に進められてきた。機械的には、施工能力の向上、吹付け作業のロボット化等が進められ、また、材料的には、セメント顔料系の水セメント比の開発、粉葉低減剤の開発等が進められ、施工の効率性の向上、吹付けコンクリートの品質向上に大きく貢献している。

以上のように吹付けコンクリート技術自体に大きな進歩が見られるものの、現在使用されている吹付けコンクリートの設計基準強度は、18 N/mm²とされているのがほとんどである。配合的には、単位セメント量360kg/m³の混和材料を使用しないプレーンコンクリートが基本であり、地山等の施工条件にかかわらず同一の品質の吹付けコンクリートが長年に渡って使用されているのが現状である31。

一方、近年の社会・経済の進歩にしたがってトンネル断面の大断面化の要求が高まっており、合理的で経済的なトンネル施工法の確立が大きな課題となっている。これらの検討の中で高強度吹付けコンクリートを有効に利用していくことが検討されている。これにより、トンネルの断面化に伴い吹付けコンクリート厚さが増大することになるが、吹付けコンクリートの高強度化により吹付け厚さの低減、開削断面の低減、ロックボルト・鋼製支保工の低減の可能性があり、これらによるコストダウンおよび工期短縮が期待されていることによる。

以上の様な我が国の状況に対し、ヨーロッパ諸国では、吹付けコンクリートの高強度化・高品質化の研究が進んでおり、高性能緩衝材、シリカフューム、鋼繊維等の混和材料を用いた高強度・高品質の吹付けコ

123
がら、その他の材料を用いた場合と比較検討した研究は十分に行われておらず、シリカフュームがセメントに比べて高価な我が国においてシリカフュームを用いた高強度吹付けコンクリートが経済的に優位であるかどうかの検討は不十分であると思われる。

以上のような背景から、本研究では、高強度吹付けコンクリートを適用することによる大断面トンネル施工の合理化・コストダウンの可能性を検証することを目的に試験施工を実施した。なお、試験施工に先立って、我が国の現状に即した経済的な高強度吹付けコンクリートの目標強度および材料・配合を選定するために、各種材料を組み合わせた配合で吹付け実験を実施し、使用材料および配合が初期強度および長期強度発現性に及ぼす影響を調べた。また、事前にFEM解析を行い、高強度吹付けコンクリートの適用による吹付け厚さの低減、支保部材低減の妥当性を検証した。試験施工は、大断面トンネルである東名高速道路改築日本坂トンネル西工事（断面3130m²）のD1パターンの一部区間に実施し、その時の地山挙動を計測することによって変更した支保パターンの妥当性を確認した。

本論文では、吹付け実験の結果、FEM解析結果および日本坂トンネルにおける試験施工、計測結果について報告する。

2. 各種材料を用いた高強度吹付けコンクリートの強度発現特性に関する実験

(1) 概要
試験施工に先立って、我が国の現状に即した経済的な高強度吹付けコンクリートの使用材料および配合を選定することを目的に、材料を種々組み合わせた配合で吹付け実験を行い、使用材料および配合条件が初期強度・長期強度の発現特性に及ぼす影響を調査した。実験は、日本坂トンネルの下部切羽において実施した。

(2) 実験概要
a) 使用材料
実験に用いた材料の種類および仕様を表-1に示す。セメント、細骨材および粗骨材は、吹付けコンクリートに一般的に用いられているものと同様とした。すなわち、セメントは、普通ポルトランドセメント（以下 OCPと略記）とし、粗骨材の最大寸法は、15mmとした。高強度用混和材として、シリカフューム（非造粒タイプ、以下 SiFと略記）1種類およびカルシウムアルミネート系（以下 CSA系混和材と呼ぶ、CSA I, IIと略記）の混和材2種類を用いた。高性能減水剤は、ポリエチレングリコール系の高性能減水剤（以下、SPと略記）を用いた。急結剤は、セメント鉱物系とし、カルシウムアルミネート系急結剤1種類（以下、CA系急結剤と呼ぶ、QCAと略記）とカルシウムアルミネート系急結剤2種類（以下、CSA系急結剤と呼ぶ、QCSA I, IIと略記）を用いた。なお、CA系急結剤は、現在汎用的に使用されている急結剤であり、一般にセメント鉱物系急結剤と呼ばれている。

ここで、CA系急結剤は、主成分であるCAによるセメント中のCaO、CaS、CaSの水和の促進および急結剤自体の水和によるエトリングサイトあるいはC3AHの急速な生成により急速性を付与されている。CA急結剤は、セメントの水和反応の促進によることで大きく改めた。条件を周辺においても無添加のコンクリートより材積20日程度以降において若干強度低下が見られ、また、添加量の増大とともに初期強度は改善されるものの長期強度が低下する傾向にある。
一方、CSA系急結剤は主成分のCaO-S03-Al2O3自体の水和反応により急速にエトリングサイトが生成することにより急速性を付与されている。この急結剤は、急結剤自体が水和反応するため長期強度の発現性に優れ、また、添加量の増大とともに初期強度、長期強度とも改善される。ただし、CSA系急結剤および同様の急速性を確保するためには、1.5倍程度の添加量が必要となる（参考文献）。この場合、C, S, A2およびHは、それぞれCaO, SiO2, Al2O3およびH2Oである。

