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A new technique to modify the lattice model is described by the authors. This new method
significantly depends on the calculation of the minimum total potential energy of the structure starting
from the elastic stage up to the failure stage inside each increment of the calculation. Adoption of the
minimum total potential energy for the structure is studied. Angle of inclination of the diagonals and the
appropriate discretization method for the truss member are very important parameters affecting the results
of the lattice model and are studied in this paper. The applicability of the Modified Lattice Model is
examined by proposed shear strength equations and existing experimental data.
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1. INTRODUCTION

It is generally agreed that the truss analogy
concept for shear resistance is easily applied to
reinforced concrete structures. However, there exist
several different truss models to analyze the shear
resisting mechanism in reinforced concrete beams.
But in each model, there are still some problems to
be investigated. For example, Lattice Model, which
is first proposed by Niwa et al. 'Y and extended later
by the authors in three dimensions ® 7, has several
fundamental points to be clarified and other points
to be modified. In this model the arch member is a
very important concept, because after the yielding
of shear reinforcement, the model can explain the
increase in the shear capacity, while the simple truss
model cannot, especially in the case of deep beams.
Arch element has some important effects in the
shear carrying capacity '¥. The thickness of the arch
element is determined by minimizing the total
potential energy for the whole structure. But, any
physical explanation for the minimization of total
potential energy is not given, and once the value of
the thickness of the arch element is determined in

the elastic stage, this value is unchanged throughout.
the whole loading history. The thickness of the arch
element may be changed during the loading stages,
but its change is simply neglected. In this paper, we
clarify this point in the first place and show the
improved accuracy by pcrformmg the minimization
at every loading stage.

Also, during the different loading stages, the
change of the thickness of the arch element with the

_corresponding load carrying capacity is studied. In
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addition, the rational reasoning for the strain
incompatibility through the width of a beam by
separating the arch member and the truss member
within one beam will be explained. Experimentally,
it is found that a two-dimensional stress analyses is
not adequate for reinforced concrete members'"”.
With this clarification, the fundamental
characteristics of the arch element mechanism for
shear resistance of reinforced concrete members are
discussed; especially the strain values between the
arch and diagonal elements in the same cross-
section are not equal. The. strains may not be
uniform in the direction of member width. The third
point to be clarified is the direction of most
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Fig.1 Modified Lattice Model
of concrete beam

appropriate discretization for subdiagonal members.
The appropriate discretization is studied to find out
the suitable form of applying he Modified Lattice
Model which gives a similar response close to the
experimental results depending on the change of
spacing of shear reinforcement and the subdiagonal
angle. Finally, the application of the “Modified
Lattice Model” to simulate the shear failure of
reinforced concrete beams is carried out. The
change of the stress states in each member inside
the beam is investigated.

In this paper, authors try to give rational
reasoning or rational explanation for all the
previous problems. Furthermore, based on the
modified and rational model we give some
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Fig.2 Cross -section of concrete beam
in the Moditied Lattice Model

section 3. For the vertical members the effect of
concrete is not considered because the resistance of
concrete for tension is already incorporated in the

- diagonal tension member. That is in addition to the

numerical calculation results, which may be useful

in its real application.

2. OUTLINE ON THE MODIFIE
LATTICE MODEL

The chosen element discretization and structural
geometry of the Modified Lattice Model is
illustrated in Fig.1. The reason behind this truss
discretization will be verified in the following
sections. The reinforced concrete beam has been
simulated under bending and shear as simple truss
components. The compressive stress in the upper
part of the beam is resisted by concrete in the form
of a horizontal strut with a cross-section area equal
to the area of the upper rectangle in Fig.2. The
tensile stress in the lower part is taken by the
bottom steel in the form of horizontal members in
addition to the horizontal concrete fibers in the
fower part with a cross section area equal to the
lower rectangle area in Fig.2. To resist the shear
forces inside the beam, the truss model has diagonal
concrete tension and compression members with the
area as shown in Fig.2, which can be fixed after the
value of “t” is determined as it will be shown in
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vertical steel members, which represent the shear
reinforcement in the web. Fig.2 shows the cross
section of a concrete beam modeled as a Modificd
Lattice Model.

