連続繊維シート貼付けによる
下水道コンクリートの補修・補強

服部篤史 1・山本貴士 2・嘉指成詞 3・宮川豊章 4

1正会員 工修 京都大学大学院助手 土木工学専攻 〒606-8501 京都市左京区吉田本町
2学生会員 工修 京都大学大学院 土木工学専攻 〒606-8501 京都市左京区吉田本町
3正会員 工修 サンレゾン株式技務部 〒569-0011 高槻市道鶴町 3-5-1
4フェロー会員 工博 京都大学大学院教授 土木工学専攻 〒606-8501 京都市左京区吉田本町

連続繊維シート貼付け工法の下水道施設への適用に際しては、長期にわたる供用性を確保するため、力学的性質のみではなく、各構成材料およびコンクリートも含めた複合材料としての耐酸性を明らかにする必要がある。本研究では、FRP 塩を形成する種々の連続繊維シート、樹脂およびそれらを組合わせた FRP 板の耐酸性を調査するとともに、コンクリート供試体を用いて、曲げ補修・補強効果とその耐酸性を検討した。さらに、下水道施設として健全および管内面びび割れ発生後のヒューム管を取り上げ、内外面に適用した種々の仕様の FRP 塩による外圧に対する補修・補強効果を検討した。得られた結果から、適切な材料選択により、連続繊維シート貼付け工法は下水道施設の補修・補強仕様として適用可能と考えられた。

Key Words:fiber, fiber sheet, resin, fiber reinforced plastic, sewerage concrete, hume pipe, repair and strengthening, acid resistance

1. はじめに

近年、製物の高強度連続繊維(以下、連続繊維シート)をコンクリート表面に樹脂で含浸、接着して FRP 塩を形成し、補修・補強を行う試みがなされている。この工法は、特に阪神・淡路大震災以降、その施工性の良さや材料成本の高い耐久性への期待などから橋脚をはじめ広く適用が検討されている。

一方、下水道施設では、細菌の生物学的影響による硫酸の生成によりコンクリートが腐食することが広く知られており、地中に埋設された下水管では、腐食を伴う強度低下や上載荷重に伴うびび割れの発生、漏水あるいは崩壊が問題となっている。これに対し、使用材料の耐久性、施工断面および表面粗度等の制約からコンクリート表面に樹脂ライニングを適用する防食被覆工法がよく用いられるが、劣化因子の侵入を防止する意味合いが強く、既設劣化構造物の補強効果をも兼ね備えた有効な工法が望まれている。これに対し、連続繊維シート貼付け工法の適用が考えられる。

下水道施設という過酷環境下におかれたコンクリート構造物へ適用し、長期にわたる供用性を確保するためには、力学的性質のみではなく、酸性腐食環境における耐久性が重要である。複合材料である FRP 塩の強度を支配するのは一般には繊維であるが、構成材料ごとの、またコンクリートも含めた複合材料としての耐酸性を明らかにする必要がある。

本研究では、下水道施設への連続繊維シート貼付け工法の適用を目的として、FRP 塩を形成する種々の連続繊維シート、樹脂およびそれらを組合わせた FRP 板の耐酸性を調査するとともに、コンクリート供試体を用いて曲げ補修・補強効果とその耐酸性を検討した。さらに、下水道施設として健全および管内面びび割れ発生後の遠心力鉄筋コンクリート管(以下、ヒューム管)を取り上げ、内外面に適用した種々の仕様の FRP 塩による外圧に対する補修・補強効果を検討した。

2. 実験概要

(1) 連続繊維シートおよび樹脂材料

連続繊維シートおよび樹脂の基本特性の代表値をそれぞれ Table 1, Table 2 に示す。連続繊維シートには、主として高強度(HS)タイプの芯素繊維からなるものの(CS)およびアラミド繊維からなるもの(AS)を用いた。これらは単位幅当たりでほぼ同じ繊維断面積を有している。また、CS の目付量を 2 3/2, 3 3/2 に減らしたものの(C2), 高弾性(HM)タイプの炭素繊維からなるも
Table 1 Typical Properties of Fiber Sheets

<table>
<thead>
<tr>
<th>Name</th>
<th>CS</th>
<th>AS</th>
<th>C2</th>
<th>CM</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Carbon (HS)</td>
<td>Aramid (HS)</td>
<td>Carbon (HM)</td>
<td>Carbon (HM)</td>
<td>Glass</td>
</tr>
<tr>
<td>Specific Gravity*</td>
<td>1.80</td>
<td>1.39</td>
<td>1.80</td>
<td>1.84</td>
<td>2.54</td>
</tr>
<tr>
<td>Tensile Strength* (kN/mm²)</td>
<td>4.90</td>
<td>3.43</td>
<td>4.90</td>
<td>4.20</td>
<td>1.47</td>
</tr>
<tr>
<td>Young's Modulus* (kN/mm²)</td>
<td>230</td>
<td>72.5</td>
<td>230</td>
<td>436</td>
<td>72.5</td>
</tr>
<tr>
<td>Elongation* (%)</td>
<td>2.1</td>
<td>4.6</td>
<td>2.1</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Plain Weave</td>
<td>Unidirectional</td>
<td>Cross</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weave Density (g/m²)</td>
<td>300</td>
<td>233</td>
<td>200</td>
<td>300</td>
<td>203**</td>
</tr>
<tr>
<td>Fiber Cross Section (mm²/m)</td>
<td>167</td>
<td>168</td>
<td>111</td>
<td>163</td>
<td>40.0</td>
</tr>
</tbody>
</table>

