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A finite element formulation for the large displacement analysis of three-dimensional solid beams is
proposed. It is based on the degeneration approach: the governing equations for a general solid are directly
discretized. The assumptions of the Timoshenko beam theory are implemented in the discretization process
by devising a 9-node beam element and utilizing the penalty method. The shear stiffness is adjusted by
introducing two shear correction factors into the constitutive equations. The formulation is quite simple
and straightforward, mainly because rotations are excluded from nodal variables. Several example
problems are solved to demonstrate the validity of the present formulation.
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1. INTRODUCTION

A three-dimensional beam formulation is not a
simple extension of a two-dimensional formulation,
since finite rotations that are not vector quantities
must be accounted for in the three-dimensional
analysis. Therefore, various techniques such as Euler
angles and Rodrigues parameters have been devised:
detailed description of this issue is available
elsewhere' . Because of the complexity of dealing
with finite rotations, various large displacement
formulations/theories for three-dimensional beam
analysis have been proposed, some of which are listed
at the end of this paper”'”. Although they differ from
each other, all the beam elements based on those
formulations do possess rotations as nodal vanables.
At the current stage of development, a rigorous
treatment of finite rotations is certainly possible, but
such a class of formulation still appears to be rather
involved and complicated inevitably.

Kanok-Nukulchai et al.'® have proposed a simple
large deformation formulation for shell analysis. They
have employed the degeneration approach, which
directly discretizes the three-dimensional field
equations for a general solid, and eliminated rotations
from nodal variables of their shell element by

already done in two-dimensional beam analysis™".

introducing relative displacements. The simplicity of
the formulation stems from the fact that no
complicated treatment of finite rotations is needed.
The same strategy has been taken successfully for the
nonlinear analysis of two-dimensional beams'? ?*.
The objective of the present research is to propose a
simple yet accurate finite element formulation for the
large displacement analysis of three-dimensional solid
beams. To this end, we employ the degeneration
approach and exclude rotations from nodal variables,
so that the formulation is free from the difficulties
associated with finite rotations. Only elastic beams are
dealt with in the present study. The extension to an

inelastic case is, however, straightforward, as we have
20)

2. FORMULATION

We utilize two sets of coordinate systems in the
present formulation: spatial coordinates and material
coordinates®”. In what follows, x, y and z denote
the former while X, Y and Z the latter. The tensor
notation is also employed in the present description, so
that we may use x; and X to represent spatial
coordinates and material coordinates, respectively.
Furthermore, we let the lower-case and upper-case
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Fig. 1 Coordinate systems

subscripts designate the association with the spatial
and material coordinate systems, respectively. We set
the X (X))-axis passing through the centroid of
every cross-section of a beam, as is shown in Fig. 1.
We resort to the total Lagrangian formulation in the
present study®®. Therefore, the description would be
in terms of the 2nd Piola-Kirchhoff stress S;; and the

Green strain £j;.

(1) Beam assumptions )

The solid beams we consider in the present study are
ciassified as the Timoshenko beam™. Namely, we
employ the following beam assumptions:

a) cross sections do not deform;

b) plane  cross-sections remain plane
deformation; and

c) only three stress components are significant.

after

Using the Green strain components, we can
mathematically express Assumption a) as
Eyy =Ezz =Ey; =0 0y
Assumption b) is implemented by devising a new
finite element, the details of which we shall descnbe in
the subsequent section.
To be specific, Assumption ¢) means

Syy =Szz =S8yz =0 )

The remaining stress components Syy, Syy and
Syz are related to the three nontrivial strain

components Eyy, Eyy and Eyy, respectively,

through Young's modulus E and the shear modulus
G . Because of Assumption b), the shear correction
factors (shear coefficients) need be introduced into the
constitutive relations. This issue will be discussed
later in the section 2.(3).

~
(Y

(b) 12-node solid element

Fig. 2 Finite elements

(2) Beam element

The beam element used in this study evolves from a
12-node three-dimensional  isoparametric  solid
element. These two elements are illustrated in Fig. 2.
The beam element consists of nine nodes: three
reference nodes on the beam axis (Nodes 1 to 3) and
six relative nodes on the beam surface (Nodes 4 to 9).
The present beam element has only three nodes on a
cross section, while the original solid element has four:
we have eliminated one node so as to keep a plane
cross-section plane, thus implementing Assumption
b).