b) コンクリートの配合
実験に用いたコンクリートの配合を表-2に示す。細骨材率は、結合材量450kg/m³以下の場合62%
<table>
<thead>
<tr>
<th>配合No.</th>
<th>配合条件</th>
<th>水セメント比 W/P (%)</th>
<th>納骨材率 (%)</th>
<th>混合材の種類</th>
<th>急結剤の種類</th>
<th>単位量 (kg/m³)</th>
<th>添加剤 (対結合材重量 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 6 0</td>
<td>6 2</td>
<td>QCA</td>
<td>217</td>
<td>360</td>
<td>1053 662</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>2 5 0</td>
<td>6 0</td>
<td></td>
<td>180</td>
<td>360</td>
<td>1114 699</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>3 4 0</td>
<td>6 0</td>
<td></td>
<td>180</td>
<td>450</td>
<td>1032 705</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>4 3 5</td>
<td>6 0</td>
<td></td>
<td>175</td>
<td>500</td>
<td>1017 691</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>5 5 0</td>
<td>6 2</td>
<td>QCSA I</td>
<td>180</td>
<td>360</td>
<td>1114 699</td>
<td>1.1</td>
<td>10.0</td>
</tr>
<tr>
<td>6 4 0</td>
<td>6 0</td>
<td></td>
<td>180</td>
<td>450</td>
<td>1032 705</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>7 3 5</td>
<td>6 0</td>
<td>SiF</td>
<td>173</td>
<td>450 45</td>
<td>1011 691</td>
<td>1.3</td>
<td>7.0</td>
</tr>
<tr>
<td>8 3 7</td>
<td>6 0</td>
<td>CSA I</td>
<td>178</td>
<td>450 32</td>
<td>1017 694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 3 5</td>
<td>6 0</td>
<td>SiF</td>
<td>173</td>
<td>450 45</td>
<td>1011 691</td>
<td>1.3</td>
<td>10.0</td>
</tr>
<tr>
<td>10 3 7</td>
<td>6 0</td>
<td>CSA I</td>
<td>178</td>
<td>450 32</td>
<td>1017 694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 3 7</td>
<td>6 0</td>
<td>CSA II QCSA II</td>
<td>183</td>
<td>450 45 45</td>
<td>1001 683</td>
<td></td>
<td>10.0</td>
</tr>
</tbody>
</table>

*）P：単位結合材量を示す。すなわち、P = C + SF + CSA I + CSA IIである。

450kg/m³以上の場合60%を示す。スランプの目標値は、水結合材比の低減に伴う粘性の増大を考慮して水結合材比に応じて設定し、高性能減水剤の添加量により調整した。すなわち、水結合材比60%の場合8±2cm、50%の場合18±2cm、40%以下の場合20〜25cmを目標とした。空気は特に運行させず、1.0〜3.0%を目標とした。

急結剤の添加量は、長期温度だけでなく期強度も高強度化を図るため、すべての配合で結合材量に対する添加量を一定とし、CSA系の場合7%，CSA系の場合10%とした。

それらの配合の概要は、以下のとおりである。

①配合No. 1 (OPC+QCA)
現在のNATMの吹付けコンクリート用に用いられている標準的な配合である。すなわち、単位セメント量を360kg/m³とし、高性能減水剤を用いることなく単位水量で所要のスランプを調整した配合である。急結剤は、CA系である。

②配合No. 2〜4 (OPC+SP+QCA)
急結剤は、CA系とし、高性能減水剤を用いて、水セメント比を低減した配合である。水セメント比は、50、40および35%の3水準とした。

③配合No. 5、6 (OPC+SP+QCSA I)
②の2配合（水セメント比50および40%）で、急結剤にCSA系を用いた。

④配合No. 7、9 (OPC+SiF+SP)
混和材としてシリカフェームを用い、高性能減水剤により水結合材比を製造・施工上限界と考えられる値まで低減した配合である。急結剤は、CA系とCSA系の2種類の急結剤を用いた。

⑤配合No. 8、10 (OPC+CSA I)
④と同様の考え方で、混和材としてCSA系混和材を用いた配合である。なお、この混和材には、減水剤成分が含まれているため高性能減水剤は、用いていない。急結剤は、④と同様2種類用いた。

⑥配合No. 11 (OPC+CSA II+QCSA II)
材齢1時間以内の初期強度発現性および長期強度を大幅に改善させることを目的に開発された材料の組合せである。

c）コンクリートの製造および運搬
コンクリートは、吹付けコンクリート専用のコンクリートプラント（圧入）で製造した。ミキサは、容量0.5m³の2軸強制型ミキサである。1回当りの吹付け量は、2.0m³とし、1パッチの練混ぜ量0.5m³として、計4パッチ製造した。材料は、一括投入し、水、セメントおよび骨材以外の材料は、各バッチ毎に投入した。練混ぜ時間は、全材料投入後60秒間とした。コンクリートの運搬には、容量6m³のアジテータトラックを使用した。コンクリートプラントから実験場所までの運搬時間は、10分程度であり、製造から吹付けまでの時間は、最短で10分、最長で30分程度であった。

d）吹付け機械および吹付け方法
吹付けには、ロータリ型の空気圧送方式の吹付け機械を用いた。公称最大吹付け能力は、20m³/hrであり、試験時の吹付け速度は、8.0m³/hrを目標とした。コンクリートの圧送には、内径2.5インチのマテリアルホース（20m）を用い、ノズルと吹付け面の距離は、1.5m程度、角度は、90°程度とした。急結剤は、ノズルから2.0mの位置で角度45°のY字形により混合した。実験時は、実吹付け速度を把握するために、吹付け後に要する時間を測定した。
表-4 品質管理試験結果および吹付け状況

<table>
<thead>
<tr>
<th>配合No</th>
<th>配合条件</th>
<th>混和材の種類</th>
<th>急結剤の種類</th>
<th>品質管理試験結果</th>
<th>吹付け性状</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>プラント</td>
<td>現場</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>シガレット温度/℃</td>
<td>スランプ(cm)</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>62</td>
<td>QCA</td>
<td>24.0</td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td></td>
<td></td>
<td>21.0</td>
<td>16.0</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>60</td>
<td></td>
<td>22.0</td>
<td>21.0</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td></td>
<td></td>
<td>25.0</td>
<td>24.0</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>62</td>
<td>QCSA I</td>
<td>22.0</td>
<td>18.0</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>60</td>
<td></td>
<td>23.5</td>
<td>21.0</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>60</td>
<td>SiF</td>
<td>20.0</td>
<td>23.0</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
<td></td>
<td>CSA I</td>
<td>21.0</td>
<td>23.5</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td></td>
<td>SiF</td>
<td>24.5</td>
<td>18.0</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
<td></td>
<td>CSA I</td>
<td>23.5</td>
<td>20.5</td>
</tr>
<tr>
<td>11</td>
<td>37</td>
<td></td>
<td>CSA II</td>
<td>24.0</td>
<td>25.5</td>
</tr>
</tbody>
</table>