*Data of fiber strand. **1/2 in longitudinal direction.

Table 2 Typical Properties of Resins

<table>
<thead>
<tr>
<th>Name</th>
<th>NR</th>
<th>AR</th>
<th>FR</th>
<th>GR*</th>
<th>CR**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy Resin</td>
<td>Bisphenol with reactive diluent***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardening Agent</td>
<td>Modified aliphatic polyamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Tensile Strength (N/mm²)</td>
<td>42.7</td>
<td>25.0</td>
<td>20.6</td>
<td>16.7</td>
<td>11.8</td>
</tr>
<tr>
<td>Young's Modulus (kN/mm²)</td>
<td>1.57</td>
<td>0.794</td>
<td>0.706</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flexural Strength (N/mm²)</td>
<td>76.5</td>
<td>35.3</td>
<td>22.5</td>
<td>29.4</td>
<td>25.5</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>3.0</td>
<td>8.0</td>
<td>20</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*For the glass cloth. **For the resin mortar. ***NR/AR/FR/GR: with inorganic filler, GR: with pigment

の(CM)およびガラスコロス(GC)も用いた。CS、C2およびCMでは細いガラス繊維を、ASではポリエステル繊維を横方向に使用しており、繊維の構造より綫方向繊維に大きな強度低下がないようにしてある。なお、いずれも幅200mmのものを用いた。

樹脂はいずれも常温硬化型エポキシ樹脂であり、主として連続繊維シートへの含浸性を考慮した標準的なもの(NR)。含浸性に加えて架橋構成の調整により耐酸性を高めたもの(AR)、および後者と引張強度が同程度であるが架橋密度を低くして伸びを高めた耐酸性を考慮していないもの(FR)の3種を用いた。なお、GCには別の樹脂(GR)を用い、また耐酸性の比較のためセラミックパウダーを混入して樹脂モルタルとして用いる別の樹脂(SCR)も用いた。なお、GCおよびCRの仕様は、コンクリート防食指針(案)に示されている防食被覆ラインングの標準仕様のうちそれぞれC-1およびC-3種に適合する市販材料の組合せであり、補強を目的したものではない。

(2) 連続繊維シート、樹脂およびFRP板の耐酸性

連続繊維シート、樹脂およびそれらを組合せて作成したFRP板の耐酸性を、主として酸浸漬による引張特性の経時変化により評価した。試験要因および試験条件をTable 3に示す。なお、FRP板試験片の名称は(連続繊維シート)（樹脂）としている。これらの試験は、それぞれJIS K 7601「炭素繊維樹脂試験方法」、JIS K 7113「プラスチックの引張試験方法」およびJIS K 7073「炭素繊維強化プラスチックの引張試験方法」に準拠して行った。
a) 試験片とその作成

連続繊維シート試験片は、12,000フィラメントの繊維を手作業ではぐし出し常温硬化型ビニルエステル
ル樹脂を含浸、硬化させた樹脂含浸ストランド(幅約4mm)とした。樹脂試験片は、比較的伸びの小さい材料に用いる1号形試験片(厚さ7mm)とした。FRP板試験片は、連続繊維シートのコンクリートへの適用を想定し、ハンドレイアップ法で作成した。連続繊維シートを平行に2層使用し、繊維体積率V_fが約30%となるように樹脂を均一に塗布して含浸させた後、常温で硬化させFRP板とした。所定の浸漬期間経過後、ガラス繊維強化プラスチック製のタブを接着し、連続繊維に平行な所定の幅に切断して1形試験片(厚さはCSを用いたもので約1.1〜1.2mm、ASで約1.4〜1.5mm)とした。いずれの試験も各要因につき3体の試験片を作成した。樹脂およびFRP板試験片の形状・寸法をFig.1に示す。

b) 試験方法および測定項目
1) 硫酸への浸漬
下水道施設への適用を考慮し、耐酸性を検討するために促進環境として使用した試験液は、コンクリート防食指針(案)を参考に、10%の硫酸水溶液とした。各材料を室温(樹脂は23℃)にて1、2、3または12ヶ月間浸漬(CS-、FRを除く)し、引き上げた後十分に水洗して表面の硫酸を除去してから試験時まで気中乾燥した。これにより2ヶ月後、上記指針(案)に示されている防食被覆材の標準仕様のうち最も厳しい腐食環境に適用するためのD種に対し、腐食、軟化、溶出がないことを確認する浸漬期間に相当する。なお、繊維和シートは、繊維を侵したり破壊したため繊維状態のまま浸漬した。また、樹脂試験片については引き上げ後重量を測定した。