We assign three displacement components to each of
the reference nodes as nodal variables while we assign
to each relative node three components of the relative

_displacement with respect to the reference node
located on the same cross-section. No rotations are
involved explicitly and the relative displacements can
be viewed as substitutes for them. Thus all the nodal
variables are vector quantities in the present beam
element. Consequently, the complexity due to finite
rotations in the conventional beam elements is not an
issue here at all.

We describe geometry of the beam element by a set
of natural curvilinear coordinates (r,s,t), each of

which has the range of -1to 1, 1.e. =1<r5,1<1.The
" displacement vector u; of a point at (r,s,t) inabeam

element can be expressed in terms of nodal variables
as

9
u; =y N°(r,s,nUj] (3)

a=1

where U j’ denotes the absolute displacement vector at

Node "a" for a=1~3 and the relative displacement
vector at Node "a" for a =4 ~ 9. The shape function
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N consistent with this definition of U j’ is derived in
the way similar to that of Ref. 18) and given by

%rar(l + rar) fora=1,3
1-r2 . fora=2
N5, =11

Er“r(l + r”r)(s“s + t“t) fora=4,6,7,9

(l—rz)(s“s+t"t) fora=5,8
C))
where
-1 fora=14,7
r®={0 fora=25,8
1 fora=3,6,9
a_|0 fora=1~3,7~9 5
5 1 fora=4~6 .(
. |0 fora=1~6
7 =
1 fora=7~9

It is noted that because of the employment of the
relative nodes, the representation of rigid-body
3
displacement is ensured by Z N =1,
’ a=1
This element is isoparametric provided that relative
position vector is input for each relative node. The
relative position vector is therefore defined in the same
way as the relative displacement vector and we have

9
x; =Y N(r,s,N X} (6)

a=1

where X j’ with @ =1~3 is the position vector of a

reference node while X f with a=4~9 is the

relative position vector of a relative node with respect
to the reference node located on the same cross-
section.

(3) Shear correction factors

Assumption b) implies constant shear strain over a
cross section when a beam undergoes bending
behavior. This simplifies analysis, however the
predicted deformation appears to be slightly different
from a real state. To overcome this problem, a shear
correction factor has been introduced in the
Timoshenko beam theory® ¥,

Assumption b) suppresses the warping of a cross
section and tends to overestimate the torsional
rigidity”. In fact, the assumption leads to the
torsional constant equal to the polar moment of inertia.
The adjustment of the torsional rigidity is therefore
required, which will be achieved in the present study
by introducing another shear correction factor into the
stress-strain relationships.

Consequently, the constitutive equations are
assumed to take the following form in the present
formulation:

Syx = EE vy
Syy =2aGE% +2BGEY 0
Sxz =20GER; +2GEZS

where a and f are the shear correction factors. The
superscripts EY and OY indicate the even part and
the odd part with respect to the Y -axis, respectively.
To be specific, E)E(f: and E)%}:' atapoint (X,Y,Z)in
an element are defined as

ER (X.1.2) =2 [Exy(X.1,2)+ Exy (X,1,-2)]

EF (x,v,2)= %[E xr (XY, Z) - Exy (X,Y,-2)]
(®)

Likewise, we define £%% and EYZ as

1
EE(x,v,2)= SExz(X.Y,2)+ Exz (X,-Y,2)]

EY (X.1.2)=3[Exz (X.1.2)- Exp (X,-Y,2)]
©)

Since the even part and the odd part of the shear strain
are related to bending deformation and torsional
deformation respectively, the shear correction factor
@ is associated with the deflection due to shear
deformation while the other shear correction factor f
with the torsional rigidity. The value of @ can be
determined by the shape of the cross section whereas
the value of f takes the ratio of the torsional constant

to the polar moment of inertia.

(4) Governing discretized equations

The boundary value problem that we are to solve is
defined by the following equations together with Eq.
(7)21), 22):
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(SyFy)p+pbj=0 in ¥y (10)
1 .

Ey ='2_(FkIFk] —51_]) in ¥y (11

to; = rorSurFjy on Ay  (12)

up=uj on Ay, (13)

where Fy is the deformation gradient, pq the mass
density, b; the body force, &7, the Kronecker delta,
to; the prescribed traction, ng; the unit normal
vector on the boundary surface and #; the prescribed
displacement. ¥ is the body under consideration,
A, the boundary surface with the prescribed traction

and Ag, the boundary surface with the prescribed

displacement. The subscript 0 indicates the original
state. Eq. (10) is the equilibrium equation, Eq. (11) the
definition of the Green strain, Eq. (12) the mechanical
boundary condition and Eq. (13) the geometrical
boundary condition. In addition to these governing
equations, we have to take into account the constraints
of Eq. (1) in the present boundary value problem.