表-3 試験項目および試験方法

<table>
<thead>
<tr>
<th>試験項目</th>
<th>試験方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>スランプ</td>
<td>JIS A 1108(供体時,吹付け前)</td>
</tr>
<tr>
<td>スランプフロー</td>
<td>JISCE F 503-1990による. (吹付け前)</td>
</tr>
<tr>
<td>空気量</td>
<td>JIS A 1118(供体時,吹付け前)</td>
</tr>
<tr>
<td>温度</td>
<td>樟炭温度計による.</td>
</tr>
<tr>
<td>初期強度</td>
<td>JISCE G561(引抜き試験)による. (材齢1,3,8,24時間)</td>
</tr>
<tr>
<td>压縮</td>
<td>ベース JIS A 1108(材齢7,28,91日)</td>
</tr>
<tr>
<td>強度</td>
<td>吹付け コア供体材(材齢7,28,91日)</td>
</tr>
<tr>
<td>細孔径分布</td>
<td>水銀圧入式ポロメータによる</td>
</tr>
</tbody>
</table>

e) 試験項目および試験方法

表-3に試験項目および試験方法を示す。

①初期強度試験
JISCE G561に準じて引抜き試験によりせん断強度を引抜き強度として求め、換算係数4.0として、圧縮強度に換算した。

②圧縮強度試験
ベースコンクリートは、φ10×20cmの木製管を用い、コンクリートブロックでJIS A 1132に準じて突起管を用いて作製した。吹付けコンクリートの供体材は、JISCE G561に準じて作製した。型枠は、50×50×15cmの木製型枠（板厚:15mm）とし、角度70°程度で岩盤に立てかけた。材齢1日後φ5×10cmの供体材をコアポーリングにより採取した。1材齢当たりの供体試体数は、3本とした。コア供体の養生は、20℃の標準水中養生とした。

③細孔径分布
材齢28日においてコア供体試体のモルタル部分から2.5〜5.0mmの試験片を採取し、アセトン浸せき後減圧乾燥させて測定に供した。

（3）実験結果および考察
a) フレッシュコンクリートの性状および施工性
表-4にフレッシュコンクリートの品質管理試験結果および吹付け速度の測定結果を示す。吹付け速度は、設定した吹付け速度より若干小さいものが2ケースあったが、ほぼ目標通りの吹付け速度となっていない。なお、水結合材比の低減に伴うコンクリートの粘性の増加により吹付け時の圧送負荷が増大し、施工不能となることが懸念されたため、水結合材比の小さい配合では、あらかじめスランプの設定値を大きくした。すなわち、水結合材比40%以下では、スランプの目標値を20〜25cmとした。このことによりいずれの配合においても吹付け可能であった。しかしながら、水結合材比が40%を下回る配合では、若干脈動を起こす配合も見られた。これらの配合を実用に適用する場合には、大気施工となるため吹付け速度の低下、閉塞等を引き起こすことも懸念されるため、実施工に適用する場合には、吹付け機械を含めた全体的なシステムの検討も必要と考えられる。
b) 初期強度発現特性

図-1および図-2に材齢と換算圧縮強度の関係を示す。図-3および図-4にそれぞれ水結合材比と材齢3および24時間における換算圧縮強度の関係を示す。

OPC単味でCA系急結材を用いた場合、高性能減水剤を用いて水セメント比を低減することによって初期材齢（材齢1〜8時間）の強度発現性を改善することが可能である。しかしながら、材齢8から24時間の強度増進は、ほとんど見られない。OPC単味で急結材にCA系の急結材を用いた場合も初期強度の発現性は良好である。また、水セメント比によって若干差が見られるが、CA系急結材に比べて材齢8時間から24時間の強度増進も大きい。

シリカフュームあるいはCSA系混和材を用いた場合、材齢8時間以内の強度発現性において水結合材比を低減した効果は見られるが、その効果はセメント単味の場合とほぼ同程度であり、混和材添加の効果はほとんど見られない。材齢24時間においては、セメント単味の場合に比べて高い強度が得られており、強度改善効果が見られる。また、CA系急結材の方がやや高い強度が得られているが、その差はほとんど見られない。

CSA系混和材およびCA系急結材を組合せた場合（配合No. 11, CSA II + QC SAI II）、1時間以内の極初期材齢の強度発現性を大幅に改善することができる。ただし、材齢3〜24時間は、他の配合に比べて優位性は見られない。

以上の結果をまとめると以下のようになる。
①材齢8時間以内の強度発現性は、水結合材比に大きく影響され、急結材の種類、高強度用混和材の有無の影響は小さい。
②材齢24時間においては、使用材料の影響が大きく、CSA系急結材および高強度用混和材の効果が見られる。

c) 長期強度発現特性

図-5および図-6に材齢と圧縮強度の関係、図-7に水結合材比と圧縮強度の関係、図-8に水結合材比と圧縮強度（ベースコンクリートの圧縮強度に対する吹付けコンクリートの圧縮強度の比率）の関係を示す。

OPC単味でCA系急結材を用いた場合、材齢7日以降の圧縮強度の伸びは小さく、また、水セメント比の低減による強度改善効果はほとんど見られない。したがって、ベースコンクリートに対する圧縮強度比は、水セメント比の低減に伴って徐々に低下する傾向が見られる。

一方、CA系の急結材を用いた場合、OPC単味でも強度発現性は良好であり、材齢28日において39〜48
N/mm²と高い強度が得られている。また、水セメント比を低減する効果も見られる。圧縮強度比も水セメント比に関わらず70〜80%と高い値となっている。

シリカフュームやCSA系混和材を用いた場合、OPC単味に対して強度改善効果が見られる。CA系急結剤を使用した場合、材齢28日で38〜46 N/mm²、さらに、CSA系急結剤を用いた場合には、材齢28日で60 N/mm²を超えるレベルまで高強度化が可能である。