2) 引張試験
所定の荷重速度で破断までの引張試験を行い、荷重およびひずみを測定した。なお、FRP板試験片の引張応力は本来全面で除した値とすべきであるが、ハンドレイアップ成形のため厚さのばらつきが大きく、浸漬による影響の正確な検討が困難となるため、繊維の断面積で除して求めた。ヤング率は、連続繊維シートでは破断時ひずみの30〜70%、FRP板では10〜60%間の割線勾配から求め、樹脂ではチャック間隔を用いて載荷初期の直線部(荷重で0.3〜0.6kN程度)で求めた。

(3) コンクリートの曲げ補修・補強効果とその耐酸性
次に、各種の仕様のFRP層の補修・補強効果をコンクリートの曲げ試験により検討するとともに、その耐酸性を、主として酸浸漬による曲げ特性の経時変化により評価した。試験要因をTable4に示す。

a) 供試体とその作成
供試体には、100×100×400mmの無筋コンクリートの下端中央に、曲げひび割れ位置を特定するためノッチを設け、支点外側を含む下端全面にFRP層を適用したものを用いた。FRP層には主としてCSまたはASのそれぞれにNR、ARまたはFRの3種類を組合せたものを用い、軸方向1、2層あるいは直交2層で貼付けた。さらに、1層のGCおよび厚さ3mmのCRも用いた。各要因につき3ないし2体の供試体を作成し、各浸漬期間経過後の載荷荷重に2体の無補修で非浸漬の供試体を作成して基準とした。供試体の形状・寸法をFig.2に示す。
コンクリートの示方配合および載荷時をの強度試験結果をそれぞれTable 5, Table 6に示す。また、各FRP層の施工手順および設計値をTable 7に示す。FRP層は2週間以上室内で養生した。

b) 試験方法および測定項目
1) 供試体への浸漬
FRP層適用面を、連続繊維シート等と同様に、10%の硫化水素水に室温（5〜10℃）にて所定の期間浸漬した。供試体側面（断面約25mm）および上面には、コンクリート保護のため厚さ約1mmのエポキシ樹脂ライニングを施し腐食を防いだが、曲げ試験時には剥がり取った。供試体は引き上げきれ十分に水洗して表面の硫化水素を除去してから試験時まで気中乾燥した。

2) 曲げ試験
Fig. 2に示すように、載荷斯300mmで中央一点載荷の曲げ試験を室温で行った。荷重制御により静的漸増載荷を行い、ノッチ先端のびび割れ発生時には一旦除荷し、再載荷して耐力を失うかFRP層の創離が支点付近に到達した時点で除荷し載荷を終了した。載荷中の測定項目は以下の通りである。

3) 中性化深さ試験
6ヶ月の浸漬および曲げ試験を経て供試体について、支点より外側のFRP層の創離が発生していないコンクリート断面の中性化深さをフェノールフタレイン溶液により測定した。

(4) ヒューム管の外圧補修・補強効果
下水管路施設に適用されるヒューム管を対象として、健全および管内面びび割れ発生後の供試管の内外面に対する種々の仕様のFRP層による補修・補強効果を開圧試験より検討した。試験要因をTable 8に示す。この試験は、JIS A 5303「外心力鉄筋コンクリート管」に準拠して行った。

a) 供試管とその作成
供試管には、外径A形1種（直管で呼び径（内径）900mmを3等分し、有効長を800mmにしたもの）を用いた。これらは型枠を3つに区切って同時に遠心成形し、管内面びび割れを発生させる供試管では、供試管の強力でびび割れ発生荷重まで載荷した。

Table 8 Test Program for Hume Pipe

<table>
<thead>
<tr>
<th>Fiber Sheet</th>
<th>Resin (AR)</th>
<th>Fiber Layer</th>
<th>Internal</th>
<th>External</th>
<th>Internal Crack</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>1, 2 plies</td>
<td>—</td>
<td>1, 2 plies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>—</td>
<td>1, 2 plies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>1 ply</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>1, 2 plies</td>
<td>—</td>
<td>1 ply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>—</td>
<td>1, 2 plies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>1, 2 plies</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>Thickness=3.5mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9 Mix Proportion of Concrete for Hume Pipe

<table>
<thead>
<tr>
<th>N.M.S.</th>
<th>Sl. (%)</th>
<th>Air (%)</th>
<th>W/C (%)</th>
<th>s/a (%)</th>
<th>Unit Mass (kg/m³)</th>
<th>W.R.A. (cc/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7±2</td>
<td>20</td>
<td>40</td>
<td>48</td>
<td>1834 ± 468</td>
<td>817 ± 551</td>
</tr>
</tbody>
</table>