In Fig.1, the thick solid line represents the arch
element, which is assumed to be a flat and slendcr
one connecting the nodes at both ends of the beam
with an area as shown in Fig.2. In this analysis, the
arch element and the diagonal elements are
separated and each one of them has its stress and
strain distribution. The reason for this clement
separation is that the structural action is normally a
combination of series and parallel couplings of the
cracking zones and the uncracked (elastic) zones. In
the Modified Lattice Model, we simulated these
zones with continuous pairs of tension and
compression members. The arch member is
considered as a very important clement in this
study, because it represents the core of the beam '
A design code in AIJ " and many other codes '
assume two dimensional stress fields; but if the
member section is wide enough, the stress may not
be uniform in the direction of member width. It is
also known experimentally by Ichinose ' that the
values of the strains or the stresses of the beam arc
not uniform along the width in the same cross-
section. It means that the stress or the strain
diagram is not constant in the direction of the width
of the beam 'V . So, in this model we separate the
arch element and the diagonal e¢lement, and each
one of them has its stress and strain distribution.
The arch element has the ability to resist a large
portion of the applied load '*' . So it is very
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Fig. 3 Tensile stress-strain
curve of concrete

important to look for the change of the area of the
arch element during the different loading stages, as
it will be shown in section 3. In the Modified
Lattice Model, the diagonal tension member of
concrete resists the principal tensile stress resulting
from shear force. The stress-strain relation of
tension member of concrete has been taken as
expressed in Eq. (1) and Eq. (2) ¥ and as shown
in Fig.3.

For ascending branch (&, <&,,)
o-’ = E“ sr ( 1 )

For descending branch (6 284)

2
o, =(1-a)f, exp —mz[—g"——) +df, 2)

Eer

Where ¢,and o, are the strain and the stress of the
tension element, respectively. &, is the strain at the

cracking of concrete and FE_is the modulus of
elasticity of concrete. The stress-strain behavior of
concrete in tension is taken elastic as shown in Eq.
1 and gradual softening is taken after that as shown
in Eq. (2). In Eq. (2), “m” value can be varied to
simulate appropriate softening slope and the value

~ of o can be appropriately assumed to simulate the

appropriate residual stress  '°? . Here in this
calculation m =0.5 and a = 0.0 are taken based on
fracture energy concept, taking the length of each
member as the characteristic length.

The diagonal compression member ‘of concrete
and the arch member shall resist the diagonal
compression caused by shear. To consider the
compression-softening  behavior of  crushed
concrete, the model proposed by Collins et al.'¥ is
adopted. In that model the softening coefficient was
proposed as a function of the transverse tensile
strain. So, the tension and compression members
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Fig. 4 Cross- section of a spring

-are considered as a pair together. Eq. (3) shows the
rcompressive stress-strain relationship of concrete in

this study. The stress-strain relationship for

_reinforcing bars is assumed to be elasto-plastic for

the case of tension and compression members.

2
o, = —rzf;'[2(ij - [‘—) J (3a)
&o o
Where, the peak  softening  coefficient
n= L0 <10 (3b)

08 _‘0,34[2)
b'o

And the strain at the peak stress ¢, = —0.002.

3. ADOPTION OF MINIMUM TOTAL
POTENTIAL ENERGY

The effect of the total potential energy in the
Modified Lattice Model during the calculation has a
significant effect in the final results. It is found that,
there is a relation' between the area of the arch
element and the - corresponding total potential
energy of the structure. Niwa et al. ' showed that
if the ratio of the width of the arch element is
assumed to be “t”, the value of “t” is determined by
minimizing the total potential energy for the whole
structure. But in this work, it is found that this
thickness is increasing gradually during the loading
from the elastic stage up to the complete failure of
the beam. It means that the area of the diagonal
members is decreased gradually during the progress
of different loading stages.