以上の結果をまとめると以下のようなになる。
①CA系急結剤を用いた場合、水セメント比を低減しても強度改善はほとんど見られない。これは、水セメント比の低減効果が初期の水和促進に大きく現れ、そのことが長期的な水和の進行を阻害するためではないかと推察される。
②CSA系急結剤を用い、水セメント比を低減することで高強度用混和材を用いた場合と同等のレベルまで高強度化が可能である。
③高強度用混和材を用いることで高強度化が可能であり、CSA系急結剤と組合せるとさらに高強度化が可能である。

d）細孔径分布
コンクリートの力学的特性や耐久性は、微細組織と密接な関係があることが知られている。しかしながら、吹付けコンクリートに関しては、ほとんど検討されていない。そこで材齢28日においてコア供試体から採取したモルタル部分を試料として細孔径分布の測定を行った。

図-9に水結合材比と半径5nm以上の細孔量の関係を示す。

OPC単味でCA系急結剤を用いた場合、他の材料の組合せに比べて組織が粗であり、また、水セメント比の低減による組織の緻密化がほとんど見られない。シリカフューム、CSA系混和材の添加により総細孔量は低減されているが、その効果はさほど大きくな。それに対し、OPC単味の場合、高強度用混和材を用いた場合いずれも、CSA系急結剤を用いることで総細孔量は大幅に低減しており、微細組織の緻密化が見られる。

図-10に半径5nm以上の細孔量と材齢28日の圧縮強度の関係を示す。通常のコンクリートと同様1,2)、半径5nm以上の細孔量と圧縮強度の間には高い相関関係が見られる。

以上の結果から、以下のことが考察される。
①OPC単味でCA系急結剤を用いた場合、材齢初期で急激に水和反応が生じるため、その後の材齢の経過に伴う水和の進行に影響を与える。この傾向は、水セメント比が小さくなるほど大きく、初期強度が改善される反面、長期強度の発現性が小さくなる。
果を考慮した場合、材齢24時間以内の強度発現性が重要である。このような観点から材齢8時間における初期強度についても規定することとした。なお、初期強度の設定に当たっては、厳密な検討を要するが、ここでは、材齢28日における設計基準強度を確保できる強度レベルにおいて達成可能な強度およびオーストリアのガイドラインにおける若材齢での強度規準を参考に暫定的に目標強度を設定した。

フレッシュコンクリートの要求品質は、現場実験の結果から施工性を考慮して暫定的に選定した。

表5に吹付けコンクリートの要求品質を示す。

3. 高強度吹付けコンクリートの目標強度および使用材料・配合の選定

（1）概念
2. の吹付け実験の結果をもとに、試験施工に用いる高強度吹付けコンクリートの目標強度および使用材料・配合を経済性・施工性を考慮して選定した。

（2）高強度吹付けコンクリートの要求品質
吹付け実験の結果、材料・配合を適切に選定することによって材齢28日におよそ60N/mm²を超えるレベルまで高強化できることがわかった。しかしながら、この強度は、現状の技術における限界の強度レベルであり、コストおよび施工性の観点から現状では実用化のメリットは小さいと言える（表6参照）。このことから、ここでは設計基準強度として、現状の吹付けコンクリートの2倍である56N/mm²に設定することとすら。なお、初期強度は、従来の吹付けコンクリートでは、材齢24時間についてのみ規定される場合が多いが、吹付けコンクリートの支保効果を考慮した場合、材齢24時間以内の強度発現性が重要である。このような観点から材齢8時間における初期強度についても規定することとした。なお、初期強度の設定に当たっては、厳密な検討を要するが、ここでは、材齢28日における設計基準強度を確保できる強度レベルにおいて達成可能な強度およびオーストリアのガイドラインにおける若材齢での強度規準を参考に暫定的に目標強度を設定した。

フレッシュコンクリートの要求品質は、現場実験の結果から施工性を考慮して暫定的に選定した。

表5に吹付けコンクリートの要求品質を示す。

（3）高強度吹付けコンクリートの配合選定
一般的なコンクリートの配合では、設計基準強度および品質のばらつきを考慮して設計基準強度を下回る確率がある値以下となるように配合強度を定める必要がある。しかし、それを満足するように使用材料、水セメント比等を選定するという手順を踏む。これに対し、現状の吹付けコンクリートでは、ほとんどの場合設計基準強度は18N/mm²であり、単位セメント量が先に規定されている。施工性を満足するように単位水量および細骨材率を適切に選定するという手順が一般的となっている。しかしながら、今後、吹付けコンクリートの高強化によるトンネル施工の合理化を進めるためには、品質保証の観点のみならず経済性を考慮した配合設計手法を確立することが望まれる。現時点では、高強度吹付けコンクリートの施工事例は少なく、品質変動に関する資料は十分に得られていないが、ここでは、これまでの施工例を参考に、暫定的に変動係数14%として配合を定めることとする。

コンクリート標準示方書から割増し係数αは、以下の式により算定した。ここで、一般的のコンクリートと同様、設計基準強度を下回る確率は、5%以下とした。

\[
\alpha = 1/ (1 - 1.64 \times V/100)
\]

ここで、\(\alpha \): 割増し係数, \(V \): 変動係数 (％)
表-6 各配合の経済評価

<table>
<thead>
<tr>
<th>配合No</th>
<th>配合条件</th>
<th>コスト増（増分／No.1配合のコスト）</th>
<th>圧縮強度特性</th>
<th>経済</th>
<th>比</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水結合材比（％）</td>
<td>混合材の種類</td>
<td>焦結剤の種類</td>
<td>セメント</td>
<td>混合材</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>QCA</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>QCA</td>
<td>0.000</td>
<td>0.000</td>
<td>0.088</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>QCA</td>
<td>0.069</td>
<td>0.000</td>
<td>0.110</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>QCSA1</td>
<td>0.108</td>
<td>0.000</td>
<td>0.145</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>QCSA1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.088</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>QCSA1</td>
<td>0.069</td>
<td>0.000</td>
<td>0.110</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>SIF</td>
<td>0.069</td>
<td>0.554</td>
<td>0.144</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
<td>CSA1</td>
<td>0.069</td>
<td>0.606</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>SIF</td>
<td>0.069</td>
<td>0.554</td>
<td>0.144</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
<td>CSA1</td>
<td>0.069</td>
<td>0.606</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>37</td>
<td>CSA1</td>
<td>0.069</td>
<td>0.865</td>
<td>0.000</td>
</tr>
</tbody>
</table>