Table 10 Mechanical Properties of Reinforcing Steel

<table>
<thead>
<tr>
<th>JIS G 3532</th>
<th>Diameter (mm)</th>
<th>Yield Strength (N/mm²)</th>
<th>Young’s Modulus (kN/mm²)</th>
<th>Tensile Strength (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWM-F</td>
<td>5</td>
<td>492</td>
<td>165</td>
<td>558</td>
</tr>
</tbody>
</table>

![Lateral spiral: $\phi 5$ e.t.c 47mm](https://example.com/image1)

Fig. 3 Hume Pipe Specimen
用い、内面あるいは外面の円周方向全面に1〜3層貼付けた。さらに、連続繊維シートとしてAS、C2、CMまたはGCや、CRも用いた。連続繊維シートは1周ごとに切断して用い、円周方向に100mm、軸方向に0〜10mm程度の重ね紙を設け、円周方向の重ね紙は各周で位置をずらして集中しないようにした。各要因につき1体の供試体を作成し、供試体ごとの形状・寸法、コンクリート強度および配筋によるばらつきを極力減らすため、同時作成の3体のうち1体を無補強管に供して基準とした。供試体の形状・寸法の規格値をFig.3に示す。

コンクリートの示方配合および補強筋(継筋と螺旋筋)を接せ直し断子状にしたもの(機械的性質をそれぞれTable 9, Table 10に示す。示方配合は推進管に用いる配合を基本としたもの(膨張剤不使用)で、載荷時の圧縮強度は54.5N/mm²であった。各FRP層の施工手法および設計値は曲げ試験と同様とした。

(2) 試験方法および測定項目

Fig.3に示すように、品質管理試験に通常用いられる外圧試験を室温で行った。管軸方向に均等な荷重を恒重制御により静的に与え、びび割れ発生時に一旦除荷し、再載荷して最大耐力を最大荷重を行った。載荷中はびび割れ・破壊状況の記録とともに荷重の測定を行った。

3. 連続繊維シート、樹脂およびFRP板の耐酸性

(1) 連続繊維シート(CS)

引張り強度およびヤング率の経時変化を、非浸漬のものを1としてFig.4に示す。6ヶ月後も引張り強度やヤング率の低下は見られず、良好な耐酸性能を有しているものと考えられる。

(2) 樹脂

引張り強度、ヤング率および伸びの経時変化、ならびに質量変化を、非浸漬のものを1としてFig.5に示す。樹脂の違いにより耐酸性的有意差が認められる。引張り強度は、いずれの樹脂も低下しているが、ARでは1ヶ月以降での低下は比較的緩やかとなった。FRでは大きく低下し、6ヶ月後ではコンクリートの引張り強度をかなり下回るようになった。ヤング率は、1ヶ月でいずれも大きく低下しているが、その後の挙動は樹脂ごとに異なったものであった。伸びは、NR、ARでは低下傾向となる時期があるが、6ヶ月後では増加し、NRで2.0%(CSの伸びと同程度、ASの半分以下)であった。質量変化は、引張り強度の経時変化とよく対応しているようである。FRにみられるように、質量が1.5倍程度となった時には、ほとんどの引張り強度が失われている。なお、浸漬後の目視観察によれば、いずれの樹脂も6ヶ月では、原色のクリーム色から明らかに変色し褐色化していたが、目視可能な程度のびび割れや膨れは認められなかった。
(3) FRP 板
引張強度およびヤング率の経時変化を、非浸漬のものを 1 として Fig. 6 に示す。引張強度は、CS-NR のみを示し、従来繊維シートの值とほぼ同じであった。CS-AR や AS-AR でも 6 カ月後にそれぞれ 4%、8%程度の低下をとどまっていた。AR の試験結果と混合則を考慮すれば、FRP 板の引張強度が主として耐久性に富む繊維に依存していることが確認できる。AR を用いた場合の若干の低下傾向については、原因は明らかではないものの、AR の伸びの浸漬による低下が影響した可能性も考えられる。すなわち、FRP とする場合は、樹脂の引張強度の低下に加え伸びの変化も併せて考慮して複合する必要があるものと思われる。一方、CS-FR(非浸漬)では CS を用いたものよりも若干引張強度が小さかった。ヤング率は、いずれの繊維、樹脂を用いた場合も変化はほとんど認められなかった。ヤング率測定時の応力レベルでは、引張強度に見られたような樹脂の影響と考えられる現象が発生しなかったものと考えられる。

以上より、CS あるいは AS を用いる FRP 板の耐酸性は、樹脂の違いやその劣化程度によらず、FRP 層に対する要求される引張特性についてはほぼ良好な結果となった。しかし、多層の連続繊維シートを用いる場合は、二次応力などによる樹脂から繊維への応力伝達の影響が大きくなることが予想され、その耐酸性にはさらに検討が必要であろう。