The physical “explanation for the adoption of
minimum total potential energy may be given firstly
using a very simple spring model as shown in Fig.

* 4. In this model, the cross-section area of the spring
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consists of two different materials with different
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modulus of elasticity E, and E, under a
concentrated load P. Assume the stiffest portion lies
in the middle of the cross section with a stiffness
value E,. The total potential energy for this model is
obtained by Eq. (4). Substituting for the values
ofoand &, we can get the total potential energy as
a parameter, dependent with the area of each
material part inside the cross-section as shown in

Eq. (5).
=112 oyadv, +1/2[ oy vy — Pu @)

)

From Eq. (5) the total potential energy is decreasing
monotonically with the increase of the area of the
stiffer portion. Therefore, the stiffer portion should
occupy the total area to make the potential
minimum. However, our beam element is not
exactly the same category.

w==Al (U 2yt 11+ E(1-1)11]

So, we show the real situation using the model
shown in Fig.S. This model is a triangular shape
under a concentrated load P. The cross-section area
of each of the side 1 and 2 has been divided into
two different materials with two different modulus
of elasticity E, and E, representing the truss element
and the arch element, respectively. The ratio of the
width of the arch element is assumed to be “t” from
the total width of the member. The member 3 is.a
common material with a definite modulus of
elasticity. The total potential energy of the structure
is calculated from Eq. (6).

r=1/2fcedv - Pu 6)

Where, u is the vertical displacement at the loaded
point of the structure under the applied load “P™.
Take ar/a=0 to get “t” value corresponding to the
minimum total potential energy and substitute it in
the energy equation. Fig.6 shows the relation of the
total potential energy and the applied load “P” for
the different vatues of “t”". From this figure we find
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Fig.7 Forms of model of simulation

that the point corresponding to minimum total
potential energy corresponds to the maximum
applied load at a particular value of “t". It means
that, if this value of “t” is used, we get the stiffest
case of the beam with a minimum potential energy.
So, in the Modified Lattice Model the total potential
energy by applying Eq. (7), is calculated for
different values of “t” starting from 0.1 ~ 0.9 with a
very small increment.
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Table 1 Outline of the experimental data.

No | Cross b h d a/d
Sec. cm cm cm

fc As f) A\\' f\\)' S
MPa | cm* | MPa | cm® | MPa | cm

203 | 508 | 425 | 2.15

15.0

1 R 31.0 | 23.1 | 530 1.42 | 530 | 133
2 R 203 | 457 | 389 | 2.00 | 246 [ 245 | 320 142 | 320 | 183
3 R 300 | 350 ] 300 § 350 | 237 [ 122 | 419 | 056 | 314 11.0
4 T 30,0 | 350 | 300 | 350 | 237 | 122 | 419 | 056 | 314 1.0

5 R 45.0 [ 60.0 | 525 | 2.86

439 | 957 | 383 1.43

6 R 45.0 [ 60.0 | 525 | 2.86

Lo Lo
N
|t
—_ o
ton |t
=
fene}

3

662 | 957 | 383 1.43

*In this table R means rectangular section and T means T-shaped section. No.4: flange
width=30.0cm, flange depth=7.5cm and web width =15¢m.
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Fig.8 Comparison with experiment (No. 4)

T.P.E=S (6 - pA )
i=1

In Eq. (7), T.P.E. is the total potential energy of
the structure, where f; is the internal force inside

each member of the structure, & is the
displacement of each individual member, n is the
number of the truss members, p is the value of the
external concentrated load and A is the
displacement at the loaded point. By minimising
these values of the total potential energy we can get
the corresponding “t” value. From this value we can
calculate the area of the arch element and the
subdiagonal elements at each step of the
calculation. So, when we consider the total potential
energy and the corresponding area of the different
elements we get more stiffer calculated results with
the real response of the beam which becomes
almost close to the experimental results along the
different loading stages as we will see in the next
section.
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Fig.9 Comparison with experiment (No.5)