*) 経済評価＝（No.1配合の圧縮強度に対する比）／（No.1配合のコストに対する比）

表-7 吹付けコンクリートの配合

<table>
<thead>
<tr>
<th>水結合材比（％）</th>
<th>粗骨材率（％）</th>
<th>水セメント比</th>
<th>細骨材C</th>
<th>粗骨材S</th>
<th>高性能減水剤</th>
<th>射出法改良剤</th>
<th>40 60</th>
<th>180</th>
<th>450</th>
<th>1032</th>
<th>705</th>
<th>1.1</th>
<th>1.0</th>
</tr>
</thead>
</table>

割り増し係数を算定すると1.30となり、配合強度は、46.8N/mm²となる。
表-6に各配合の経済評価を行った結果を示す。ここでは、水セメント比の低減および高強度用混和材の添加に伴うコンクリートの粘性の増加により仮返りが低減するが、測定上のばらつきが大きく、現状ではコスト評価の上で妥当な数字を与えることは困難と考えられる。そのため、リバウンド率は一定として材料費のみの比較を行うこととした。この結果から、上記配合強度を満足する配合、すなわち配合No.1に対する圧縮強度比で2倍程度を満足し、かつ、コストパフォーマンスの高い配合を選定した。選定した配合は、表-2のNo.6であり、OPC単独で水セメント比を40％とし焦結剤にCSA系焦結剤を使用した配合である。本配合によれば、高性能減水剤の添加装置を設置するだけで対応可能であり、プラント設備の観点からも有利であると言える。

表-7に選定したコンクリートの配合を示す。

4. FEM解析による高強度吹付けコンクリートの大断面トンネルへの適用性の検証

（1）概要
高強度吹付けコンクリートの適用による大断面ト

（2）倉庫パターン変更案の選定
吹付けコンクリートの設計基準強度を18N/mm²から36N/mm²に高強度化したときの支保部材の低減について検討した。変更案の選定に当たっての方針は、以下のとおりである。
①吹付けコンクリート厚さを20cmから15cmに低減する。吹付けコンクリートの厚さに合わせて鋼製支保工をH-150に降線ダウサンする。
②ロックボルトについては、その延長が支保機械に及ぼす効果を厳密に評価する必要があるが、延長6mのロックボルトは、モルタルの充填性の観点、施工サイクルの大幅な遅延等、施工上の問題点も多い。このような観点から、ロックボルト長を6mから4mに低減することの可能性を検討することとした。
表-8に選定した支保パターンの変更案を示す。

（3）変更支保パターンの経済性評価
表-9に変更支保パターンの経済性の評価結果を示す。ここで、コスト増減の算定には、各支保部材の直接工事単価の増減のみを考慮し、トンネル掘削断面の低減およびズバリ処理費の低減は考慮していない。すなわち、吹付けコンクリートは、材料費の増減、鋼製支保工は、1基当たりの材料費および設置費の
表-8 支保パターン変更案

<table>
<thead>
<tr>
<th>支保部材</th>
<th>原設計</th>
<th>変更案</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガイドレール長（m）</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>ロックボルト長さ（m）</td>
<td>6.0</td>
<td>4.0</td>
</tr>
<tr>
<td>ボルト径（m）</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>鋼製支保工</td>
<td>H-200</td>
<td>H-150</td>
</tr>
<tr>
<td>吹付け厚（cm）</td>
<td>2.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

表-9 変更支保パターンの経済性評価

<table>
<thead>
<tr>
<th>支保部材</th>
<th>コスト増減（増分／m当りの単価）</th>
</tr>
</thead>
<tbody>
<tr>
<td>吹付けコンクリート</td>
<td>＋0.027</td>
</tr>
<tr>
<td>鋼製支保工</td>
<td>－0.037</td>
</tr>
<tr>
<td>ロックボルト</td>
<td>－0.034</td>
</tr>
<tr>
<td>合計</td>
<td>－0.044</td>
</tr>
</tbody>
</table>

増改、ロックボルトは、1m当たり25本の材料費および施工費の増改を考慮した。m当たりの単価の合計は、削除から二次工事までの直接工事単価の合計とした。なお、吹付けコンクリートのはね返り率は、一定とした。

表に示すように、高強度吹付けコンクリートを用いることで吹付けコンクリート自体の施工コストは増加するが、他の支保部材を低減することで全体的には、コストダウンを図ることが可能である。さらに、吹付け厚さの低減、それに伴う掘削断面の低減および他の支保部材の低減に伴う施工サイクルの短縮も可能であり、トンネル施工の工期短縮の上でも有効であると言える。

(4) FEM解析による妥当性の検証

a) 概要

(2)で示した支保パターンの妥当性を検証するためにFEM解析を行った。そこで、変更した支保パターン自体の妥当性を検証するためには、地山のシミュレーションによる不連続性を考慮した厳密な解析（UDEC等）が必要となると考えられる。しかしながら、地山の変形を正確に把握し、解析に反映するのは、現状では困難である。そこで、原設計の支保パターンが支保部材として設計上妥当であることを前提とし、変更案が同等の支保効果を有しているかどうかの確認を行うことを主目的に解析を行うこととした。解析手法は、原設計と変更案の比較であることから、解析の容易性を考慮して岩盤を構造体と仮定した線形FEM解析とした。

b) 解析モデル、地盤および各部材の物性値

図-11に解析モデルを示す。また、表-10に解析上の岩盤および各部材のモデルを、表-11に地盤定数および各部材のヤング係数を示す。

解析は、平面2次元モデルとし、解析範囲は、トンネル上部は地殻部分、下部は4D、側部は5Dとした（D：トンネル直径）。

ここで、吹付けコンクリートのヤング係数は、圧縮強度から式(2)により算定した。なお、解析においては若材齢であることを考慮して、算定された値の1/2に低減した値を用いた。

\[E = 1, 409 \times \rho^{0.5} \times F_c^{0.5} \quad (2) \]