4. コンクリートの曲げ補修・補強効果とその耐酸性

(1) 付着試験
付着破壊はすべて基盤コンクリートを伴ったものであり、アクティブメント面積で除して得た最大付着応力は 3.72〜4.88N/mm² とコンクリートの引張強度と同程度となった。樹脂の引張強度はいずれもコンクリートよりかなり大きいことをから、FRP 層はこの試験に対して最大の初期付着力を発揮したものと考えられる。したがって、連続繊維シートや樹脂の違いによる付着力の相違は明らかではなかった。

(2) 曲げ補修・補強効果
a) ひび割れ性状と曲げひび割れ発生荷重
載荷終了後のひび割れ状況の一例を Fig. 7 に示す。CS または AS を用いた場合、曲げひび割れ発生荷重、耐力の増加とともにノッチを挟んで斜めひび割れが発生し、それが下線から 10mm 程度以内での剥離ひび割れへと進展した。FRP 層の破断は見られず、剥離ひび割れが支点に達した時点で除荷し載荷を終了した。ほとんどの供試体では斜めひび割れに挟まれた三角形部分では顕著な剥離はみられないが、荷重がある程度の値まで到達した後、ひび割れの角度や剥離程度が困難することが推定される。一方、GC や CR では曲げひび割れ発生とほぼ同時に FRP 層が破断し、その後の耐力の増加はなかった。

ノッチ先端における目視による曲げひび割れ発生
荷重を，無補強のものを1としてFig. 8(a)に示す。また，連続繊維シートのみの単位幅当たりの軸方向引張剛性に対して表わしたものをFig. 8(b)に示す。この仕様も曲げひび割れ発生荷重が増大し，ひび割れ抑制効果がみられるが，ヤング率が低いCSが最も効果が大きく，その後の同一荷重時のひび割れ幅が最も小さくなった。曲げひび割れ発生荷重は軸方向1層の場合でCSが約2倍，ASでは約1.5倍で，GCやCRを用いた場合も1.5倍程度の増加が認められた。

軸方向2層では1層のほぼ2倍の効果があるのに対し，直交2層では軸方向の繊維量が等量であるため同程度であった。以上のように，FRP層の軸方向引張剛性に比例して曲げひび割れ発生荷重は大きくなる。一方，樹脂の影響は比較的少ない。

b) 荷重-スパン中央たわみ

荷重とスパン中央たわみの関係を，樹脂を無視した平面保持による計算値とともにFig. 9に示す。CSやASを用いた供試体では，曲線は前述のひび割れ状況に対応して3領域に分類できるものが多くかった。

すなわち，Fig. 9(a)に示すように，曲げひび割れ発生以降は曲げ剛性の低下を伴うもののほぼ直線となるが，斜めひび割れ発生後は剥離によって荷重の増加は少なくなり降伏に近い挙動となっている。曲げひび割れ発生以降の曲げ剛性はヤング率が大きいCSで大きく，また載荷終了時までの耐力の増加も大きいが，ASでは比較的柔らかなたわみ性状となっている。

軸方向2層ではほぼ倍増し，耐力の増加はさらに大きくなるが，剥離ひび割れが顕著な時期には曲げ剛性は低下し軸1層と同程度となった。一方，樹脂の違いが曲げ剛性に与える影響はほとんど認められなかった。計算ではノッチを無視したため，実験値より曲げひび割れ発生までの曲げ剛性が大きく，また曲げひび割れ発生荷重は小さになっている。その後の剥離開始までの曲げ剛性は，CSを用いた結果に対して若干大きく見積もる傾向が認められる。なお，計算上はいずれも曲げ圧縮破壊であり，最大荷重は実験値の2倍程度となることから，剥離の発生時を明確にしやすく必要性が確認できる。

c) 中央断面とFRP層表面ひずみ

斜めひび割れ発生程度までの中央ひび割れ断面のひずみ分布をFig. 10(a)に示す。この時期までは，目視では明確な剥離は観察されながら，平面保持は失われており，樹脂の変形，連続繊維シートの樹脂からの引抜け，コンクリートの変形が，また，荷重の増加に伴い剥離が相対変位の原因になっていると考えられる。このことがヤング率の大きいCSを用いた場合に曲げ剛性の計算値に於いての相違を与えると考えられるが，ASでは影響は小さい。

d) FRP層表面ひずみ

FRP層表面のひずみをFig. 10(b)に示す。中央では載荷開始直後から増加するが，中央から25〜100mmでは順に急増点があり，FRP層の剥離が支点に向かって進展した様子がうかがえる。