4. APPROPRIATE DISCRETIZATION
METHOD FOR TRUSS MEMBER

In this section a clarification of the appropriate
discretization of lattice members which angle may
be firstly predetermined as 45 degrees is given. To
investigate the extent of the discretization, three
different truss models depending on the number of
diagonal pairs along the depth of the beam arc
investigated. The three different forms are as shown
in Fig.7. To determine the most appropriate
discretization model among the three previous
forms of truss model in Fig.7, six different
reinforced concrete beams are investigated as an
example, to compare results of the Modified Lattice
Model with the experiment results. The outline of
experimental data utilized to examine the Modified
Lattice Model using the above mentioned three
different forms of truss models in Fig.7 are
presented in Table 1.
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The comparisons of the calculated results using
the Modified Lattice Model and the normal lattice
model are shown clearly in Fig.8 (Leonhardt’s
experiment'” No.4 in Table 1) and Fig.9 (Ohuchi’s
experiment ' No.5 in Table 1). The number of
subsection diagonal members is increased from
model (1) to model (2) and to model (3). After
cracking, the neutral axis of the beam starts to move
upward during the development of the cracks. The
height of the cracks depends on the cross-section of
the beam and the value of the steel reinforcement
ratio. So, in case of model (1) if a crack occurs, it
means the depth of the crack equals the whole depth
of the beam. In this case, the complete failure takes
place suddenly. However, it is not realistic because
experimentally failure does not occur suddenly. In
the case of model (2), if cracks happen, it means the
depth of the crack equals half of the depth of the
beam and the failure is not found suddenly like the
previous case. This case looks logical and close to
the experimental behavior of reinforced concrete
beams. In the case of model (3), the depth of the
first crack equals 1/3 of the total depth of the beam.
In this case the development of the cracks is not
similar to the experimental behavior of the beam.
That is why we find that the numerical results are
very close to the experimental results in case of
model (2) as shown in Fig.8 and Fig.9. That is in
addition to the effect of change the distance of shear
reinforcement among the three different models. So,
it is found that, model (2) is the preferable model to
implement the Modified Lattice Model. Comparing
the results of the three models, we find the cracking
load has been decreased starting from model (1) to
model (3). In case of model (1), the elastic energy
of the failure elements is much higher than that in
model (2). Also in the case of model (2) it.is much
higher than that in the case of model (3). The reason
of that is the increasing of number of subsection
diagonal members. The strain cnergy has been
decreased with the decrease in the original length of
failure elements. However, the ultimate loads using
these three models are almost same because of the
similarity of the fracture energy for the three
different models. From these experimental data, we
can say that the Modified Lattice Model can capture
the displacement behavior adequately and reach to
almost same response of the original beam,
especially the displacement at the peak is similar to
the experimental results more than any other truss
model.

The change of the thickness of the arch element
is drawn in Fig.10 (Clark’s experiment *') and Fig.
11 (Ohuchi’s experiment '¥) for beams of No.2 and
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No. 5 in Table 1, respectively. According to the
Modified Lattice Model analysis, the thickness of
the arch element is increasing gradually from the
elastic stage, in which it remains constant, up to the
complete failure of the beam. After the peak point,
the depth of the arch element is decreased due to the
extension of the cracks. So, the thickness of the arch
element has increased gradually in order to maintain
the effect of the arch element up to the failure point.
As have been discussed above, most appropriate
truss discretization is model (2). This suggests that
the probable arch width is around 0.4b in the early
loading stage and increased with the load up to
0.7b.