For the basis of finite element formulation, we
employ the principle of virtual work derived from Eqs.
(10) to (13)*. In order to impose Eq. (1), we further
resort to the penalty method”®. Hence, we start the
formulation with the following equation:

W= j S s 6E 0 dV +I2SXY5EndV

2 2

+[25xz880av - | pobjdyav
2 2

-I to 8uydlA + j' kEyy SE pydV
o 2

+ J. kEzzﬂzde + I kEYZéEyde =0
v 2

(14)

where &Ej;, du; and k are the virtual strain, the

virtual displacement and the penalty number,
respectively.
For duj, we employ the same shape functions as

those for u 80 that we have

9
by = YN8

a=1

(13)

where U] is the nodal virtual displacement defined

in the same way as U} . Substituting Eq. (15) into Eq.
(14), we obtain

w=>w=0 (16)
e=1
where
2 bl b b
€
w =Zé’Uj[Kj—Rj] 17
b=1
Kl?=J [Sx Fig N°
J ve Xx Px X
+Sxy (Fx N + FiyN%)
+Sxz (Fiy NG + FizN%) (18)

+ kEyy Fiy N +kEzz Fjz N
1 .
+okEyz (FiyN% + FizN%)lav
b _ b b
R® ‘.[V; pob;N dV+J-A5, to;Nbaa  (19)
# in Eq. (16) stands for the number of elements. For

finite element analysis, it is more convenient to rewrite
Eqs. (18) and (19) in matrix form:

K’ = Fsabav 20
fye (20)
b _ b b
R® = IV; poN®bav + jyoaN bdV  (21)
where
FxX FxY FxZ
F= FyX FyY FyZ - (22)
Fx Fy Bz
Sxx  Sxr Sxz
S=|Syy kEyy kEyz/2 (23)
T
() =[¥% w4 Wy e
T
b =[bx b, bz] 25)

We evaluate Eqs. (18) and (19) (or, equivalently,
Egs. (20) and (21)) for each element, and then
assemble all those individual element contributions.
The summation symbol with e in Eq. (16) represents
this assemblage procedure. Since the nodal virtual
displacement is arbitrary, we end up with
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K-R=0 (26)

where K and R are the assemblage of Kf- and Rb,
respectively.

Since Eq. (26) is a nonlinear algebraic system, we
must have recourse to some numerical methods. In the
present study, we utilize the Newton-Raphson
technique, so that the following linearized equation is
solved repeatedly until convergence is attained:

KyAU™ =R -K™ X))

where the superscript (7) denotes the number of

iterations. AU is the iterative increment of the
nodal displacement at the mth iteration. K7 is the

tangent stiffness matrix, which can be evaluated by

taking the derivative of K with respect to the nodal
displacement U. To that end, consistent
linearization'®*” is - performed and the tangent
stiffness matrix is obtained for an element as

Kba_ﬂ(b
=
af

- b\THp? biTQaa
_IV;(B )" DB dV+UV0e(A_) SA dV}I

(28)
where
[ F N
nyN)Y ) N
b
FuaNz
b b
gt | FaNz+FgNy

(FaN% + Fy N%) &
(FoxN% + Fy N5)OY
(Fox N + FgNy )™
(FuxN% + FgN%)%%

b b
FxNx FixNx
b b
FyyNy FiyNy
b b
Fy N7 FzN7

FyyN% + F,zN%

(Fx N% + Fyy N%) &Y
(Fux N + Fy N%)O7
(Fx N + Fz N%)E?
(Fx N + Fy N% )%

FyyN% + FzN%
(Fx N4 + Ry NBHEY
(Fyy N% + Fy Nb%)0Y
(Fux N + Fyz N% ) E2
(FoxN% + Fz N% )92

@9)

P
y S b
\ 1 hil(]
e A GRoSS SECTION
Fig. 3 Cantilever beam under end load
fE 0 0 0 0 0 0 0
k 0 O 0 0 0 0
k 0 0 0 0 0
k/i4 0 0 0 0
D=
aG 0 0 0
BG 0 0
sym. aG 0
L G
(30)
and I is the identity matrix.
3. NUMERICAL EXAMPLES

Numerical examples are solved to test the
effectiveness of the proposed formulation. The Gauss
scheme of 2x2x2 is employed for numerical
integrations in the example problems. All the
calculations are performed on Sun SPARCstation 2
using double precision, and the Euclidean norm of

incremental displacements less than 10~ times the
current displacement norm is used as the condition for
convergence. In the following presentation, we denote
the free-end displacements in the x-, y- and z-
directions by u, v and w, respectively, and we let 1
designate the moment of inertia of a cross section with
respect to the minor axis.