一方，Fig. 10(c)に示すように，中央部や支点付近以外の剥離ひび割れが顕著な領域では，載荷終了時にはほぼ一定の値に近づく傾向にあった。そこで，載荷終了時の剥離ひび割れ発生しやすい最大値から得られる引張力により剥離に対する抵抗性を評価することにした。その値を破断荷重に対する割合とともにFig. 11(a)に，繊維のみの単位幅当たりの軸方向引張剛性に対して表わしたものをFig. 11(b)に示す。連続繊維シートの引張剛性が大きいほど負担できる引張力が大きくなっており，すなわち付着応力の積分値が大きくなることが分かる。このことにより，ASよりCSで，また軸方向1層より2層で載荷終了時までの荷重の増加が大きくなった。一方，引張剛性が40〜80MN/mではほぼ同様の値を示し，頭打ちの傾向も認められ，耐力増加のための積
層数には上限が存在することが推定される。この引張力は、片引きタイプの付着試験による既往の研究のうち同様に破壊により最大値となっているものより小さい傾向にあり、また引張力を(層間数)の影響も小さい。これは斜めひび割れの発生が破壊ひび割れを誘発する傾向にあったものと考えられる。

(3) 曲げ補修・補強効果の耐久性

a) 曲げ試験

ノッチ先端における曲げひび割れ発生荷重の経時変化を、同裁材の無補強のものを1としてFig. 12に示す。いずれの供試体も著しく低下は認められないが、ヤング率が大きくひび割れ抑制効果が大きいCSに、ヤング率が低下したNRとFRを用いた場合で若干の低下傾向となった。曲げひび割れに伴う付着応力の発生に対して樹脂から繊維に伝達される応力が小さくなり、連続繊維シートの引張剛性を十分に発揮できなくなったものと考えられる。また、曲げひび割れ発生前にノッチ付近で破壊が発生していた可能性もある。

6ヶ月の浸漬を行った供試体の荷重一たわみ曲線をFig. 13に示す。曲げひび割れ発生以降の曲げ剛性には、ほとんど浸漬の影響は認められなかった。FRP層表面で発生したひずみの最大値から得られる引張力の経時変化をFig. 14に示す。浸漬によるヤング率の低下が大きい樹脂を用いた場合で増加する傾向が認められる。また、その傾向はASを用いた供試体で顕著であった。同じ発生付着応力に対して樹脂の変形が大きくなる結果、付着応力の発生範囲が広くなるとともにその応力が小さくなり、界面のずれ応力やコンクリートへの作用せん断力が小さくなるため、ある程度の樹脂の劣化はむしろ付着応力の積分値を増加する傾向になる可能性がある。

b) 中性化深さ試験

連続繊維シート貼付け工法の耐久性には、FRP層自身の耐環境性能および接着安定性能に加え、防食被覆層としての環境遮断性能が重要である。浸漬供試体のFRP層にはいずれも割れやふくれは認められなかったが、NRやFR層は表面のつややや失われており、若干の変色が認められ、洗浄・乾燥後は表面に薄く白い粉が観察された。目視のため明らかでないが、環境素の収着によりわずかに蓄湿している可能性が考えられた。しかし、6ヶ月浸漬後の供試体のコンクリート部分の中性化深さはいずれの仕様の場合も5mmで、FRP層はコンクリートを適切に保護していた。樹脂単体での量増加程度と比較して、樹脂層の厚みが小さいにもかかわらず浸漬の影響は少ないが、連続繊維シートにより樹脂の微細なび

Fig. 12 Cracking Load Ratio

Fig. 13 Load—Displacement Curves

Fig. 14 Tensile Force Ratio (NR○AR▲FR)

割れが押さえられ、環境剤侵入に対する遮蔽効果があるものと推定される。また、そのため付着に与える影響も小さかったものと思われる。

(4) 連続繊維シートおよび樹脂の引張強度の影響

本研究の範囲では、供試体の破壊形態が破壊ひび割れの発生であったため、連続繊維シートの引張強度が曲げ補修・補強効果に与える影響は認められない。一方、浸漬後も含め樹脂の引張強度は広範囲にわたったが、曲げ補修・補強効果との相関性は確認できなかった。

66
Table 11 Failure Mode of Externally Strengthened Hume Pipes

<table>
<thead>
<tr>
<th>Fiber Sheet</th>
<th>Resin</th>
<th>Fiber Layer Configuration</th>
<th>Failure Mode**</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>AR</td>
<td>1 ply</td>
<td>FRP Layer Rupture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 plies</td>
<td>Concrete Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1, 2 plies*</td>
<td>FRP Layer Rupture</td>
</tr>
<tr>
<td>NR</td>
<td>AR</td>
<td>1 ply</td>
<td>FRP Layer Rupture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 plies</td>
<td>Concrete Failure</td>
</tr>
<tr>
<td>AS</td>
<td>AR</td>
<td>1 ply</td>
<td>Spiral Steel Rupture</td>
</tr>
<tr>
<td>C2</td>
<td>AR</td>
<td>1 ply</td>
<td>FRP Layer Rupture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 plies</td>
<td>Concrete Failure</td>
</tr>
<tr>
<td>CM</td>
<td>AR</td>
<td>1, 2 plies</td>
<td>FRP Layer Rupture</td>
</tr>
<tr>
<td>GC</td>
<td>GR</td>
<td>1, 2 plies</td>
<td>FRP Layer Rupture</td>
</tr>
</tbody>
</table>

*Also with internal 1 ply.