5. APROPRIATE SUBDIAGONAL ANGLE
FOR THE MODIFIED LATTICE MODEL

To study the direction of initial cracking in each
of the solved beam under the three different models
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in Fig.7, three deferent values of angle of
inclination of the subdiagonals in the Modificd
Lattice Model are suggested. The suggested valucs
are 51, 45 and 26 degrees as shown in Fig.12 (a).
(b) and (c¢) respectively. Fig.13 and Fig.14 show the
load-displacement diagram for beams No.2 *' in
Table 1 for the different subdiagonal angle and also
for the different models, which arc mentioned in
Fig.7. The numerical results using thc Modificd
Lattice Model are compared with the experimental
results. It has been found that the results using
model (2) with diagonal angle 45 degrees are very
close to the experimental results. Under any other
inclination of diagonal angle, the relation of the
load-displacement goes diverging from the
experimental results up or down. In the casc of
angle 51 degree the length of the diagonal members
are decreased comparing with the case of 45 degrec.
so the relation of load-displacement is kept lower
than the relation using 45 degree diagonal angle as
shown in Fig.13. But in the case of the same models
using diagonal angle 26 degree the results become
upper than the relation using diagonal angle 45
degree as in Fig.14. Actually this happens because

the increasing of the diagonal member length

increases the elastic energy and the stiffness of the
structure. This behavior was the same using the
three different models, and also for each angle of
inclination for the diagonal members.

. EXAMINATION OF THE
APPLICABILITY OF THE
MODIFIED LATTICE MAODEL

To examine the applicability of the Modified
Lattice Model, many different beams are calculated
numerically using the second model in Fig.7 (b).
The shear strength is calculated for each beam and
compared with the basic concept for shear strength
equation.

(1) For beams with web reinforcement

Different reinforced concrete beams with
different parameters are analysed using the
Modified Lattice Model. The value of the shear
strength of each beam is compared with Eq. (8),
which is considered a basic concept to calculate the
shear strength for the truss analogy '’

Vy=V.+Vs (8)
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Where, V,.is the shear capacity of lincar members

without shear reinforcement, obtained by Eq. (9) '*
and ¥, is the shear capacity carried by shear

reinforcing steel and obtained by Eq. (10)'”
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303,025 e, M4
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Vo= Ay fund = (10

LA
Where, /f.is the compressive strength of concrete
(MPa), p, is the rcinforccment ratio

(=1004,/(b,d), d is the effective depth of a
concrete beam (m), a-d is the shear span -cffective
depth ratio, 4, is thc arca of shcar rcinforccment

over the interval s, f,,, is the vield strength of the

shear reinforcement and z = ¢/ L15. To cxaminc the
applicability of the Modified Latticc Model for
beams with web reinforcement, the comparisons arc
carried out using Eq. (8) and also with thc normal
Lattice Model ' . Fig.15 shows the change of ratio
of the results of predicted shear carrying capacity
between the normal Lattice Model, Modificd
Lattice Model and Eq. (8) with thc variation of
different parameters taking beam No.l ¥ in Table
1 as a definite example for the cross-section area.
The parameters, which are selected and combincd,
are the concrete strength, reinforcement ratio.
effective depth and also the shear span-depth ratio
of the beam. As seen from Fig.15, the shcar
carrying capacity by the normal Lattice Model is
generally smaller than that by Eq. (8), but thc
predicted results using the Modified Lattice Model
is much closer to Eq. (8) and admissible. Also from
Fig.15, the tendency of the prediction by the
Modified Lattice Model is not necessarily similar to
Eq (8). The ratio is varied from 0.96 to 1.08, but in
the case of the normal Lattice Model the ratio was
almost from 0.88 to 1.17.

(2) For beams without web reinforcement

To examine the applicability of the suggested
Modified Lattice Model for concrete beams without
web reinforcement, numerical calculation s
performed and compared with Eq. (9) which'® has
been accepted as a basis of the design equation in
the JSCE. The comparisons are carricd out using
Eq. (9) and also with the normal Lattice Modcl '™ .
Fig.16 shows the change of the ratio of the results
for predicted shear carrying capacity between the
normal Lattice Model, Modified Lattice Model and
Eq. (9), with the variation of different parameters.
Taking the dimension of the cross-section area of
the beam No. 6 '® in Table 1 as an example. The
parameters, which are selected and combined, are
concrete strength, reinforcement ratio, effective
depth and the shear span-depth ratio. As scen from
Fig.16, the predicted shear carrying capacity by the