ここで、E：ヤング係数(N/mm²)，ρ：比重，F_c：圧縮強度(N/mm²)である。
表-10 地盤および各部材のモデル化

<table>
<thead>
<tr>
<th>部材・境界</th>
<th>モデル化</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>周辺地盤</td>
<td>平面ひずみ要素</td>
<td></td>
</tr>
<tr>
<td>ロックポルト</td>
<td>トラス要素</td>
<td>線形弾性体と仮定</td>
</tr>
<tr>
<td>コンクリート</td>
<td>合成した</td>
<td></td>
</tr>
<tr>
<td>鋼製支保工</td>
<td>ビーム要素</td>
<td></td>
</tr>
<tr>
<td>地山と図28の幅間のすべり</td>
<td>考慮せず</td>
<td></td>
</tr>
<tr>
<td>鋼製支保工の継手</td>
<td>剛結合と仮定</td>
<td></td>
</tr>
</tbody>
</table>

表-11 地盤定数および各部材のヤング係数

<table>
<thead>
<tr>
<th>地 盤 定 数</th>
<th>単位容積重量γ（ton/m³）</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>变形係数E（N/mm²）</td>
<td>1.00 × 10⁶</td>
<td></td>
</tr>
<tr>
<td>ポアソン比</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>粘着力C（N/mm²）</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>内部摩擦角θ（deg）</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>ロックポルト</td>
<td>ヤング係数（N/mm²）</td>
<td>1.94 × 10⁸</td>
</tr>
<tr>
<td>鋼製支保工</td>
<td>ヤング係数（N/mm²）</td>
<td>2.10 × 10⁶</td>
</tr>
<tr>
<td>吹付け コンクリート</td>
<td>ヤング係数（N/mm²）</td>
<td>1.00 × 10⁶</td>
</tr>
<tr>
<td></td>
<td>原設計</td>
<td></td>
</tr>
<tr>
<td></td>
<td>高強度</td>
<td>1.50 × 10⁶</td>
</tr>
</tbody>
</table>

表-12 解析結果一覧

<table>
<thead>
<tr>
<th>項 目</th>
<th>原設計</th>
<th>変更案</th>
</tr>
</thead>
<tbody>
<tr>
<td>内空変位（mm）</td>
<td>天端変位</td>
<td>20.6</td>
</tr>
<tr>
<td>水平変位</td>
<td>8.0</td>
<td>8.6</td>
</tr>
<tr>
<td>鉄筋圧力最大力（10N）</td>
<td>12.37</td>
<td>14.44</td>
</tr>
<tr>
<td>鉄筋圧力（N/mm²）</td>
<td>吹付け コンクリート</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>鋼製支保工</td>
<td>274.7</td>
</tr>
<tr>
<td>周辺地盤のひずみ</td>
<td>最大0.4%程度で両者のひずみ分布に大きな差はない。</td>
<td></td>
</tr>
</tbody>
</table>

5．大断面トンネルにおける試験施工

(1) 概要
経済性評価およびFEM解析の結果、支保バター
ン変更案の妥当性が確認されたことから、変更支保
バーターによる高強度吹付けコンクリートの試験施
工を実施した。試験施工は、大断面トンネルである
東名高速道路（改築）日本坂トンネル西工作（３号
線、開削断面積：130m²）のDⅠバー部分の一部区
間（施工区間：20m、坑口から約1,350m位置）で
実施した。試験施工では、高強度吹付けコンクリー
トの施工性および品質を確認するとともに地山挙動
計測により変更支保バーターの妥当性を確認した。

(2) 施工性および品質管理試験結果
高強度吹付けコンクリートの品質のばらつきを確
認するために、フレッシュコンクリートの品質、初
期強度および長期強度の測定を行った。採取したデー
タ数は、n＝12個である。表-13に品質管理試験
結果の一覧を、图-12、图-13に初期強度および長期
強度の品質管理試験結果を示す。图-14に材質と圧
縮強度の変動係数の関係を示す。
フレッシュコンクリートの品質は、暫定的に選定
した目標品質を満足しない結果も得られたが、この
範囲において問題なく施工することができた。硬化
後の品質は、それぞれの材質においても目標品質を満
足する結果が得られた。硬化後の品質変動は、若材
齢時ほど大きく、材質の経過にしたがって小さくなる
傾向が見られる。これは、試験方法自体の精度の
差異および環境温度の影響と考えられる。图-15に
線上温度と材齢8時における換算圧縮強度の関
係を示す。图に示すように、若材時の大気温度と線上
温度の間には高い相関が見られる。今回は、実
表-13 品質管理試験結果一覧（データ数：n = 12）

<table>
<thead>
<tr>
<th>項目</th>
<th>フレッシュコンクリート</th>
<th>初期強度（N/mm²）</th>
<th>長期強度（N/mm²）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>コンクリート気温（℃）</td>
<td>スランプ（cm）</td>
<td>スランプフロー（cm）</td>
</tr>
<tr>
<td>目標品質</td>
<td>20.0 ± 2.0</td>
<td>35 ～ 45</td>
<td>50 <</td>
</tr>
<tr>
<td>平均値</td>
<td>25.2</td>
<td>21.1</td>
<td>40.9</td>
</tr>
<tr>
<td>最大値</td>
<td>30.0</td>
<td>25.0</td>
<td>58.0</td>
</tr>
<tr>
<td>最小値</td>
<td>20.0</td>
<td>19.0</td>
<td>27.5</td>
</tr>
<tr>
<td>標準偏差</td>
<td>1.7</td>
<td>9.3</td>
<td>1.9</td>
</tr>
<tr>
<td>変動係数（%）</td>
<td>7.9</td>
<td>27.5</td>
<td>36.5</td>
</tr>
</tbody>
</table>

図-12 品質管理試験結果（初期強度）

図-14 試験材齢と変動係数の関係

図-13 品質管理試験結果（長期強度、材齢28日）

図-15 練り上がり温度と初期強度の関係（材齢8時間）

季から秋季にかけての試験データであり、冬季においてはさらに品質のばらつきが大きくなる可能性がある。したがって、品質の安定化を図るためには、季節毎の材料・配合選定の検討も必要とされる。そこで、材齢28日における変動係数は、11.6%であり、吹付けコンクリートとしては、比較的小さい。これは試験施工のため良好な管理ができ、たことによると考えられ、配合強度測定時に設定した変動係数（14%）は、実際の施工時の管理状態を考慮した場合、ほぼ妥当な値と考えられる。