**FRP layer rupture/concrete failure occurred at 90° and 270°. Spiral steel rupture occurred at 0° and 180°.

5. ヒューム管の外圧補修・補強効果

内面および表面補修管の載荷終了時の様子をFig. 15に、表面補修管の破壊形態の一観をTable 11に示す。内面および表面補修とも重ね絡手が弱点となることはなかった。

(1) 内面補修管
a) ひび割れおよび破壊性状

内面補修管では、無補修管と同様に、まず載荷点内側と、ほぼ同時に支点内側に、ひび割れが発生した。その後、左右外側を中心に軸筋間隔程度でひび割れが発生し、その付近の螺旋筋の降伏により決まる最大荷重に至っても載荷した場合は、その破断により2分された。GC以外の連続繊維シートを用いた場合、初びび割れが生じ、載荷点や支点内側から弦のようにFRP層の剥離が進展し、最大荷重時付近では左右内側でFRP層が座屈する場合もあったが、載荷点や支
点での破断はみられなかった。GC や CR はひび割れ発生も含め同様に破断した。

b）ひび割れ発生荷重および最大荷重

載荷点内側における目視によるコンクリートひび割れ発生荷重および最大荷重を、無補強のものを 1 として Fig. 16 に示す。管内面にひび割れを発生させた供試管の値は、載荷中に再び荷重の一時低下を確認した時のものとした。曲げ試験と同様に、どの仕様においてもひび割れ発生荷重が増大し、また連続繊維シートの引張剛性に伴うひび割れ発生荷重の場合には、曲げ試験での結果との整合性があった。しかし、引張剛性の増加は曲げ試験での影響はなく、供試体形状の相違に加えてフリーム管の場合に内面に生成されやすい脆弱部をさらに処理する必要性があるものと考えられる。また、管内面ひび割れを有する場合も、内面への FRP 層の適用により健全な供試体と同程度に回復できることがわかる。一方、剥離または破断が発生した後に鋼筋が降伏する破壊形式のため、最大荷重に対する補強効果は認められなかった。

(2) 外面補強管

a）ひび割れおよび破壊状態

外層補強管では、左右内側のひび割れ分散性が向上しているが、断面における目視により確認できた。CS または C2(H) タイプを用いた場合、1 層（それぞれ 300、200/200m 2）では左右内側で FRP 層の破断、2 層（それぞれ 600、400/200m 2）では左右内側でのコンクリートの圧縮により最大荷重となり、CM(H) タイプ（300/200m 2）では 1、2 層ともに FRP 層が破断した。AS では大きな変形後、載荷点と支点で鋼筋が破断した。載荷点あるいは支点を起点とする断面ひび割れを伴った供試管もみられた。

b）ひび割れ発生荷重および最大荷重

載荷点内側における目視によるコンクリートひび割れ発生荷重および最大荷重を、無補強のものを 1 として Fig. 17 に示す。最大荷重はいずれも増大しており、FRP 層の破断で最大となる場合はその破断荷重に比例している。一方、内面補強を併せて行った供試管を除き、ひび割れ発生荷重に対する補強効果は認められない。

(3) フリーム管の外圧補強・補強効果

FRP 層の管内面への適用は、主として既設管を対象としたものであり、管内の劣化要因から管を保護することともに、ひび割れの発生・進展を防ぐことを意図したものである。一方、外層への適用は新設管のみを対象としたものであり、主として上載荷重に耐える耐力の向上を目的としたものである。本研究の範囲では、特定の対象供試管に対する限られた種類の FRP 層の適用を検討したが、試験結果は用いた FRP 層によりこれらの補修・補強効果が得られていることを示している。内面補強は、ひび割れ発生荷重の増加に加え、FRP 層が破断しなかったため漏水防止効果も期待できる点で既往の防食被覆・工法より優れている。外層補強は FRP 層の引張強度を有効に利用する手段の一つになる。また、外層とともに適用することにより、両者の効果が得られた。

FRP 層の実際の適用にあたっては、さらに検討すべき内容もある。例えば、劣化したコンクリート破壊部の除去処理の程度や、未除去の劣化因子および非貼付け面からの物質の浸透が補修・補強効果に与える影響等を明らかにする必要がある。また、地震時に含む実際の荷重状況における補修・補強効果を、外層補強層との関連のもとで検討する必要がある。