(1) Cantilever beam under end load

This is a well-known benchmark problem and
depicted in Fig. 3. The dimensions and material
properties are assumed as: L=100; h=1, b=12;
E=2x106; and oG =1x10%. Only a planar
behavior in the x — y plane occurs, so that the value
of B has no influence on the numerical results.

The effect of the penalty number & is explored first.
To this end, the analysis of the cantilever using five
beam elements is conducted for various values of k .
The deflections at the free end are presented in Table 1.
We observe from the table that v converges as the

value of & increases, and that 103 times Young's
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Table 1 Effect of the penalty number k&
(cantilever beam)
-v/L
kIE PLY/EI=4 | PI*/EI=10
10° 66784 80614
10' 66769 .80593
10° 66767 .80591
10° 66767 .80590
10* 66767 .80590
10° 66767 .80590

Table 2 Free-end deflections due to various
discretizations (cantilever beam)

-v/L
PLYEI { Anal.®™® | 3 elem. | 5 elem. |10 elem. |25 elem.
2 49346 | .49039 | .49242 | 49323 | .49345
4 66996 | 66323 | 66767 | 66945 | .66993
6 74457 | 73522 | 74135 | 74385 | .74453
8 78498 | 77352 | .78098 | .78409 | .78493
10 81061 | .79734 | .80590 | .80956 | .81055

modulus "E appears sufficiently large to achieve

convergence. Hence, k = 103E is to be employed in
the present study hereafter.

The analytical solution of this problem by means of
elliptic integrals is available™. We examine the
performance of the proposed formulation against this
analytical solution. The numerical results due to
several discretizations are summarized in Table 2.
The values are clearly improved as the number of
elements increases: the discrepancies of the results
with 25 elements from the respective analytical
solutions are all less than 0.01%. Even by five
elements we have obtained the results within the
difference of 1%, which seems good enough from a
practical point of view. The load-displacement curve
due to five elements is shown together with the
reference solutions in Fig. 4.

(2) Buckling of a cantilever column

We analyze a cantilever column shown in Fig. 5.
Three different cases, Columns I to I, are considered:
Columns I and II are prismatic with b =12, but the
width of Column III is assumed to vary continuously
from b = 6 at the top of the column to 5 =12 at the
bottom in a parabolic fashion. The difference between
Columns I and II lies in the shear modulus:

aG =1x10% for Column I and oG =1x 10? for

Column II. For Column IlI, aG =1 x 108 is assumed.
The other conditions, common to all the three analyses,

are: L=100; h=1;and E =2 x 10% . The deflection

PLE/EI

12
10+
— PRESENT
8r (5 ELEMENTS)
= ANAL. [28]

6F
4+
2+

0.4 0.6 08 1
-v/L

0 02

Fig. 4 Load-displacement relationship (cantilever beam)

P
/

b
Ll

CROSS SECTION

»

N\

Fig. 5 Cantilever column (buckling problem)

would be confined in the x — y plane, so that the value
of B has no influence on the numerical results. The

columns are tilted initially with a slope of 1:2000 to
initiate the deflection in the x ~ y plane.

As is known well, the critical load for the buckling of
Column I is*

€2

Since the shear modulus of Column II is small, the
critical load reduces to*®

P crl

— "ol —0961P,
1+ P, / aGA erl

Pertr = (32)

where A is the cross-sectional area. The moment of
inertia of Column III varies and is defined by

1(5):10(1+—5—)2 (33)

24142
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u/L
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Fig. 6 Load-displacement curves (Columns I to II)

where ¢ is the distance from the top of the column,
and I is the moment of inertia at £ =0, that is, at the

top of the column. The critical load of Column III is
then given by**

P,

erlll =

2.023EI(100)
— 02 34

=0820P,,,

Each column is discretized by five elements and
analyzed. It is noted that with the present beam
elements we can model the varying cross-section of
Column HI as it is. The load-displacement curves are
drawn in Fig. 6, which shows that the deflections in all
the three cases increase very rapidly in the vicinity of
the respective critical loads indicated by the dotted
lines.