（3）計測概要
　変更した支保パターンの妥当性を確認するために計測を行った。図-16に計測位置図を示す。計測位置は、天端、断面2箇所および側面2箇所の計5箇所とした。以下、各計測概要を示す。

a）天端線および内空変位
　計測断面の所定位置に設置したターミナルの変位を3次元測定装置を用いて測定した。

b）ロックボルト軸力
　鋼を加工したロックボルトにひずみゲージを渡方向に5断面（0.5, 1.5, 2.5, 3.5および3.9m）, 各断面2枚装貼し、ロックボルトの発生ひずみ、断面積およびヤング係数から軸力を算定した。

c）吹付けコンクリートおよび鋼製支保工応力
　吹付けコンクリートの応力は、有効応力計により測定した。計測位置は、鋼製支保工の中立軸位置とした。鋼製支保工の応力は、ウェブの両面の対称位置に貼付したひずみゲージ（中立軸から地山側および内空側に50mmの位置）により計測されるひずみにお
（4）計測結果および考察

表-14に計測結果のまとめを示す。

ここで、上半切羽の進行は、3.4m／日であり、34日後に工区終点（計測位置から115m）に到達した。また、上半掘削開始から30日後に下半掘削を開始し、45日後に工区終点に到達した。

a）天端沈下および内空変位

図-17に天端沈下および水平変位の経時変化を示す。計測開始から約30～35日後まで切羽の進行とともに徐々に増加しているが、上半掘削が終了する時点で天端沈下量15mm、水平変位10mmでほぼ収束している。

b）ロックボルト軸力

図-18にそれぞれロックボルト軸力最大値の経時変化を、図-19にロックボルト軸力最大値の分布を示す。右側部を除いて深さ1～3mの位置で最大軸力が作用しており、長さ4mのロックボルトとして合理的な軸力分布となっている。いずれの位置も、掘削後数日で収束している。右側部は、ボルト頭部に近い位置で最大となっており、また、一部干渉破面が作用している。これらは、局部的な地盤のゆるみの影響と思われる。なお、側部のロックボルト軸力が20～40日間で増大しているのは、下半掘削（30日後に開始）の影響である。

c）吹付けコンクリートおよび鋼管支保応力

図-20および図-21にそれぞれ吹付けコンクリート応力および鋼管支保応力の経時変化を示す。吹付けコンクリートには、天端において最大14N/mm²程度の圧縮応力が発生している。鋼管支保には、右側部を除いて全体に圧縮応力が作用しており、その最大値は、850N/mm²程度である。ここで、右肩部は、内側に引張応力が発生しており、ロックボルトの軸力の測定結果と同様、局部的な地盤のゆるみの兆候が見られる。

d）周辺地盤のひずみ

図-22にひずみの最大値の綫時変化を図-23にひずみの終端値の変化の分布を示す。上半および下半の切羽進行に伴うひずみの増大は、いずれも約10日程度で収束している。右側部は、表面近くにおいにひずみ量は最大となっているが、他部は深さ2～3mにおいて最大となっており、全体的な地盤のゆるみ領域は、3～4m程度を推定する。右側部は、部分的に地盤のゆるみが生じている兆候が見られ、この傾向は、前述のロックボルト軸力および鋼管支保応力の測定結果にも現れている。ただし、いずれの位置でも上半・下半両側10日程度で収束しておき、上記の地盤のゆるみは、部分的なものであり、トンネル全体の安定性状は特に問題となるほどのゆるみではないと考えられる。

e）計測結果のまとめ

部分的な地盤のゆるみの影響は見られなかったが、各測定値の絶対値あるいは経時的な収束傾向において危険な兆候は見られなかった。また、FEMによる解析結果（表-12参照）と現場における計測結果は、オーダー的におおむね一致している。

（5）試験施工のまとめ

試験施工において、適用した高強度吹付けコンクリートの品質は、ばらつきも小さく目標品質を十分満足し、また、現場計測の結果もおおむね妥当な結果であった。しかしながら、地山条件の変動、現場計測のばらつき、岩盤を係数体と仮定したFEM解析の精度の信頼性の問題等から、今回の結果から高強度吹付けコンクリートの適用による支保材材低域の妥当性を結論付けることはできない。今後、さらに現場におけるデータの収集を行うとともに、精度の高い解析による検証を行うことが必要である。

いずれにせよ、高強度吹付けコンクリートの適用によるトンネル施工の合理化・コストダウンの可能性は、高いと言え、今後さらに検討を進めていくことが望まれる。
表-14 計測結果のまとめ

<table>
<thead>
<tr>
<th>計測項目</th>
<th>計測結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>内空変位</td>
<td>天端変位 15mm でほぼ収束</td>
</tr>
<tr>
<td>水平変位</td>
<td>10mm でほぼ収束</td>
</tr>
<tr>
<td>ロックボルト最大応力</td>
<td>7.5 ～ 17.4 (10^5N)</td>
</tr>
<tr>
<td>発生応力</td>
<td>吹付けコンクリート 最大 13.3 (N/mm²)</td>
</tr>
<tr>
<td>鋼製支保工</td>
<td>200 ～ 300 (N/mm²)</td>
</tr>
<tr>
<td>周辺地盤</td>
<td>ゆるみ領域 3.0 m程度</td>
</tr>
<tr>
<td>のひずみ</td>
<td>ひずみ 0.08 ～ 0.66 %</td>
</tr>
</tbody>
</table>