6. 結 論

連続繊維シート貼付けによる下水道コンクリートの補修・補強効果ならびにその耐酸性を、構造材料から実大レベルの供試体までの載荷試験から確認した。連続繊維シート貼付け工法には適用可能な材料が多く存在し、また複合材料として用いるため、材料選定には十分留意する必要がある。本研究で用いた材料はいずれも補修・補強効果を有していたが、それぞれ特徴があり、ひび割れ、変形、破壊性状および耐酸性において選定基準が設定できるものと考えられる。本研究の範囲内で得られた主な知見をまとめて結論とする。

(1) 樹脂の種類より硬化物の力学的性質、耐酸性に差があるが、連続繊維シートを用いた FRP、コンクリート供試体の力学的性質に対して樹脂の違いによる有無差は見られなかった。

(2) 連続繊維シートの引張剛性の増加は、曲げひび割れ発生荷重、その後の曲げ剛性および剥離ひび割れ進展時の最大引張力を増加させる。樹脂のヤング係数の影響は小さいが、連続繊維シートの引張剛性が大きい場合に曲げひび割れ発生荷重と最大引張力に影響がある。これらの効果はコンクリートのひび割れ状況の影響を受ける。一方、10%硫酸水溶液への 6 ヶ月間浸漬ではこれらの効果の変化は小さく、FRP 層によりコンクリートが酸に対して保護され、FRP 層自身が受ける影響も、曲げ状態に著しい影響を与えるものではなかった。

(3) フリーム管の内面補強はひび割れ発生荷重を増加させる。その効果は曲げ試験と同様引張剛性により整理でき、管内面にひび割れを有する場合も耐荷挙動は健全なものに近づく。また、FRP 層破断せず、漏水防止効果を有するものと考えられる。
方、外面補強は最大荷重を増加させる。FRP 層の破断が最大荷重を決める場合、その効果は破断荷重により整理できる。
(4)連続繊維シート貼付け工法は、耐酸環境での補修・補強効果の低下が少なく、下水道コンクリートへの適用が有効であると考えられる。

謝辞：最後に、本研究の遂行に当たってご指導いただきた故藤井学教授（京都大学大学院）、実験に際してご協力頂いた大西清春氏（サンユレジン株）、梅田和弘氏（藤村ヒューム管株）、西村明氏（東レ株）および卒生の福本仁志氏（現建設省）をはじめ皆さんに深く謝意を表します。

参考文献
1) 例えば、岩田氏、安藤博文、松田哲夫、小松克朗、大野了：炭素繊維による耐震補強に関する研究、土木学会論文集、No.540-V-31、pp.85-104、1996.6
2) 例えば、木下 敏次：下水道管のコンクリート腐食、セメント・コンクリート、No.577、pp.14-19、1995.3
3) 宮川登章：下水道施設のコンクリート防食について、防水ジャーナル、第261号、pp.42-45、1993.9
4) 日本下水道事業団：コンクリート防食研究（案）、1993.6
5) 例えば、浅野昭幸、佐藤明彦、上田多門、小野 定：炭素繊維シートの着付特性について、新素材のコンクリート構造物への利用シンポジウム論文報告集、JCI北海道支部、pp.75-80、1996.11
6) 赤田 聖：プラスチックによる防食技術、日刊工業新聞社、1982.
7) 大石不二夫、成沢郁夫：プラスチック材料の劣化耐久性と破壊、日刊工業新聞社、1987.
9) コンクリート構造物の表面保護工法選択（案）・同解説（コンクリート床版防水工設計施工指針（案）・同解説、阪神高速道路公社・日本材料学会、1989.3
10) 久保忠雄、西澤 宏：下水道施設の防食被覆の耐久性に関する調査、第31回下水道研究発表講演集、pp.234-236、1994.7
11) (財)鉄道総合技術研究所：炭素繊維シートによる鉄道高架橋の耐震補強工法設計・施工指針、1996.7
15) 佐野 正、三浦 尚：鋼板によるコンクリート部材の補強設計法に関する研究、土木学会論文集、No.550-V-33、pp.117-129、1996.11.

(1997.6.26受付)

REPAIR AND STRENGTHENING OF SEWERAGE CONCRETE STRUCTURES USING FIBER SHEET

Atsushi HATTORI, Takashi YAMAMOTO, Seiji KASHI and Toyoaki MIYAGAWA

To apply the high strength fibers in woven sheet shape to sewerage concrete structures for repair and strengthening, their long term durability in acid environment should be made clear as well as their load carrying behaviors. This paper describes the acid resistance of several kinds of fiber sheets, resins and FRP plates of their combination. Flexural strengthening of concrete prisms using the fiber sheets and the strengthening durability in acid solution were also discussed. Finally, the external loading test of hume pipes strengthened with the fiber sheets was conducted. The results indicate that appropriate combination of fiber sheet and resin can be adopted as one of the repair and strengthening methods for sewerage concrete structures.