For Column I, the post-buckling behavior has been
obtained analytically®. In Table 3, the present
numerical results are listed in comparison with the
analytical solutions. Due to the initial slope, the
numerical result overestimates the analytical value by
about 3% at P/P,; =1015. The discrepancy,
however, diminishes quickly with the increase of the
deflection; very good agreement is observed at the
larger loads with the error much less than 1%.

(3) Lateral buckling of a cantilever beam )

The cantilever beam shown in Fig. 7 is analyzed.
The conditions are: L=100; h=12; b=02;
E=2x10°, G=1x10% @=08333; and
£ =001329 . In addition to the vertical load P, a
small transverse load of P /2000 is applied at the
free end to initiate the out-of-plane displacement.

Table 3 Post-buckling behavior of Column I

ul/L
PIP,, Anal®® Present
1.015 .220 227
1.063 422 421
1.152 .593 .592
1.293 719 17
’ P
y . .
2 XN —% hI[]
P/2000
. L . CROSS SECTION
< >

Fig. 7 Cantilever beam (lateral buckling problem)

While the transverse load is always applied at the
centroid of the cross section, three different loading
points are considered for the vertical load P.
Accordingly, we analyze three beams, Beams A to C:
P is applied at the centroid of the cross section in
Beam A; at the top edge in Beam B; and at the bottom
edge in Beam C.

The critical load for the lateral buckling of Beam A
has been evaluated analytically as®®

(35)

4013JEIGJ
Popy = 5

L

where J is the torsional constant. In the case of Beam
B, the critical load reduces to*?

h/2 [EI
P, =[ =~V G | Pera =0958P..4 (36)

The critical load of Beam C is the largest®”:

h/2 ’EI’
+T a}- PCI'A =lo42PcrA (37)

We analyze these beams, each of which is
discretized by five elements, and depict the load-
transverse displacement relationships at the free end in
Fig. 8, in which the critical loads are indicated by
dotted lines. In each beam, a sharp increase of the
displacement is clearly observed, as the critical load is
approached.

Pc =(l

(4) Cantilever 45-degree bend under end load
We consider the cantilever 45-degree circular bend
illustrated in Fig. 9. The conditions are: R=100;
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Fig. 8 Load-displacement curves (Beams A to C)

A
x  [ln

CROSS SECT{ON

* Fig. 9 Cantilever 45-degree circular bend

b=h=1; E=1x107; G=05x10"; «=08333;
and = 08438 . The bend has been analyzed by many

researchers® ' 1917 byt only Goto et al.'"” have
described explicitly the value of the torsional constant
as J = 01406, from which the above value of f has

been determined.

Using five elements, we analyze the bend and
present the load-displacement curve together with the
reference results in Fig. 10. Table 4 provides a further
comparison between the present results and those of
Goto et al.'”. Very good agreement is observed with
the difference well below 1%.

4, CONCLUDING REMARKS

A finite element formulation for the large
displacement analysis of three-dimensional solid
beams is presented. Due to the employment of the
degeneration approach and the avoidance of rotations
in nodal variables, nonlinear continuum mechanics
could be applied directly, and the shear correction
factors have been implemented to make up for the
restrictions imposed by the beam assumptions. The
formulation thus established is simple and

PRY/EI
121
10F — PRESENT
-« [5]
gk o [10]
Fooe 1]
6r * [12]
+ [13]
4k x [14]
o [16]
2 -
00 0.2 0.4 0.6

v/R

Fig. 10 Load-displacement relationship (45-degree bend)

Table 4 Free-end displacements (45-degree bend) '

(a) PR}*/EI =5

-u/R v/R -w/R

Present 1018 4711 1733

Gotoetal'V|  .1013 4720 1741
() PR/ EI=10

-u/R v/R -w/R

Present 1681 5791 2941

Gotoetal'V’] 1675 .5810 2959

straightforward. Accurate results have been obtained
in the numerical examples, confirming the validity of
the present formulation. We hence believe that the
proposed procedure can serve as an attractive basis
for the large displacement analysis of three-
dimensional solid beams.
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