=
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Fig. 16 The change of shear carrying
capacity for beams without
web reinforcement

normal Lattice Model is smaller than that by Eq.
(9), but the variation for the Modified Lattice
Model is much smaller and admissible. Also from
Fig.16 the tendency of the prediction by the
Modified Lattice Model is not necessarily similar to
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Eq. (9). The ratio is varied from 0.96 to 1.03, but in
the case of normal Lattice Model the ratio is almost
from 0.88 to 1.1 ' . Predicted shear failure mode
by the Modified Lattice Model is the failure of the
diagonal tension member, which is corresponding,
to the experimental results. Consequently, it can be
considered that the prediction of the shear carrying
capacity by the Modified Lattice Model is adequate.

7. APPLICATION OF THE MODIFIED
LATTICE MODEL FOR SHEAR
FAILURE SIMULATION

To investigate the change of the stress states in
each member inside the reinforced concrete beam
using the Modified Lattice Model, Clark’s
experiment (No.2 in Table 1) was chosen as a
subject for a solved example. Fig.17 shows the
Modified Lattice Model for the reinforced concrete
beam No. 2 in Table 1. The stresses in diagonal
members of concrete and stirrups and the stress of



the arch member are examined. From the output
results of the simulation of this beam using the
Modified Lattice Model, it is found that at the
primary cracking stage, the concrete elements in the
bottom cord start to crack firstly as shown in Fig.18
(a). Then the initiation of the diagonal cracking
happens as shown in Fig.18 (b). The initiation of
the yielding of stirrups starts to take place.
Although the stirrups start yielding and the diagonal
tension elements have cracked, but the beam still
continue to be loaded up to the complete failure.
That is because of the existence of the arch element,
which continues up to the end of loading with some
stirrups. At the final stage, all the stirrups yielded.
At that time the arch element crushed immediately.
From this simulation for the failure of that beam we
can consider it as a shear failure.
According to this simulation and considering the
_objectivity of the post processing for calculated
results and the simple representation for the shear
resisting mechanism, the Modified Lattice Model
can simulate the shear failure mode with a very
smart way. Although the Modified Lattice Model in
which the compatibility condition, the equilibrium
condition and the used constitutive equations are
more simplified methods comparing with the
normal FEM, the Modified Lattice Model can
capture the shear behaviour of concrete beams
reasonably throughout the change of the shear
resisting mechanism.

8. CONCLUSIONS

In the proposed Modified Lattice Model, a
reinforced concrete beam subjected to shear force is
converted into a simple truss and arch members by
the consideration of the minimum total potential
energy for the structure at each step of loading. A
nonlinear incremental analysis is performed. The
conclusions obtained from this research are as
follows:

1. By minimizing the total potential energy of the
reinforced concrete beam, we get only one
value for the thickness of the arch element,
which corresponds to the stiffest case for the
structure, which is quite similar to the original
response of the experimental analysis.

The Modified Lattice Model has the tendency
to estimate the stiffness of the beam closer to
the experimental results. Furthermore, the
predicted displacement at the peak is almost
similar to the experimental results.

The thickness of the arch member, which plays
a very important role in the Modified Lattice
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Model, is increasing gradually with the
increase in displacement of the loading point
after the initiation of diagonal cracks up to the
complete failure of the beam.

The applicability of thc Modificd Lattice
Model is examined for beams with and without
web reinforcement under diffcrent parametric
conditions. The tendency of the prediction of
shear strength by the Modificd Latticc Modcl
is very close to the basic shcar strength
equations, which arc accepted by the Standard
Specification of JSCE. Also comparing with
the experimental results, it gives the satisficd
accuracy.

In case of Model (2) with 45 dcgrees of
subdiagonal members, the position of the
neutral axis is reasonable agreement with the
case of experimental work. So, model (2) with
two pairs of subdiagonal members and with 45
degrees for the angle of inclination is the
appropriate discretization to implement the
Modified Lattice Model analysis.

Using the different forms of the Modificd
Lattice Model, the ultimate load is almost kept
constant but the cracking load is dccreasing
depending on the strain energy of the cracked
element.
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