図-17 天端沈下および内空変位の経時変化

図-18 ロックボルト軸力最大値の経時変化

図-19 ロックボルト軸力終局値の深さ方向の分布

図-20 鋼製支保工応力の経時変化

図-21 吹付けコンクリート応力の経時変化

図-22 周辺地盤ひずみの最大値の経時変化

図-23 周辺地盤ひずみの終局値の深さ方向の分布
6．結論

高強度吹付けコンクリートを適用することによる大断面トンネル施工の合理化・コストダウンの可能性の検証を行うことを目的に試験施工を行った。試験施工に用いる高強度吹付けコンクリートの材料・配合を決定するための吹付け実験、高強度吹付けコンクリートの適用による支保部材の低減の妥当性を検証するために実施したFEM解析および大断面トンネルの一部区間で実施した試験施工で得られた結論をまとめると以下のようになる。

（1）OPC単味で、CA系の急激剤を用いた場合、水セメント比の低減により初期強度は改善されるが、長期強度は、ほとんど改善されない。これは、水セメント比の低減により初期のCaS、CaSの水和が促進され、そのことが長期の水和の進行に影響を与えるためであると考えられる。

（2）CSA系の急激剤を用いることによる経済的に初期および長期強度の高強度化が可能である。セメント単味の場合でも、水セメント比を40%に低減することにより材高28時間において48 N/mm2の圧縮強度が得られ、さらに、シリカフュームやCSA系混和材と組合せることで60 N/mm2程度の圧縮強度が得られる。

（3）材高8時間以内における強度発現性は、主として水結合材比の影響を受け、急激剤の種類および高強度用混和材の添加の影響は小さい。材高24時間においては、使用材料の影響が現れ、CSA系急激剤および高強度用混和材の効果が見られる。

（4）高強度吹付けコンクリートを適用することで吹付け厚さおよび他の支保部材を低減した支保パターンの変更案を検討し、FEM解析および試験施工における現場計測によりその妥当性を検証した。その結果、解析上原設計と同等の支保効果を有し、また、現場計測において危険兆候は見られなかった。また、高強度吹付けコンクリートを用いた変更支保パターンの経済性を評価した結果、掘削から二次覆工までの施工の直接工事単価の合計で約4.4%のコストダウン効果があることが確認された。

FEM解析の信頼性、地山条件の変動、現場計測のばらつき等から、今回の結果のみで高強度吹付けコンクリート適用による支保部材低減の妥当性を結論付けることはできないが、高強度吹付けコンクリートの有効利用がトンネル施工の合理化・コストダウンに繋がる可能性は、高いと言える。

（5）試験施工において品質の変動の程度を確認するため、データ数n＝127個のデータを採取した。その結果、材高3および8時間においては、環境温度の影響を受けることから変動係数30%以上と若干変動が大きいものの、いずれの材高においても目標強度を満足した。材高24時間以降は、変動係数8～12%程度と比較的小さく、良好な品質管理が行えた。ただし、今回のデータは、試験施工による良好な管理のもとで得られたものであり、実際の施工への適用に当たっては、今回得られた値より若干高いめの変動係数を与える必要があると言える。以上の点から、配合設計に当たって設定した変動係数14%は、ほぼ妥当な値であったと考えられる。

謝辞：本実験および試験施工は、日本道路公団東名高速道路（築造）株式会社および実施した現場監理工事事務所の関係者の方々には、大きなご協力およびご指導をいただいた。また、実験および試験施工の実施に際し、ハヤマ・東急建設共同企業体、電気化学工業（株）、デンカグレース（株）、木部建設（株）の関係各位には、多大なるご協力を頂いた。ここに記して感謝の意を表します。

参考文献
1) 田沢雄二郎：山岳トンネルの新技術、トンネルと地下、Vol.19, No.4, pp.69-75, 1984.4
2) 田沢雄二郎：吹付けコンクリートの技術現状と今後の課題、コンクリート工学、Vol.30, No.6, pp.18-26, 1992.6
3) 日本トンネル技術協会：山岳トンネルの吹付けコンクリート、1996.6
5) 岡田義、川原一則、加藤勝彦：ボレックスシートậyプコンクリート開発方法でのトンネル用充填コンクリートの開発、シリンガムを用いたコンクリートに関するシンポジウム講演論文報告集、土木学会、pp.139-144, 1993.11
6) 岡田浩生、本橋賢一、横田康祐、田沼雄二郎：シリカフュームを改良した吹付けコンクリートの現場施工実験：シリカフュームを用いたコンクリートに関するシンポジウム講演論文報告集、土木学会、pp.139-144, 1993.11
7) 鬼頭誠、末永光弘、広中義義、伊藤伸一郎：シリカフュームを改良した吹付けコンクリートの性能、シリカフュームを用いたコンクリートに関するシンポジウム講演論文報告集、土木学会、pp.145-152, 1993.11
8) 本橋賢一、田沢雄二郎、横田義昭、岡田浩生：高強度・高耐久性吹付けコンクリートの現場施工実験、コンクリート工学年次論文報告集、Vol.17, No.1, pp.1273-1278, 1995.6
9) 原田耕司、松井健一、平種裕治、佐藤好利：高耐久性吹付けコンクリートの研究・開発、コンクリート工学年次論文報告集、Vol.17, No.1, pp.1013-1018, 1995.6
10) 田中一雄、佐藤武知、一雄倉、勝野星：山岳トンネルにおけるシリカフューム添加した吹付けコンクリートの
PROPERTIES OF HIGH-STRENGTH SHOTCRETE MADE WITH VARIOUS MATERIALS AND AN APPLICATION FOR LARGE SCALE TUNNEL

Kazuto FUKUDOME, Norio NAGASAWA, Tatsuo KITA, Ritsu SUGIYAMA and Yukio SASAGAWA

In this study, high-strength shotcrete were patially applied for the large scale tunnel in order to certificate the effect of high-strength shotcrete for down of construction cost of large scale tunnel. Prior to the application of high-strength shotcrete, field tests were carried out to chose the materials and mixture proportion of high-strength shotcrete and FEM analysis were done to certificate the property of the reduction in thickness of shotcrete, length of rock bolts and size of steel supports by using high-strength shotcrete.

From the field tests, it is clear that the strength of 30 ~ 60N/mm² can be obtained economically chosing materials and mixture porportions properly. And from the results of FEM analysis and the measurement data during tunnel excavation, it is possible to down the construction cost and term of large scale tunnel by using high-strength shotcrete.